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Applied complex network theory has become an interesting research field in the last years. Many papers have appeared on this
subject dealing with the topological description of real transport systems, from small networks like the Italian airport network
to the worldwide air transportation network. A comprehensive topological description of those critical structures is relevant in
order to understand their dynamics, capacities, and vulnerabilities. In this work, for the first time, we describe the Spanish
airport network (SAN) as a complex network. Nodes are airports, and links are flight connections weighed by traffic flow. We
study its topological features and traffic dynamics. Our analysis shows that SAN has complex dynamics similar to small-size air
transportation networks of other developed economies. It shares properties of small-world and scale-free networks, and it is

highly connected and eficient and has a disassortative pattern for high-degree nodes.

1. Introduction

The ideas and methods of modern complex networks
appeared for the first time in the 1920s in the context of edu-
cational and developmental psychology [1]. Since then, net-
work theory has become a popular research subject and has
been applied to many scientific fields: computer networks
and the Internet, technological networks, social networks,
economic networks, biological networks, or transport sys-
tems (2, 3].

Complex network analysis has been widely applied to the
analysis of topology and traffic dynamic of transport systems
like subways [4], railways [5], public transportation [6], or
air transportation networks.

Transport systems are critical infrastructures with eco-
nomic and social impact in our society. A good knowledge
of the network structure is crucial for making efficient and
rational decisions about logistics, sustainability, or mobility
in this context.

Topology features of transport networks like centrality,
presence of hubs, and critical nodes are of application for
protecting the network against failures or attacks. Traffic
flow description, network robustness, vulnerability, or weak-

nesses are other relevant features of transport systems which
can be analyzed by complex network methods.

In this work, we are focused on air transport systems.
Airport networks are modeled by weighted graphs G=(V,
E, W(G)) [7-9], where V is the set of airports, E is the set
of direct connections between them, and W(G) is the weight
matrix. Weighted links can measure different characteristics
of connectivity, like traffic flow (real passengers or freight
traffic) between airports or economic costs like geographical
distances, flight times, or fuel consumption.

If we are only interested in topological structure of the
network, then we denote A(G) as the binary adjacency
matrix of the graph.

This work deals with routes, passenger traffic, and geo-
graphical distances; thus, we assume that if there exists a
direct flight from airport i to airport j, also a flight from j
to i is scheduled and both have similar traffic, frequency,
and length. Then, we consider only undirected graphs.

This mathematical description has been applied last
years to deal with topological description of air systems
(China [10-13], India [14], US [15], Brazil [16], Australia
[17, 18], Italy [19], Turkey [20], Europe-China-US [21],
and the world airport network (WAN) [22-25]).
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Topological features of networks are invariant of their
underlying graphs. Some of them can be used to determine
common properties of real networks like small-world net-
works [26, 27] and scale-free networks [28]. This characteri-
zation is well known in the literature.

In this paper, we analyze and describe the Spanish
domestic airport structure as a complex network. Data con-
tains direct flights between network airports, their traffic
flow as a measure of importance of routes and airports,
and geographical distances.

This paper is organized as follows. The first section con-
tains a brief summary of topological features of networks we
have considered in this work. Next sections describe the
Spanish airport network (SAN) database and provide a
detailed exposition of its topological characteristics. Finally,
we conclude this work with a summary and discussion of
our analysis.

2. Network Structural Measures and Models

2.1. Structural Metrics. A network is represented by a graph
G=(V,E), where V is the nonempty set of nodes and E C
V x V is the edge set. We denote by n = |V| the number of
nodes and by m = |E| the number of edges of network G.
In our case of study, nodes represent airports in the SAN;
they are denoted indistinctly by v; or i in this paper. Edges

(vi»v;) = (vj,v;) represent regular routes between nodes.

Graph density d =2m/n(n—1) is the ratio of the number
of edges and the number of potential edges.

The information about connections is stored into the
adjacency matrix A(G) = (a;;) whose rows and columns are
labeled by graph vertices. If weight values are considered,

then the weight matrix W(G) adds weight information w;;

in each position (i, j).

Since our network SAN collects airports and commercial
routes, then the associated graph (or weighted graph) con-
tains no loops.

The following sections briefly describe the structural
metrics used in this work to characterize the SAN. These
structural metrics are gathered in three categories: degree-
and weight-based measures, clustering measures, and cen-
trality measures. Tables 1 and 2 include notations and for-
mulas [2, 29, 30].

2.1.1. Degree- and Weight-Based Measures. Node degree k;
and average degree <k >. Parameter k; measures the total
number of connections or neighbors a node i has. High-
degree nodes are known as hubs and correspond in our case
to central airports having connections to many others. Aver-
age degree <k > is the average of node connections in the
network.

Node strength s;. The notion of degree is generalized to
weighted networks by the notion of strength: the strenght
of a node is the sum of weights of links connected to the
given node instead of the number of edges. High-strength
nodes correspond to airports with high passenger traffic or
airports connected to many peripheral cities.

Degree distribution p(k) and p(>k). Let p(k) denote the
probability that a random node has degree k. This function
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TaBLe 1: Structural measures of unweighted networks and
notations.

Symbol Metric Equations
n Number of nodes —
a..
: %ij
m Number of links Z >
J ) 2m
Density n(n—1)
V(i) First connections of node i —
k; Node degree of node i Zaij
j
Vi Set of k-degree nodes —
n(k) Number of k-degree nodes —
(k) Average degree Zi(ki/N )
Vi
p(k) Degree distribution W
!
p(>k) Cumulative degree distribution Z;p (k )
i
K Average nearest neighbor Z ﬁ
ni degree of node i Pl) k;
K, (k) Average degree of nearest Z K.
neighbors of k-degree nodes ki=k
r Degree correlation NA
c Clustering coefficient of node i 3 i
; ustering coefficient of node i k(K — 1)
C.
C Clusteri flicient —
ustering coefficien Z p
Clustering coeflicient of
C(k 8 _(Cin(k
(k) k-degree nodes Z’evk( ®)
d; Shortest path length from i to j NA
D Diameter max d;;
L Average shortest path length Zi:j (dij/ n(n-1))
(11d,)
. ij
E Efficiency ; n(n—1)
D; Damage of node i (E-E;)/E
(i)
Cp(i) Betweenness centrality of node i Z ir z
=l Y
1
Ce(i) Closeness centrality of node i
zjdij
Cg(i) Eigenvector centrality of node i NA

is usually referred to as degree distribution. The probability
of a random node has degree higher than k, and p(>k) is
the accumulated version.

Average nearest neighbor degree of node ik, ;. Degree
distribution completely determines the statistical properties
of uncorrelated networks. Nevertheless, most real networks,
like transport networks, are correlated, and the probability of
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TABLE 2: Structural measures. Weighted networks.

Symbol Metric Equations
Si Node strength ;wi]
Kv Average weighted nearest Z wiik;
ot neighbor degree of node i vy S
Average weighted degree Z Kv
K (k) of nearest neighbors of = nnsi
k-degree nodes "
dy; Shortest path length from i to j NA
D¥ Diameter max d/
L Average shortest path length Zi:j (d?j/ n(n- 1))
(Ohg Clustering coefficient of node i Z w
2s;k;(k; = 1)
w . : Ci
C Clustering coefficient Z N

a k-degree node is connected to a k'-degree node p(k' | k)
depending on k. To deal with this idea, the average nearest
neighbor degree of node ik, ; computes the mean degree
of the neighbor set V(i) of a node i.

Average degree of the nearest neighbors of k-degree nodes
k,,(k). Denote V as the set of k-degree nodes. k,,, (k) is the
sum of k,,,, ; for all k-degree nodes v; € V. This metric can also
be expressed as follows:

K, (k) = Zk’P(k’ |k). (1)

k!

Note that k,,, (k) does not depend on k for uncorrelated
networks. On the other hand, if k,,,(k) is an increasing func-
tion of k, it is said that network has a assortative behaviour,
whereas if k,,,, (k) is a decreasing function of k, it is said to have
a disassortative behaviour. Thus, in an assortative airport net-
work, cities are more likely connected to others with a similar
degree while in a disassortative airport network, high con-
nected nodes tend to be connected to low connected airports.

Degree correlation r. When an assortative or disassorta-
tive behaviour is observed, the correlation between degrees
can be quantified by the Pearson correlation coefficient r of
pairs (k;, k;) for all edges (v;,v;) € E. Thus, r is positive for
assortative networks, and disassortative networks have nega-
tive degree correlation r.

Average weighted nearest neighbor degree of node ik, ..
This metric is the weighted analogous of the above metric
k

’Average degree of nearest neighbors of k-degree nodes
ki, (k). This metric is the weighted version of metric k,, (k).

2.1.2. Clustering. Clustering coefficient C; and CY’. (v;, v}, vi)
is a clique or triple if it forms a complete subgraph (a con-
nected triangle) of the network. Clustering coefficient of
node i quantifies how likely two first connections j, k of node

i are linked in the network, being a triple, and it is computed
by the ratio of the triples containing node i and all possible
links between its neighbors. It is also known as transitivity.
Airports with a high clustering coefficient are more inter-
connected than lower ones. Its weighted version CY is a gen-
eralization of this metric to weighted networks.

Average clustering coefficient C and C¥. Average of all
C; coeflicients in the network. It quantifies the local connec-
tivity and transitivity of the airport network as a whole.

Clustering coefficient of k-degree nodes C(k) and C¥ (k).
Average of all clustering coeflicients C; or CY, respectively,
of all nodes of V.

2.1.3. Distance-Based Metrics. In this section, metrics are
related to optimization problems; thus, weights are supposed
to be “cost” values, geographical or orthodromic distances,
fuel consumption, flight ticket prices, etc.

Shortest path length from i to jdij and d;’ dij is the
length of the geodesic between nodes i, j. We consider only
connected networks, and the shortest paths are finite there-
fore. In the context of airport networks, d;; is the number
of flights to travel between airports i,j. If we consider
weights on edges as geographical distances, we are interested
in the shortest paths with respect to the sum of the weights
of edges on a path, i.e., the total distance from i to j, and
denote d;; as the minimal sum.

Average shortest path length L and L. Mean of geodesic
lengths over all pairs (i, j) and unweighted and weighted ver-
sions. They are well-known measures of the separation
between nodes and play important roles in transport prob-
lems. If the transport network is disconnected, then only
pairs belonging to the largest connected component are con-
sidered. All real air transport networks mentioned in this
paper are connected.

Diameter D. Maximum value of d;; (maximum number

of flights to travel between two cities travelling trough a
geodesic).

Efficiency E. Harmonic mean of geodesic lengths. It
quantifies the traffic capacity of a network. E=1 for com-
pleted graphs and E=0 if V is a set of isolated nodes
(E=0).

Node damage D,. Relative decrease in efficiency after
removal of node i. It quantifies the resilience to node
removal in the network. Consequently, the more damage
an airport has, the more important is its theoretical interrup-
tion in case of failures, catastrophes, attacks, or other poten-
tial threats.

2.1.4. Centrality. Node betweenness centrality Cy(i). It quan-
tifies the importance of a node with respect to its centrality
as a communication bridge. Firstly, the rates of geodesics
going through node i (0(i)) and the total number of the
shortest paths connecting nodes j, ! (¢;) are computed for
all pairs (v}, v;). Betweeness centrality is the sum of all pos-
sible rates. A node with high value of betweenness has the
capacity to control a significant part of the flow of traffic in
the airport network due to the fact that there are many
nodes communicated through it.
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TaBLE 3: Comparative of some basic airport metrics and structure. The last row contains the corresponding topological measures of a
random network generated with the RE(#, p) model sharing n and m with SAN.

Year Authors Network n (k) d L C Structure
2005 Guimera et al. WAN 3883 13.93 0.004 4.4 0.62 SF SW
2007 Guida el al. Italy 42 12.4 0.302 1.98/2.14 NA SF SW
2008 Bagler India 79 11.52 1.148 2.26 0.66 SF SW
2008 Xu et al. uUsS 272 48.28 0.178 1.84/1.93 0.73/0.78 SF SW
2011 Wang China 144 14.14 0.099 2.23 0.69 SW
2017 Hossain et al. Australia 131 9.10 0.069 2.9 0.5 SF SW
2020 This study Spain 40 11.8 0.303 1.76 0.73 SF SW
— — RE (n =40, m = 236) 40 11.8 0.303 1.49 0.295 Random

5 E

15w 10°W 5w o

FI1GURE 1: The Spanish airport network (SAN). Spatial distribution.

Node closeness centrality C(i). Inverse of the sum of
the shortest path length from node i to the other nodes in
the network. A node with high closeness is an important
communication node, related to efficiency and minimal cost
in communication, due to its proximity to other nodes in the
network.

Eigenvector centrality Cg(i). It quantifies not only the
number of neighbors a node has but also the quality of its
connections. Connections to cities which are themselves
hubs will lend a city more central than connections to less
influential cities [31].

2.2. Topological Properties of Real Networks. Below, we
briefly report some of the most relevant classes of networks
related to our case of study.

Random network and Erdos and Rényi model (ER):
Erdés and Rényi firstly proposed a model to generate graphs
with random connections between nodes in the 1950s
[32-34]. The procedure to generate ER networks starts with
n disconnected nodes which are randomly linked with prob-
ability p until a fixed number of connections are reached.
These graphs are uncorrelated; hence, their connections are
independent of degree k; that is to say, p(k’ | k) and k,, (k)
do not depend on k. Other topological properties of ER ran-

dom graphs are the following: they typically have short path
length L, they have also small clustering coefficient C = <k
> /n, and their degree distribution is a Poisson distribution.
Nevertheless, the ER random model does not adequately
reproduce most of the properties or real complex net-
works [27].

Small-world network (SW): many real networks exhibit
the “small-world property”: any two nodes are connected
by a relatively short path. Watts and Strogatz [26] defined
SW networks as those having large clustering coefficient C,
much higher than random networks, and short path length
L. They proposed the SW model based on randomly replac-
ing a fraction of the links of a n-node ring with new random
links [27, 30]. Many papers have examined SW properties of
air transport systems (see Table 3).

Scale-free (SF) network: Barabasi and Albert [28]
described scale-free networks like SW networks whose new
nodes preferentially connect to higher-degree existing nodes.
This is called the “preferential attachment property”. SF net-
works also present the property of having power law degree
distributions.

3. The Spanish Airport Network (SAN)

Data for this work have been obtained from the OAG data-
base web page (OAG Analyzer). Database contains informa-
tion of flights with departures or arrivals to Spanish airports
during 2015.

The air transport system is a strategic sector. Domestic
and international air passenger traffic had decreased during
the economic crisis but significantly recovered in 2015. This
mobility growth trend started in 2013 in Spain. In fact, Span-
ish Transportation and Logistics Observatory (OTLE)
reported a total number of 31,076,530 passengers travelling
between Spanish airports during 2015.

The database analyzed in this paper contains informa-
tion of direct flight reservations between each pair of air-
ports in the network; thus, we only have considered
domestic flights. As we pointed above, passenger traffic has
suffered fluctuations in recent years; nevertheless, the route
structure of national passenger air transport of Spain has
remained similar from 2015 nowadays. To be concrete,

(i) each airport is taken as a node v;
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FIGURE 2: SAN weighted by passenger traffic. Edge width is proportional to the number of reservations (maximum of outbound and
inbound flight). Airports are labeled by their corresponding IATA code.

(ii) links correspond to regular air routes between
nodes in the network; thus, international flights
are not considered

(iii) two airports connected with an outbound flight are
supposed to be connected with the corresponding
inbound flight, and the negligible difference
between passengers’ flow of bidirectional flights
connecting two nodes is not considered; therefore,
SAN is modeled by an undirected graph

(iv) if we only take into account whether a regular route
between two airports had traffic in 2015 or not, SAN
is modeled by an unweighted graph

(v) in other cases, we analyze weighted SAN by consid-
ering two possibilities:

(a) Airport traffic measured by the maximum in-
out number of reservations in each route. We
use this information to understand properties
related to the importance of nodes considering
passenger flow

(b) Orthodromic distance-shortest path lengths on
the surface of earth-between airports. This
weighted network is considered for cost-based
properties (shortest path lengths and related
metrics).

There were 48 airports in the Spanish airport network by
2015 according to the information provided by AENA. Since
we are only interested in commercial aviation, then we have

excluded several airports from the database (sport aviation
airports without commercial passenger traffic, heliports,
and airports without flight data). Once these airports have
been discarded, the final network is constituted by 40 nodes
and 236 links. Figures 1 and 2 show the spatial distribution
of SAN airports and its regular routes, respectively.

4. Topological Analysis of SAN

4.1. Basic Metrics, Degree, Strength, and Related Topics. SAN
is a high-density network; d =0.303 with average degree <
k> =11.8 similar to other airport networks in the literature
(see Table 3). Airports of Barcelona, Madrid, and Palma de
Mallorca are the highest-degree nodes of SAN, ie., those
with the highest number of direct connections within the
Spanish domestic air transport system. These cities called
hubs are the very most touristic and business destinations
of Spain and play a central role in passenger distribution
over the SAN.

The characterization of the cumulative probability distri-
bution of node degree of a concrete real network is a crucial
structural issue reflecting how far this concrete real network
is from a random network. While ER networks have Poisson
degree distribution approximately bell shaped, many real
networks are potential.

Figure 3 represents the cumulative degree distribution of
SAN in a log-log scale. Potential behaviour is observed, but
the slope of log-log plot clearly presents a decreasing knee,
so airports with a low degree (less than a critical value of
k. direct connections) are much more likely than those with



10° 4 °
[ ° °
b
I~
L
~107! S
[ ]
1072 . )
10° 10! 10%
Degree (k)

FIGURE 3: Accumulative degree distribution of SAN nodes fitted by
a double Pareto law (log-log scale).

TaBLE 4: Parameters of double Pareto degree law distributions of
some airport networks [19, 21] and SAN.

Airport network  n Critical degree knee K, o B

SAN 40 17 033 3.07
IAN 42 9 0.2 1.7
CN 144 28 0.51 279
EU 467 60 0.8 4.23
uUsS 657 7 072 3.99

a higher degree. Cumulative degree distribution of SAN can
be fitted to a double Pareto law distribution.

ak™, k<k,
P(>k) =

2)
bk, k>k,.

SAN shares this property with other airport networks
like TItalian (IAN), United States (US), European (EU),
and Chinese (CN) airport networks [19, 21] (see
Table 4). SAN has the highest -slope related to «; thus,
its degree distribution rapidly decays for degrees greater
than 17. This is mainly due to the fact that SAN has a
small number of highly connected airports having direct
routes with many secondary airports with similar impor-
tance in SAN structure.

The power double Pareto law suggests that SAN also
belongs to the class of scale-free networks.

Degree is the first simple metric to measure the connec-
tivity of a node. Nevertheless, we are also interested in SAN
weighted by traffic flow. Node strength quantifies node rele-
vance not only by its direct neighbours but also by the traffic
it handles. Turning to SAN data, an increasing correlation
between degree and average strength is observed (see
Figure 4). Strength and degree relationship can also be fitted
by a potential law, that is to say, s(k) oc k% (& =2.70). The
larger an airport is, the more connections it has and the
more traffic it handles.
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FIGURE 5: Average degree of the nearest neighbors of k-degree
nodes. Unweighted and traffic-weighted SAN.

On the other hand, degree correlations are shown in
Figure 5. Both unweighted and weighted average metrics
k,,(k), k. (k) are decreasing functions of k. It means that
high-degree nodes are connected to lower ones and we say
that SAN has a disassortative behaviour. We observe that
average degree is lower than average strength; the higher k
is, the more pronounced the difference is. It means that
SAN has disassortative topology, but traffic is concentrated
between high-degree nodes. According to this behaviour,
degree correlation of SAN takes a negative value (r = —0.45).

4.2. Clustering. Dealing with connectivity capacity, clustering
coefficient of SAN is C =0.73, much greater than the corre-
sponding value of a RE random network with the same
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TaBLE 5: Shortest path lengths.
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FIGURE 6: Clustering. Unweighted and traffic-weighted SAN.
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FIGURE 7: Shortest path length.

number of nodes and edges (C=0.30). This property also
implies that SAN is a small-world network.

Figure 6 shows clustering coefficients of k-degree nodes
C(k) and their corresponding weighted measures. Both coef-
ficients are decreasing functions of k. Thus, large airports
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FIGURE 8: Shortest path length weighted by orthodromic distances.

called hubs provide air connectivity to far-off and secondary
airports of SAN, which do not tend to be connected
themselves.

As we comment before, SAN is a well-connected net-
work with high clustering coefficient C and average cluster-
ing coefficients for fixed degree k are consequently high for
almost all k. On the other hand, if we take into account the
passengers traffic flow of SAN, weighted clustering coeffi-
cient CY=0.83 is greater than the corresponding
unweighted coefficient. Moreover, Figure 6 shows that the
unweighted values C(k) of average clustering coefficients
are clearly lower than their corresponding weighted values
C¥(k) for all k, and the more neighbours a node has, the
more distance between the coefficients. This is called “the
rich club phenomenon”; that is to say, although the trend
of large airports is to be connected to few cliques, those cli-
ques have “rich” nodes with the highest traffic, that is, the
triplets that are formed between large airports with both
many direct connections and passenger traffic.

4.3. Shortest Paths. The average shortest path length is L =
1.76, and diameter is D =3. This means that most flights
are directed or have one stop, and the maximum number
of stops is 2. This gives an idea of how easy and fast is flying
within the Spanish domestic airport network.

Table 5 compares SAN’s shortest path lengths when the
network is weighted by geographic distances versus the
unweighted case. Note that there are no relevant differences
between both cases. Average measures L=1.76 and L* =
1.79 are similar though the weighted diameter is D* =4
and D =3. That difference follows from a single route of
weighted length 4 (see Figures 7 and 8). In fact, SAN is a
dense network with short distances between airports.

4.4. Efficiency, Damage, and Node Importance by Centrality.
Finally, SAN is a highly efficient network E = 0.64, doubling
the efficiency E = 0.36 of the WAN world network.

Table 6 shows damage values considering the top five
airports whose disconnection supposes a greater damage
on the network. Airports are also ordered by strength,
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TaBLE 6: Comparison of several metrics quantifying the importance of airports of SAN. Top five damage nodes.

Airport Damage rank (D;) Strength rank (s;) Degree rank(k;) Cp rank Cg rank Cc rank

Madrid-Barajas 1(10.39) 1 (4,004,490) 3 (29) 2 2 3

Tenerife Norte 2 (9.36) 5 (1,355,192) 6@ (22) 4 8(@) 6@

Palma de Mallorca 3(9.21) 3 (2,136,272) 1(32) 1 3 1

Barcelona-El Prat 4 (7.29) 2 (3,809,771) 2 (31) 3 2

Gran Canaria 5 (6.43) 4 (1,452,415) 4 (24) 5 4 4

Malaga 6 (6.19) 9 5 6

Alicante-Elche 7 (5.83) 19 7 7

Bilbao 8 (5.79) 8 10

Sevilla 9 (5.79) 9 13

Valencia 10 (5.69) 12 10 12

degree, betweenness centrality, eigenvector centrality, and ~ Data Availability

closeness centrality. Rankings are consistent, the same five
airports appear in the top five except Tenerife-Norte with
rank number 6 by degree (k; = 22), and the closeness central-
ity rank equals 6 with eigenvector centrality ranking 8. In
both rankings, Malaga-Costa del Sol (k; = 23) comes in posi-
tion 5; hence, it is a central node due its direct connections
to the principal Mediterranean airports and Madrid.

These top five clearly point to the Spanish cities with the
highest economic impact of Spain, Madrid and Barcelona,
and the principal Mediterranean and tourist island cities of
Spain, Malaga, Tenerife, Palma de Mallorca, and Gran
Canaria, as the most central airports of the Spanish domestic
airport system.

5. Conclusions

We find that SAN is a small-size, highly connected network
with high density, similar to other developed economies like
Italy or Australia. The average shortest path shows that most
of connections between airports are direct or need only one
flight transfer. At most, 3 flights are needed to reach any air-
port from any other. The SAN is found to be the SW net-
work. This fact has been observed in several countries in
the literature. A disassortative pattern has been observed. It
means that national hubs provided connectivity to a large
number of low-degree destinations. High-degree airports
are negatively correlated with their clustering coefficient, so
they are surrounded by lower-degree fair-off airports which
do not tend to be connected themselves. Rich club phenom-
enon is also observed. High-degree airports are the most
central in terms of betweennes. SAN has high efficiency,
which hardly is affected by falls or inactivity of one isolated
airport. The airports of Madrid, Barcelona, Palma de
Mallorca, Tenerife, and Gran Canaria are at the forefront
in terms of the volume of passengers and play a crucial role
in connectivity with other peninsular territories of Spain or
international connections on the touristic sector. They are
also the most sensible nodes if its activity could be tempo-
rally stopped in case of catastrophes, terrorist attacks, or
other potential threats.

We use the OAG database (OAG Analyzer) which is avail-
able upon request at webpage https://www.oag.com/.
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