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An N-dimensional game theory-based model for multi-actor predictive analytics is presented in this article. The proposed model
expands our previous work on two-dimensional group decision model for predictive analytics. The one-dimensional models are
used for the problems where actors are interacting in a single issue space only. This is less than an ideal assumption since; in most
cases, players’ strategies may depend on the dynamics of multiple issues when dealing with other players. In this work, the one-
dimensional model is expanded to N-dimensional model by considering different positions, and separate salience values, across
different axes for the players. The model predicts an outcome for a given problem by taking into account stakeholder’s
positions in different dimensions and their conflicting perspectives. To illustrate the capability of the proposed model, three

case studies have been presented.

1. Introduction

Originally developed to investigate complicated behavior in
economics, game theory has found widespread use in politics,
philosophy, military, sociology, and telecommunications due
to its ability to explain complex dynamics among actors [1].
Game theory is used to model the interaction between agents
in the process of a negotiation where each party considers its
own interests. Policy experts typically use intuition to predict
the future outcome of such problems; however, a mathemati-
cal framework is required to better forecast the outcome of a
group decision problem of which the result is reproducible,
explainable, and free of bias. Bruce Bueno de Mesquita
(BDM) proposed one of the best models that used game the-
ory to forecast a single event with several participants in
1980 [2]. He outlined the entire concept and provided illustra-
tive case studies with outcomes in [3].

Authors in [4] studied the BDM model in depth and
illustrated the reliability of its interpretations by reproducing
the results using data provided in [3]. Another game theory-

based approach called Preana incorporated the idea of rein-
forcement learning into its risk formulation [5]. It replicated
the results reported by earlier studies and enabled agents to
behave more logically at each round of the decision-
making process. In addition, authors in [6] utilized the
notion of game theory in bargaining problems to forecast
the likely outcome of conflicts between Iran and the US over
a variety of issues such as Iran’s nuclear program.

The European Union Dataset is a collection of data
based on expert interviews that covers a wide range of policy
issues, as well as the position, salience, and capability of
players. The first dataset (DEU I) was presented in [7] in
which European Union legislative initiatives were consid-
ered issues to be investigated and provide explainability.
The authors of the second dataset (DEU II) made a few
minor changes to specific problems and added additional
observations regarding the results of decisions that were still
pending at the time the first dataset was presented [8]. The
work reported in [9] supplemented the expert interviews
with additional information, such as text analysis and media
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coverage, to assess factors such as salience during analysis of
the EU legislative policies. Furthermore, [10] employed the
EMU Positions dataset including positions and importance
of the issues that were debated between 28 EU member
states and institutions on economic and monetary reforms
between 2010 and 2015, to extend the research in single case
studies.

In general, these types of models, including the one pre-
sented here, indicate that using rational agents as actors, a
negotiation or a group decision-making problem can be
modeled. Each round, these actors change their positions
in order to achieve the Nash equilibrium. Hence, having a
reasonable and explainable forecast of the problem, stake-
holders can dedicate more resources on their initial position,
block other actors, make an alliance with critical actors, or
take a more extreme position to achieve their goals.

All the models discussed above have only been able to
analyze single event issues, which imply that the actors’ attri-
butes such as position and salience are only considered in
relation to one particular issue. In this work, we propose
expanding the one-dimensional game theory-based group
decision model to an N-dimensional version. The mathe-
matical formulation for the one-dimensional model is
described in detail. Separate salience for each dimension is
considered to provide the model more flexibility in distribut-
ing actor’s capability across multiple axes. If bargaining
problems were limited to a single issue or, more specifically,
along one axis, the models discussed thus far could address
the problem and forecast the outcome; however, negotiation
problems are frequently multifaceted, necessitating that the
parties involved to go through a wide range of topics while
they bargain. In a recent work [11], we have proposed a
two-dimensional model to address more complex problems
involving multiple issues. In this paper, we have expanded
this work to an N-dimensional space and modified some of
our key formulations to include actors’ salience as a weight-
ing factor for better accuracy.

The rest of the paper will describe the proposed N-
dimensional model in detail. Section 2 explains the structure
of the one-dimensional model. The extended model’s for-
mulation is presented in Section 3. Section 4 provides the
case studies and their analysis, and finally the last section
concludes the paper and offers some suggestions for future
research.

2. Background and Structure of the Model

This section aims to explain the structure of the BDM
model. At first, the definitions of a few frequently used terms
are provided. Next, the expected utilities and their formula-
tion are presented. Following that, BDM model’s voting pro-
cedure, offer categories, and offer selection will be addressed.
For more details on the one-dimensional problem formula-
tion, please see [4, 5].

2.1. Definition of Terms

(i) Problem: A problem can be defined by determin-
ing some actors and assigning their positions,
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capability, and salience, which are defined below.
A problem may contain multiple issues

(ii) Issue: When multiple actors with mutual or con-
flicting interests are involved in a problem, one
or more issues may arise. Each of these issues can
be considered on its own axis in an N-
dimensional problem

(iii) Actor: Actor, player, or stakeholder is an entity
that utilizes all or part of its power to achieve a goal
in regards to an issue of a given problem. Depend-
ing on the problem, players can be countries, orga-
nizations, individuals or even specific events

(iv) Position: An actor’s stance or attitude toward an
issue is referred to as position. In an N-
dimensional problem, each actor takes a position
on each dimension of the problem and promotes
it as the problem’s desired outcome from its own
perspective

(v) Capability: Capability refers to the amount of
power, wealth, or influence that an actor has and
may use part or all of it in the direction of its goal

(vi) Salience: The importance of the problem to the
actor is indicated by salience. Each actor is
involved in multiple issues at the same time, and
depending on the significance of each issue, it can
exert some of its capability or power to address
them

(vii) Utility: Utility is a function which measures the
desirability of each position regarding the actor’s
supported position.

(viii) Risk: Risk is a mathematical parameter used to
assess an actor’s willingness to take risks. Players
who hold positions with less support from other
players are compromising security in order to
achieve their objectives and could be considered
ideological, ambitious, or simply risk-seeking. On
the other hand, risk-averse players whose positions
are closer to the current likely outcome, are more
at ease, and do not have to be in conflict with other
players to reach an agreement [6]

2.2. Parameter Normalization. Each actor in the model is
assumed to have the following attributes: capability, salience,
and position. Capability is a number between 0 and 1, indi-
cating the degree of influence each actor can apply. The
importance of the issue to each stakeholder is measured by
salience, which ranges from 0 to 1, as well. The third attri-
bute is the desired position which is taken by each actor
along a single dimension. The collection of stakeholders’
various points of view on each issue in the problem results
in a spectrum of possible solutions; therefore, positions
should be normalized in this space so that all the actors’
attributes be in the range of [0,1]. These parameters will
serve as metric scales for each stakeholder when it comes
to each dimension of the problem.
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F1GURE 1: Game tree in expected utility model.

2.3. Expected Utility. The expected utility of actor i against
actor j in this model, as outlined in [5], is the sum of the
expected utilities when i is challenging j and when it is not
challenging j. For better understanding, the structure of
the model is represented as a tree in Figure 1. Two scenar-
ios are included in the challenging case’s expected utility.
Actor i is challenged back by j in the first scenario, but
j does not challenge actor i in the second scenario because
the issue is not important enough to j, or it does not see a
resealable chance to succeed on the issue. In the formula-
tion used in (1) to (3), the probabilities of these scenarios
are reflected using s; and (1 -s;). In the scenario of chal-
lenging, the utility gained in case of success and failure is
notated by U’, and U}i, respectively. On the other hand,

the expected utility in the case of not challenging includes
two different scenarios. In the first one, i will go through
the status quo with probability of Q and gain its utility.
In the second one, actor i will not go through the status
quo with probability of 1 — Q; however, its situation would
become better with T probability or worse with (1-T)
probability.

EUY, = (EU;Ij)C - (EU;Ij) (1)

(EUﬁj)c =s; (p;i].U; + (1 —p;ij) U},) +(1-5)UL  (2)
(EUﬁj)m:QUiq+(1 ~Q(TUL+ (1-T)UL).  (3)

The basic utility functions for one-dimensional prob-
lems, U, Uj;, Uy, Uy, and Uy, are defined later in this

si?

section, and their multidimensional equivalents will be
presented in the next section.

When actor i is considering an alternative position dif-
ferent from its current position, which is its desired out-
come, the actor’s utility function can be determined by a
decreasing function of the distance between these two posi-
tions. Thus, the utility function from actor #’s point of view
is maximized when the alternative position equals to his cur-
rent position and is minimized when they are towards the
opposite end of the position spectrum.

) (4)

uj; = f (=[x = x;

where x; is actor i’s position and f is any arbitrary descend-
ing function. The utility function u;; demonstrates how

much actor i attaches to his own policy portfolio. The spe-
cific function f that is used in our model is

flo)=1-2(0)", (5)

where r; is the risk parameter and will be defined later in this
section. Substituting (5) into (4), the utility function would
become

(6)

i— —_ —_
uj; =1 2|xl- x;

where u;] € [-1,1] and x; and x; are normalized so that x;,
x; €[0,1]. According to [12], utilities for i's success and fail-
ure can be achieved by
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where u}; =1 since each actor is expected to cast the highest
vote to his own policy. Substituting (6) into (7) and (8), we
will have

Ul =2-4[0.5-0.5]x, - x;|]", (9)

Ul =2-4[05+05x - x[]", (10)

where 2 - 4(0.5)" < U; <2 and 2 < U}, <2 -4(0.5)".

According to Figure 1, if actor i does not challenge j, j
could either maintain its current position as status quo or
move to make the situation better or worse for i. To meet
the condition Ufw.s U;ig U;',i, the utilities UZZ., Ufui, and
U, can be defined as follows:

. . . ) r;
1 1 1 1
[ (i), - (- ),
21:2_4 o :
8

4—(ufj—ufi) -
i _ 2
Ul =2-4 :

, (1)

i i i
(”ij - ”ii)
ty

. (12)

where 2 - 4(0.5)" < Uj, <2 and -2< U}, <2 -4(0.5)". The
t, and t,, subscriptions refer to actor j’s before and after posi-
tion adjustment, respectively. If actor j is not challenged by
actor i, j is expected to move to the median voter position.
Therefore,

(13)

(u%) =1- 2|xi —X;

fy

() =1-20 -, (14)
where p is the median voter position which is the position

with the most support and will be defined in Section 2.4.
Substituting (13) and (14) into (11) and (12), we will have

bi=2-4[05-025(|x, -y +|x,-x])]".  (15)

Uly=2-4[0.5+0.25(|x; — | + |, - x;])] "™ (16)

where p is the current median voter position. In the case that
i does not challenge j and j does not move, the status quo
utility is realized and is defined as
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(4-0)
8

U,=2-4 " =2-4(0.5)". (17)
)

The parameter Q in (3) is reported to be set to 0.5 or 1 in
different settings in various articles. For example, [12] con-
siders Q to be 1, while [13] considers Q to be 0.5. Q=0.5
denotes the most uncertain outcome of whether actor jwill
move or remain in place. In this work, we assumed Q =1.
The probability T indicated whether or not the situation gets
better for i. If dist (i, u) < dist(i, j), then it should be 1; Oth-
erwise, T is supposed to be 0.

2.4. Median Voter Position. The amount of support of each
actor’s position has to be evaluated in order to determine
the median voter position. Using a voting process, actor i
votes between positions j and k. This vote measures actor
i’s preference for j over k and can be obtained as follows:

Vi =cis; (”fj - “ﬁk)a (18)

where uij is the utility function of actor i for challenging

actor j from #’s point of view and ¢; and s; are actor i’s

capability and salience, respectively. Substituting (6) into
(18), we will get

Vie = 26;5:([2; = x| = [ = x;]). (19)

Using the preference level achieved by position j com-

pared to position k, the Condorcet method of voting result

would be the position which gains the highest number of
votes in a pair-wise voting:

n
= Y vh (20)

i=1,itjk

where v; is the votes cast for j versus k from all other

players points of view. Using (20), median voter position
y can be obtained by finding the position with the most
support.

2.5. Probability of Success. When two actors i and j challenge
each other, the probability of success p;; can be expressed as

k
B zk|uki>ukjvij

) Yicr [V -

Pij (21)
The probability of success, p;;, can be interpreted as the

amount of support received by actor i in comparison to actor
j [14]. By substituting (19) into (21), the i’s probability of
success over j can be achieved by

B Zk|arg>ock5k(|xk - xj‘ = |- xi|)

= S 22
ZZ=1Ck5k|(|xk—xj|—|xk—xi|) (22)

Pij

where ¢, and s, are the capability and salience of player k in
the issue. The numerator calculates the expected level of
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support for i. The denominator calculates the sum of the
support for both i and j, resulting in a fraction that obviously
falls between 0 and 1.

2.6. Risk. The last parameter is the risk term, r;, which is cal-
culated using a risk value R;. The risk value determines how
much an actor is willing to risk to be distanced from the
median voter position. If an actor’s desired position is closer
to the central position, its stance is more supported by
others, has stronger alliance, and the actor is less likely
required to have intense bargaining with others. This actor
is considered as a risk averse player in the issue when it
receives risk value R; closer to — 1. On the other hand, a risk
seeking actor’s R; will be closer to 1 indicating that the actor
has weaker support and could be attacked by others. Equa-
tion (23) expresses the formula for the risk value R;:

EU;ii

>

n
j=1j#i
i

EUY,

n i n i :
A 2) 1 siEU - miaXZj:I,j#iEUji - milnz

1

n i : n
miaXZj:I,j;éiEUji - milnzjzlyj#

(23)

where R; € [-1, 1]. After achieving R;, the risk term r; can be
calculated by a transformation in (24) which ensures that
0.5 <r; < 2. The risk term is considered to be 1 for all actors
in the beginning stage as a risk neutral stance and will be cal-
culated in each round.

r= 1=Ri3 (24)
1+R;/3

2.7. Offer Categories. The expected utilities are used to deter-
mine how the negotiation between the actors will proceed.
Four different categories can occur when actors face each
other: conflict, capitulation, compromise, or stalemate.
These categories as well as the corresponding expected util-
ities are illustrated in Figure 2. Below, each of these scenarios
is defined in further detail:

(i) Conflict: If each of the actors i and j believes that it
has the upper hand in the confrontation, they are
likely to pursue a conflict. This scenario happens, if
EUfj >0 and EU;i >0. The outcome of the conflict
can be considered as follows:

Actor j moves to i’s position when E Ufj >E Uj:i.

Actor i moves to j’s position when EU}; <E U;i.

(ii) Capitulate: In the case where E Ufj >0, E Uj:i <0, and
|E U§j| < |EU§i\, actor j is expected to capitulate
(acquiesce) when facing actor i. In this scenario,

i tries (proposes) to force j to accept its current
position

proposalﬁj =x;, (25)

5
j’s EU
N
N
N
AN Compromise
\\
N
N
N
N
N N
) N
N
N
N
N N
iacquiesces \
N
N
N
N
N
N
~ i’'s EU

N

AY
AY
A
N Ay
N
Stalemate AN
Ay
zone AN
AY

N
N
j acquiesces AN
N
A

N

Ficurg 2: Different scenarios in expected utility model from 7’s
viewpoint.

where x; is the actor i’s position and proposalfj is the position
proposed to j by i, from i’s point of view.

(iii) Compromise: This scenario happens if actor i
has the upper hand and actor j is willing to
agree with an acceptable offer from actor i
The stakeholders compromise in favor of actor
i, if EU};>0, EU};<0, and |EUj}| > |EUj|. Based
on the compromise mentioned above, the offer
is somewhere between i and j's positions, but
closer to i’s position

EUJ,
_ ij
Ax = (x; - x)) L (26)
Jt
proposalfj =x;+Ax, (27)

where Ax is the amount of position change when actor j
accepts the compromise and x; and x; are actors i and j’s

position, respectively.

(iv) Stalemate: In a situation where both stakeholders
believe they do not have the upper hand and can-
not beat the other, neither is inclined to move
from its current position. This scenario arises

when EUY; <0, EUj; <0

2.8. Offer Selection. An entire set of actor interactions is rep-
resented by one round. Each actor will receive some offers
from other actors at the conclusion of each round. To estab-
lish each actor’s position in the following round, it is neces-
sary for each actor to decide which offer should be accepted.
The best option for each actor would be to select the offer



that requires the minimum movement, according to Mes-
quita [15] and Baranick [16]. We utilized this idea in our
implementations assuming that the minimum move must
be greater than zero unless all the offers the actor receives
are equal to its current position. Future research could result
in a more eflicient offer selection method. If no player can
make an offer to the other actors that is greater than a cer-
tain threshold, we consider that the equilibrium has been
attained [11].

3. Model Extension

In this section, our earlier two-dimensional model [11] is
explained followed by an extension to the formulation to
provide a model for N-dimensional problems. Attempts
have been made to avoid repeating similar formulation,
and to discuss only formulation that are modified for the
N-dimensional model.

3.1. Two-Dimensional Model. The capability attribute in our
2D model is similar to the 1D model; however, the desired
position and salience are assigned along x and y-axes for
each actor [11].

In this model, each actor should take a stand in each of
the two dimension, i.e., x-axis and y-axis. The position and
salience vectors of actor i along the x and y-axes are repre-
sented as

pi=(*»)s (28)

Si= (Si,x’ 5i,y)> (29)

So, the distance of 7 and j is calculated as

dist(i, j) = dist (pi, pj> = % \/ (- x;) + (yi - yj) 2
(30)

where dist(i, j) is the distance function between the two
positions, p; and p;.

Now that a two-dimensional position is described, the
corresponding utility function can be defined. As mentioned
earlier, the utility should be a decreasing function of the dis-
tance between the positions taken by actors i and j:

w; =1 -2(dist (i, )", (31)

where i=1,2,..,n and n is the number of actors in the
model and x; and y; are the actor i’s positions along x and
y-axes. The parameter 7; is the risk term for actor i. It should
be noted that the positions along x and y-axes are normal-
ized to the range of [0, 1] in order to be used in the equation.
The utility’s superscript is intentionally omitted and will be
added to the notation after adding salience to the equation
later in (34).
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If we had one salience for each actor, using (31) instead
of (6) in (18), we could get

Vi = 2¢;5;(dist (i, k) - dist (i, j)). (32)

In a two-dimensional problem, however, each actor has
two separate salience along the x and y-axes, according to
(29). Therefore, the weighted distance function distt (i, , s;)
from k’s perspective will be defined based on actor k’s salience
towards each axis. Subsequently, the utility ”51 from actor 7’s
perspective can be modified as follows:

2 2

\/six(xi—xj) +Si,y(yi_yj)

distX (i, j, s;) = , o (33)
St + Sky

uy; = 1-2(dist,, (i, s))" (34)
Using (34) and adjusting (18), we have
V;‘k =¢ (“ﬁj - “§k>’ (35)
Substituting (34) into (35), we can get
Vi = 2c,-((distfu(i, k,s;))" = (distl, (i, j, si))r’), (36)
Equations (20) and (21) remain the same and are brought

back here for convenience and readability purpose.
Thus, the probability of success p;; can be achieved by

_ zk‘arg>OCk (dlSth(ka j) Sk) - dlstﬁ)(k, i, Sk))

= , 37
Py Y1 Ce|disth (K, j, sy) — distk (K, i, )| (37)

where ¢, is the capability of actor k. It is worth noting that
the salience s, is contained within the weighted distance
function distk.

The expected utilities EU; and (EU};) used in (1) and
(2) have to be split into two parts, one for each axis. How-
ever, (E Ujj)m is not required to change:

i i _ i
EU}, = (EUij)x)c (EUij)nc, (38)
EU};, = (EU;ZM)C - (EU;ij)m, (39)
(EUj:jyx>c =5i (p;ijU;i T (1 - p;ij) U]’}x_) +(1=5;,)UL,
(40)

(EUff,y)C =Sjy (Pijii + (1 ‘Pfj) U}f) +(1=55,) Ugp
(41)

(BU)) =QUi+(1-Q(TU}+(1-T)U,,),  (42)
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Input: [s;4], v [Gial [pi,d]an
r; «— 1 for all actors
while threshold < 2.5% do
for i, j,k «——1 to n do
Calculate v},
end for
for i——1ton do
Calculate v
end for
votes = zeros(n, n)
for k —1 to n do
votes = votes + v
end for
index = max (vote)
u=p(: index)
for i,j«——1ton do
Calculate U(i, j), U (i, j), Uy(is ), Uy (is )
end for
for i——1 to n do
Calculate U, (i)
end for
for i,j,k <1 to n do
Calculate p;;
end for
for i,j«——1to n do
for d —1to N do
Calculate EU; ;4
end for
end for
Calculate E Uij

Calculate R; and r;
Calculate offer categories and proposals
Choose proposal

end while

ALGorITHM 1: N-dimensional Model

TasLE 1: Complexity of different parts of the model.

Component Complexity
Vi O(M’N)
Vik oM)
Iz o(M)
U, ), Uy ) Uyl ) U (i) O(MN)
Uy () OM)
pij O(M’N)
EU;, O(M?N)
EU;; O(MN)
R o)
Ti oM)
Offer categories and proposals O(M?N)
Choosing proposals o(m?)

7
TaBLE 2: Input data for case study I.
Players Capability Salience Position X
Netherlands 0.08 0.8 4
Belgium 0.08 0.4 7
Luxembourg 0.03 0.2 4
Germany 0.16 0.8 4
France 0.16 0.6 10
Ttaly 0.16 0.6 10
UK 0.16 0.9 10
Ireland 0.05 0.1 7
Denmark 0.05 1.0
Greece 0.08 0.7
. 5 EU +s;, EU;
BUy= =——F———*. (43)
Si,x + Si,y

Next, the basic utilities including U, U}i, Uiq, .
and Ufw- have to be defined to achieve the modified
expected utilities in (40) to (42). If actor i challenges
actor j, the basic utilities we had in (9) and (10) change

as follows:
U, =2 -4[0.5 - 0.5dist(i, j)|", (44)

Ul =2-4[0.5 +0.5dist (i, j)]", (45)

where dist(i, j) is the distance function between two posi-
tions p; and p; defined in (30). When actor j challenges i,
Uy and Uy, are the utilities of 7's success and failure,
respectively.

When actor i does not challenge j, the utilities for the better
and worse situations we had in (15) and (16) change as follows:

i=2—4[0.5-0.25(dist(i, u) + dist(i, j))],  (46)

Ul =2-4[0.5+0.25(dist(i, ) + dist(i, j))] ", (47)

where y is the median voter position. In the status quo
case where i does not challenge j and j does not move,
we get

Ul =2-4(05)", (48)

The offer categories and the conditions remain almost
the same as in one-dimensional model, except changing
position’s notation from x; to p, Equation (49) is going
to be used in the capitulate scenario where i forces j to
accept its current position:

proposalﬁj =ps (49)

where p,=(x;,y;) is the actor is position. Additionally,
Equations (50) to (53) are now used in the compromise
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Position X: Number of years

2
0 T T T T T T

0 2 4 6 8 10 12

Round
—%— NLD ITA
—=- BEL —— GBR
LUX —#— IRL
-~ DEU -9~ DNK
& FRA -3~ GRC

F1GURE 3: Players’ positions after each round along the x-axis in case study L. Position X shows the number of years that would need to pass
before the introduction of emission standards for medium sized automobiles.

J
TaBLE 3: Input data for case study II. E U,'j
Ay = (yi —y]) 500 (51)
Players Capability SalX SalY PosX PosY ji
[N 21 0.8 1.0 70 26
Ap = (Ax, Ay), 52
China 14 08 10 45 76 p= (4 dy) (52)
Japan 5 0.7 0.5 50 10 i
roposal;. = p. + Ap, 53
Germany 4 0.6 0.6 50 13 Proposat =p;* £p (53)
India 3 0.5 0.6 40 13 where Ap denotes the amount of position change that actor j
UK 3 0.8 0.5 70 10 accepts as a result of a compromise.
France 3 0.7 0.3 70 5 . . . . .
Ttal ) 0.7 03 60 3.2. N-Dimensional Model. This section continues to extend
y' ' ' the above two-dimensional model to an N-dimensional one.
Brazil 2 0.8 0.7 80 14 Here, we continue to only provide definitions and relations
Canada 2 1.0 0.5 70 10 that needs to be updated, while the rest of the equations
Saudi Arabia 1 1.0 0.5 80 10 remain intact.
Iraq 0.2 1.0 0.1 80 2 Here, the actors’ position and salience have to be speci-
UAE 0.4 0.9 03 65 5 fied for each dimension of the problem. Therefore, (28),
Russia ) 1.0 03 70 6 (29), (30), and (33) will be modified as follows:
Pi= (X Xips 5 Xin)» (54)
scenario where actor i needs to suggest an acceptable offer to
actor j: 5 P $i = (Si1> Sizo = Sin ) (55)
J:
2 2 2
(i) - % 5+ (5 =) (i )
Ax = (x; - xj) z] , (50) N
EUj (56)
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FIGURE 4: Player positions after each round along the x-axis in case study II. Position X shows the oil price in U.S. dollars desired by each
player.

i i i
si’lEUij’1 + Si,zEUij,z+‘ . -+si’1EUij’N

’ (61)

2 2.2 2 2 2 i
dist, (i, j.5;) = Skl (xi,l *xj,l) + Sk (xi,l *X;‘,z) tots N (xi,N - X;‘,N) ) EU:»]- =
St1 * Skt Sy 5121 + 51224.. . '+512N
(57) , N
where d=1,2,---, N and N is the problem dimension.
Supposing the position vector p; = (x;, X;5, -+, X; 5 ), the

where N is the number of problem dimensions and p; and s; i . i
proposal in the compromise scenario can be defined as

denote actor i’s position and salience vector, respectively.
Also, x;4 and s, ; are actor i’s position and salience along

dimension d, respectively. The function dist(i, j) is the dis- Axg = (Xig - %;4) E Ugj (62)
tance function which measures the distance between actors d bd T\ U;i ’
i and j’s positions. The function dist,(i,j],s,) represents
the weighted distance between actors i and j regarding actor Ap = (Axy, Axy, -+, Axy), (63)
k’s salience vector.

The expected utilities in (38) to (43) can be extended as propgsalﬁj =p;+ Ap, (64)
following:

where Ax, is the amount of movement along dimension d,
EU fy o while Ap is the vector of movement that actor j accepts
4= (FUL) - (P0))
c

ij (58) through the compromise.

3.3. Complexity Analysis. When dealing with problems with

) o . . ) large number of issues (dimensions) and/or large number of

(E U;j,d) o Sid (P;'j Ui,. + (1 - P;’j) Ulfi) + (1 - Sj,d) U;, actors per issue/dimension, the computational complexity of
(59) the problem becomes increasingly important. To demon-

strate the analysis of the model’s time complexity, a simple

pseudo code is provided in Algorithm 1. Table 1 shows the

i i i i complexity of different parts of the algorithm. It can be seen

(E Ui ) ne QU +(1-Q) (TUL+ (1=T)Uu)>  (60) that It)he ot\?’erall computaﬁional complegxity of the algorithm is



10

80

Computational and Mathematical Methods

70

60

50

40

30

e - S
, o

Position Y: Expected share of renewable energy

USA
CHN
JPN
DEU
IND
GBR
FRA

J(

ITA
BRA
CAN
SAU
-o- IRQ
ARE
RUS

FiGurek 5: Player positions after each round along the y-axis in case study II. Position Y shows the expected share for renewable energy in

relation to the whole energy market.

TaBLE 4: Input data for case study III.

Players  Capability SalX SalY SalZ Pos X PosY PosZ
Israel 0.05 1.0 0.5 0.7 0.00 0.50 0.0
US 1.00 0.9 0.6 09 0.05 0.50 0.1
UK 0.20 0.7 0.5 06 010 1.00 0.2
France 0.30 0.7 0.6 0.5 020 175 0.3
Germany 0.30 0.6 0.6 04 030 175 0.3
China 0.50 0.7 1.0 09 060 225 0.7
Russia 0.40 0.7 0.5 09 080 225 0.9
Iran 0.01 1.0 1.0 1.0 1.00  2.50 1.0

O(M°®N), where M and N are the number of actors and the
dimension of the problem, respectively.

4. Evaluation Through Case Studies

We have presented various case studies in this section to
demonstrate the effectiveness of the proposed model. First,
we have evaluated our model by comparing its results for a
one-dimensional problem against a well-known one-
dimensional model presented by BDM to see if it produces
comparable results. In order to assess the proposed model’s
capability for offering a solution in both two- and three-
dimensional space, two additional case studies are explored

in collaboration with subject matter expert (Ambassador
Michael Gfoeller, former US ambassador in the Middle
East). The median voter position of the last round, which
indicates the position with the strongest support, is used
to decide the problem’s outcome in all of these cases. In
these case studies, at 2.5% deviation of the final position,
along each direction, the equilibrium is considered to be
achieved.

4.1. Case Study 1. The first case study, which is one-dimen-
sional, attempts to estimate the number of years that must
pass until medium-sized cars are subject to pollution regula-
tions. Table 2 provides an overview of the players as well as
their initial position, salience, and capability along the only
dimension of the problem, i.e., along x-axis. The players’
positions along x-axis are represented in Figure 3. Our
model forecasts the result to be 7.0 years, which is in line
with the reported value of [4, 11]. While the actual delay is
8.33, the obtained result demonstrates how well the pro-
posed model works when used to solve one-dimensional
issues.

It is worth noting that the one-dimensional model can
show how much each actor can influence the final outcome
of the issue by altering the amount of power used during
bargaining. This method of explanation can aid actors in
better understanding and forecasting the negotiation
process.
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Position X: Iran's nuclear program level
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FIGURE 6: Player positions after each round along the x-axis in case study III. Position X shows Iran’s nuclear program level expected by

different players so that 0 indicates abandoning the program and 1 indicates having a nuclear weapon.
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Position Y: Iran's oil export level
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F1GURE 7: Player positions after each round along the y-axis in case study IIIL. Position Y shows Iran’s oil export level in thousand barrels per

day desired by each player.
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Position Z: Iran's regional influence level
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FIGURE 8: Player positions after each round along the z-axis in case study III. Position Z shows Iran’s regional influence level.

4.2. Case Study II. We examined the effectiveness of the sug-
gested approach for two-dimensional problems, a subset of
N-dimensional problems, in our second case study. Accord-
ing to [11], each player in this problem has a desired posi-
tion on the x-axis in regards to the oil price and is
negotiating over its portion of the market for renewable
energy on the y-axis. The model allows for simultaneous
consideration of the oil prices that each player is targeting
and their respective shares of the renewable energy market.
It should be noted that renewable energy will ultimately
overtake the energy market in the future, despite the fact that
many players are reluctant to make the switch. Each oil pric-
ing position is set by the level of production as well as the
significance of oil to each actor’s industry and budget. Actors
are often selected from countries with the most developed
economies or highest level of oil production [11].

In the previous version of the model [11], each actor
could only set one value for the salience parameter. There-
fore, if an actor has different salience values for its positions,
there will not be much flexibility, and a compromised value
will have to be chosen to represent both dimensions. The
current proposed model, on the other hand, gives the prob-
lem designer more flexibility by allowing him or her to set
the salience parameters for each axis separately.

Players’ attributes based on the data obtained on Octo-
ber 2nd are listed in Table 3 [11]. At that time, the Brent
crude oil price was $39.27 per barrel [17]. After the proposed
model is run, players settle on a price of $68.6 per barrel,
while the outcome for the y-axis representing the renewable
energy market share is 25.1 percent of the total energy mar-
ket. Figures 4 and 5 illustrate actors’ positions after each

round along x- and y-axes, respectively. These results were
evaluated as reasonable by the collaborating subject matter
expert, mentioned above.

The outcome of the model can be used in a variety of
ways. It can be used to see how changing different parame-
ters, such as position or capability, affects the end result. In
two-dimensional problems, the results can also be utilized
to determine how much actors are willing to give up on
one dimension of the problem to get closer to their desired
position on the other. To put it in another way, the pre-
sented multidimensional model allows for more in-depth
analysis of bargaining across multiple dimensions, which is
certainly a valuable expansion to the classical single dimen-
sion models.

4.3. Case Study III. Our third case study, on the x-axis, is the
negotiation between Iran, the 5+ 1 group, and Israel over
Iran’s nuclear program, while on the y-axis and z-axis, the
players are considering Iran’s oil exports and regional influ-
ence levels, respectively. This case study exemplifies how
several actors might have similar or divergent viewpoints
on various aspects of a negotiating problem. Although most
of the actors’ positions on Iran’s nuclear program are close
to the US’s position, they do not necessarily agree with the
US on the level of Iranian oil exports or regional influence.
Regarding the oil export level issue on the y-axis of this mul-
tidimensional problem, the US, which produces the most oil
worldwide, is interested in expanding its market; therefore, it
makes sense for it to make other countries to cut back on
their oil outputs. On the other hand, significant oil importers
such as China are interested to diversify their portfolio of oil
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imports. Iran’s regional influence is another issue that coun-
tries have different interests in it. Countries such as the US
view Iran’s regional role as interference and want Iran to
have the least influence in the region, while countries such
as Russia benefit from Iran’s activities.

Table 4 contains actors’ position, capability, and salience
in the problem. Position X represents the actors’ stance on
Iran’s nuclear program, with 0 denoting complete abandon-
ment and 1 denoting the achievement of a nuclear weapon.
Position Y reflects players’ position on Iran’s oil exports in
million barrels per day. The data corresponding to these
two dimensions of the problem are well discussed in [11].
Position Z demonstrates actors’ standing towards Iran’s
regional influence level, with 0 denoting no activity in the
region and 1 denoting the highest level possible. The players’
positions in each round are depicted in Figure 6-8. The
median voter position results for the last round indicate that
the players would agree to a level of 0.2 for Iran’s nuclear
program (x-axis), 1,250,000 barrels per day for oil exports
(y-axis), and 0.3 for Iran’s regional influence (z-axis). As
can be seen, and according to the subject matter expert
working with our team, the three-dimensional model pro-
vides a reasonable outcome when three different positions
for each actor are considered simultaneously.

It should be noted that the current focus of this study is
not on the details of the data, but rather on its capability to
model complex problems and find the most plausible out-
come. The outcome can assist decision-makers in modifying
their initial positions and anticipating the most likely out-
come of the problem.

5. Conclusions and Future Work

Real-world negotiations typically involve making conces-
sions on several issues. Modeling these types of problems
was not feasible under the assumptions of the existing one-
dimensional model. To expand the one-dimensional game
theory-based group decision model to an N-dimensional
version, the mathematical formulations are modified to
include actors’ attributes along multiple issue. Additionally,
separate salience values for each dimension are considered
to make the model more flexible and distribute actor’s capa-
bility (power) across multiple axes. We showed that in com-
plex problems, the proposed model allows for more in-depth
analysis of bargaining across multiple dimensions. To illus-
trate the effectiveness of the proposed model, three case
studies were examined. The first one was a one-
dimensional problem, and the findings demonstrate that
the new model, like the earlier models, can predict the likely
outcome of such problems. Furthermore, two case studies
with more than one issue were explored to demonstrate
the model’s efficiency and explainability.

In the future, we intend to conduct more evaluation of
this model, working closely with subject matter experts.
We will also look into performing further research to modify
and extend this model as needed, with a particular focus on
changes to the offer selection component and the replace-
ment of spike-like positions with more flexible options.
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