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In this paper, we derive upper bounds that characterize the rate of convergence of the SOR method for solving a linear system of
the form Gx = b, where G is a real symmetric positive semidefinite n × n matrix. The bounds are given in terms of the condition
number of G, which is the ratio κ = α/β, where α is the largest eigenvalue of G and β is the smallest nonzero eigenvalue of G. Let H
denote the related iteration matrix. Then, since G has a zero eigenvalue, the spectral radius of H equals 1, and the rate of
convergence is determined by the size of η, the largest eigenvalue of H whose modulus differs from 1. The bound has the form
jηj2 ≤ 1 − 1/ðκcÞ, where c = 2 + log2n: The main consequence from this bound is that small condition number forces fast
convergence while large condition number allows slow convergence.

1. Introduction

The SOR method is one of the basic iterative algorithms for
solving a large sparse linear system of the form

Gx = b, ð1Þ

where G ∈ℝn×n, b ∈ℝn, and x ∈ℝn denotes the vector of
unknowns. That is, we need to solve a system of n linear
equations with n unknowns. The abbreviation SOR stands
for “successive overrelaxation.” For a detailed description
and discussion of this method, see [1–41]. In this paper,
we investigate the SOR rate of convergence in the special
case when G is a real symmetric positive semidefinite matrix.
This means that G has at least one zero eigenvalue and that
the system (1) can be inconsistent. It is also assumed that all
the diagonal entries of G are positive. This has two justifica-
tions. First, it is not possible to apply the SOR iteration with-
out this assumption. Second, since G is positive semidefinite,
a zero diagonal entry implies that the corresponding row
and column are null and can be deleted. The last assumption
enables us to express G in the form

G =D − L − LT , ð2Þ

where L is a strictly lower triangular matrix and D is a pos-
itive definite diagonal matrix. The kth SOR iteration, k = 1,
2,⋯, starts xk−1 ∈ℝn and computes xk by the rule

xk =Hw xk−1 + dw: ð3Þ

The matrix

Hw = I −w D −wLð Þ−1G, ð4Þ

is called the SOR iteration matrix,

dw =w D −wLð Þ−1b, ð5Þ

and w is a relaxation parameter that satisfies

0 <w < 2: ð6Þ

Remark 1. In this paper, we study the asymptotic rate of con-
vergence of the SOR iteration (3). Thus, when using simpler
terms like “fast rate of convergence” or “fast convergence,”
we always refer to asymptotic behavior.
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The role of Hw is seen from the following known obser-
vation. Assume for a moment that the linear system (1) has a
solution x̂ ∈ℝn. Then, the iteration (3) satisfies

xk − x̂ = Hwð Þk x0 − x̂ð Þ, ð7Þ

where x0 denotes the starting point. The last equality reveals
the importance of ρðHwÞ, the spectral radius of Hw. If ρð
HwÞ < 1, then the sequence fxkg converges toward x̂, and
the rate of convergence depends on the size of ρðHwÞ. The
smaller ρðHwÞ is, the faster is the convergence. Otherwise,
when ρðHwÞ > 1, the SOR iteration diverges. Yet, when G
has a zero eigenvalue, then ρðHwÞ = 1 and the situation
depends on the consistency of (1). If the SOR iteration
attempts to solve an inconsistent system, it diverges. Other-
wise, when the system to solve is consistent, it converges.
The question discussed in this paper is how the spectral
properties of G affect the rate of convergence in this case.

The treatment of the positive semidefinite case becomes
easier by noting the relation with Kaczmarz’s method. For a
detailed description and discussion of Kaczmarz’s method,
see [4–6, 8, 10, 11, 13, 15, 20, 21, 31, 33, 34, 36] and the refer-
ences therein. Let r denote the rank of G. Then, 0 < r < n and
G has t = n − r zero eigenvalues. Moreover, using the spectral
decomposition, it is possible to express G in the form

G = AAT , ð8Þ

where A ∈ℝn×r has r orthogonal columns. Let the sequence
yk, k = 0, 1, 2,⋯, be generated by Kaczmarz’s method for
solving the linear system

Ay = b, ð9Þ

where y ∈ℝr denotes the vector of unknowns. Then, the fol-
lowing observation is well known, e.g., [4, 8]. If the starting
points satisfy

y0 = ATx0, ð10Þ

then the equalities

yk = ATxk, ð11Þ

hold for all k. This relation implies that Kaczmarz’s method
obeys the rule

yk = Fwyk−1 + ATdw, ð12Þ

where

Fw = I −wAT D −wLð Þ−1A, ð13Þ

is the corresponding iteration matrix. The role of Fw will be
clarified in the coming discussions.

The literature on the SOR method is huge and includes
various types of convergence results. However, many of the
early results are derived under certain assumptions on G,

such as being an “M-matrix” or “consistently ordered,”
e.g., [1, 17–19, 35, 37, 41]. One of the first results without
such assumptions is Ostrowski’s theorem [29, 37], which
ensures that ρðHwÞ < 1 whenever G is positive definite. Yet,
it took about forty years until Oswald [30] lowered the
bound on ρðHwÞ. See also Axelsson [1] (pp. 241-242) for a
similar bound. The current paper extends Oswald’s bound
to the positive semidefinite case. The difficulty here is that
ρðHwÞ = 1. So we need to see what dominates the rate of
convergence in this case.

The interest in the semidefinite case was initiated in the
work of Keller [22]. Then, the surprising behavior of the
SOR method when solving inconsistent linear systems was
studied in a small number of papers, e.g., [2, 7, 8, 28]. It is
shown there that if the linear system (1) is inconsistent then
although the SOR sequence fxkg diverges it obeys the rule

xk = x̂k + kv, k = 1, 2,⋯, ð14Þ

where fx̂kg is a converging sequence and v is a fixed vector
that belongs to NullðGÞ = NullðATÞ. Otherwise, when the
linear system is consistent, v = 0 and xk = x̂k. This explains
why the related Kaczmarz sequence (11) always converges.

The convergence properties of iterative methods for
solving consistent positive semidefinite linear systems have
attracted the attention of several authors. See, for example,
[2, 3, 7, 8, 14, 22–26, 40], and the references therein. In par-
ticular, if G is positive semidefinite as above then the SOR
iteration matrix, Hw, is known to be “semiconvergent”. Let
λj, j = 1,⋯, n, denote the eigenvalues of Hw and assume that
they are sorted to satisfy

λ1j j ≥ λ2j j ≥⋯ ≥ λnj j, ð15Þ

which implies that ρðHwÞ = jλ1j. Then “semiconvergent”
means that λ1 = 1, and that any eigenvalue of Hw that sat-
isfies jλjj = 1must equal 1 and has a 1 × 1 Jordan block. Fur-
thermore, since G has t zero eigenvalues, the eigenvalues of
Hw satisfy

λj = 1 for j = 1,⋯, t,
1 > λt+1j j≥⋯≥ λnj j:

ð16Þ

Consequently, the Jordan canonical form of Hw shows
that the rate of convergence is determined by the size of
jλt+1j, which is sometimes called the “convergence factor,”
e.g., [26]. This situation means that we need an upper
bound on jλt+1j.

The bound is gained in two stages. First, we show that

λt+1j j = ρ Fwð Þ: ð17Þ

Then, we establish the inequality

ρ Fwð Þð Þ2 ≤ ρ FT
wFw

� �
, ð18Þ

and derive a bound on ρðFT
wFwÞ.
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The plan of the paper is as follows. We start by exploring
the relations between the eigenvalues of Hw and Fw, showing
that the two matrices share all the eigenvalues that differ
from 1, which proves (17). Then, we study the relations
between the iteration matrices of the symmetric SOR
(SSOR) method and the symmetric Kaczmarz method and
use these relations to simplify the expression for FT

wFw.
The bound on the spectral radius of this matrix is derived
in the third section. The bound has the form

ρ FT
wFw

� �
≤ 1 − 1

κcð Þ , ð19Þ

where κ denotes the condition number of G and

c = 2 + log2n: ð20Þ

The condition number is defined as the ratio κ = α/β,
where α is the largest eigenvalue of G and β is the smallest
nonzero eigenvalue of G. The bound shows that small condi-
tion number forces fast rate of convergence, while large con-
dition number allows slow convergence. However, as this is
an upper bound, a large condition number does not force
slow convergence. Hence, it is worthwhile to have a close
look at the reasons behind slow convergence. This issue is
discussed in Section 4. It is shown there that small nonzero
eigenvalues of G are likely to cause slow asymptotic rate of
convergence. Finally, in the last section, we compare our
approach with former attempts to derive such bounds.

2. Iteration Matrices and Their Eigenvalues

The assumption that G has positive diagonal entries allows
us to make the following simplification. Consider the SOR
iteration for solving the normalized system ~Gx = ~b, where
~G =D−1/2GD−1/2 and ~b =D−1/2b. Then, the related iteration
matrix is similar to Hw. Thus, when studying the rate of con-
vergence of the SOR method, it is possible to replace (1) with
its normalized form. That is, there is no loss of generality in
assuming that D = I. Hence, from now on, we assume that G
has the form

G = I − L − LT , ð21Þ

where I denotes the identity matrix and L is a strictly lower
triangular matrix. As before, r denotes the rank of G and r
< n. Consequently, G can be factorized in the form

G = AAT , ð22Þ

where the matrix A ∈ℝn×r has r orthogonal columns. More-
over, let aTi denote the ith row of A, i = 1,⋯, n. Then, (21)
implies

aTi ai = 1 for i = 1,⋯, n: ð23Þ

That is, the rows of A have unit length. The SOR itera-

tion splits G in the form

G = Bw − Cw, ð24Þ

where

Bw = I −wLð Þ
w

, ð25Þ

and

Cw = 1 −wð ÞI +wLT
� �

w
: ð26Þ

Recall that w is a given relaxation parameter that satisfies
0 <w < 2. The kth SOR iteration, k = 1, 2,⋯, starts with xk−1
and ends with xk, which is computed by solving the linear
system

Bwx = Cwxk−1 + b: ð27Þ

In other words, xk is obtained from xk−1 by the rule

xk =Hwxk−1 + dw, ð28Þ

where

Hw = B−1
w Cw, ð29Þ

is the related iteration matrix, and

dw = B−1
w b: ð30Þ

Observe that (24) enables us to express Hw in the form

Hw = I − B−1
w G = I − B−1

w AAT : ð31Þ

Multiplying (28) by AT and using (11) gives

yk = ATHwxk−1 + ATdw, ð32Þ

while substituting I − B−1
w AAT instead of Hw shows that

yk = I − ATB−1
w A

� �
yk−1 + ATdw: ð33Þ

This means that the iteration matrix of Kaczmarz’s
method has the form

Fw = I − ATB−1
w A: ð34Þ

Note that Hw is an n × n matrix while Fw is an r × r
matrix. However, as the next theorem shows, these matrices
share several eigenvalues.

Theorem 2. Let λ be a nonzero eigenvalue of the matrix
B−1
w AAT ; then, λ is also an eigenvalue of the matrix ATB−1

w A
. Conversely, let λ be a nonzero eigenvalue of ATB−1

w A; then,
λ is also an eigenvalue of B−1

w AAT .
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Proof. Let u ∈ℝn be a unit eigenvector of B−1
w AAT that corre-

sponds to a nonzero eigenvalue λ. Then, the equality

B−1
w AATu = λu, ð35Þ

implies ATu ≠ 0, and multiplying this equality by AT gives

ATB−1
w A ATu

� �
= λ ATu

� �
, ð36Þ

which means that λ is an eigenvalue of ATB−1
w A.

The converse direction is proved in a similar way. Let v
∈ℝr be a unit eigenvector of ATB−1

w A that corresponds to
a nonzero eigenvalue λ. Then, the equality

ATB−1
w Av = λv, ð37Þ

implies Av ≠ 0,

AATB−1
w Avð Þ = λ Avð Þ, ð38Þ

and

B−1
w AAT B−1

w Av
� �

= λ B−1
w Av

� �
, ð39Þ

which means that λ is an eigenvalue of B−1
w AAT .

We have seen that the eigenvalues of Hw satisfy (16). The
next theorem shows that jλt+1j equals the spectral radius of
Fw.

Theorem 3. The eigenvalues of Hw satisfy (16) and (17) with
t = n − r.

Proof. Recall that Hw = I − B−1
w G and Fw = I − ATB−1

w A,
where the matrix ATB−1

w A is nonsingular. Now the last theo-
rem implies that the largest eigenvalue of Fw equals the larg-
est eigenvalue of Hw whose modulus differs from 1.

The bounds which are derived in the next section are
using the close relations between the Kaczmarz-SOR method
and its symmetric version. The symmetric iteration is com-
bined of two parts. The first one is the usual (“forward”) iter-
ation, while the second is a “backward” iteration in which
the rows of the linear system are approached in the reverse
order. See, for example, [1, 13, 14, 26, 33, 34, 37, 41]. The
iteration matrix of the backward SOR method has the form

~Hw = I − B−T
w G, ð40Þ

where B−T
w denotes the matrix ðB−1

w ÞT = ðBT
wÞ−1. This implies

that the iteration matrix of the backward Kaczmarz method
is

~Fw = I − ATB−T
w A = FT

w: ð41Þ

Consequently, the iteration matrix of the symmetric

SOR method (SSOR in brief) has the form

~HwHw = I − B−T
w G

� �
I − B−1

w G
� �

, ð42Þ

while that of the symmetric Kaczmarz method is

FT
wFw = I − ATB−T

w A
� �

I − ATB−1
w A

� �
: ð43Þ

The next assertion expresses these matrices in a useful
form.

Theorem 4. The iteration matrix of the SSOR method has the
form

~HwHw = I −
2
w

− 1
� �

B−T
w B−1

w G, ð44Þ

while that of the symmetric Kaczmarz method is

FT
wFw = I −

2
w

− 1
� �

ATB−T
w B−1

w A: ð45Þ

Proof. The second equality is a direct consequence of the first
one, which is derived from the following identities.

~HwHw = I − B−T
w G

� �
I − B−1

w G
� �

= I − B−1
w G − B−T

w G + B−T
w GB−1

w G

= I − B−1
w + B−T

w − B−T
w GB−1

w

� �
G

= I − B−T
w BT

wB
−1
w + B−T

w BwB
−1
w − B−T

w GB−1
w

� �
G

= I − B−T
w BT

w + Bw −G
� �

B−1
w G

= I − B−T
w

2
w

− 1
� �

I
� �

B−1
w G

= I −
2
w

− 1
� �

B−T
w B−1

w G:

ð46Þ

The importance of the last theorem is that it gives a bet-
ter insight into the eigenvalues of these matrices. In particu-
lar, by following the proof of Theorem 2, we obtain the
following conclusions.

Theorem 5. Let λ be a nonzero eigenvalue of the matrix
B−T
w B−1

w G; then, λ is also an eigenvalue of the matrix ATB−T
w

B−1
w A and vice versa. Moreover, since the last matrix is sym-

metric and positive definite, both matrices share the same r
positive eigenvalues. The other n − r eigenvalues of B−T

w B−1
w G

are zeros.

Corollary 6. Let θ denote the smallest eigenvalue of the
matrix ATB−T

w B−1
w A. Then

θ =min xTATB−T
w B−1

w Ax ∣ x ∈ℝr and∥x∥2 = 1
� 	

> 0, ð47Þ
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ρ FT
wFw

� �
= ρ I −

2
w

− 1
� �

ATB−T
w B−1

w A
� �

= 1 −
2
w

− 1
� �

θ < 1:

ð48Þ
The next section uses these results to derive upper

bounds on ρðFwÞ and ρðFT
wFwÞ.

3. Upper Bounds on the Spectral Radius

Let T ∈ℝn×n be an arbitrary square matrix, and let kTk2
denote the spectral norm of T . Then, it is well known that
kTk2 = σ1ðTÞ where σ1ðTÞ denotes the largest singular value
of T . It is also well known that the spectral radius of T can-
not exceed its spectral norm. That is, ρðTÞ ≤ kTk2 and

ρ Tð Þ2 ≤ Tk k22 = ρ TTT
� �

: ð49Þ

Combining these relations with Corollary 6 yields the
following useful observation.

Theorem 7. The Kaczmarz iteration matrix, Fw , and the
symmetric Kaczmarz iteration matrix, FT

wFw , satisfy the rela-
tions

ρ Fwð Þ2 ≤ ρ FT
wFw

� �
= 1 −

2
w

− 1
� �

θ: ð50Þ

The rest of this section is aimed at deriving an “effective”
upper bound on the right hand side of (50). In particular, we
are looking for a bound that shows how the condition num-
ber of A affects the rate of convergence. The first step is to
establish a lower bound on the value of θ.

Let β > 0 denote the smallest nonzero eigenvalue of G.
Then, β is also the smallest eigenvalue of the matrix ATA.
Note that the smallest eigenvalue of the matrix B−T

w B−1
w is 1

/kBwk22. Now from (47), we see that

θ ≥ β/ Bwk k22 ≥ β/ I/wð Þ + Lk k2ð Þ2, ð51Þ

where the last inequality follows from the triangle inequality
for the matrix Bw = I/w − L. Observe that ∥L∥2 is not
expected to be much larger than ∥G∥2. Indeed, using induc-
tion on n, one can verify that

Lk k2 ≤
1
2 log2 2nð Þ Gk k2: ð52Þ

For a detailed proof of this assertion, see Oswald [30].
Let α = ∥G∥2 denote the largest eigenvalue of G. Then, (52)
can be rewritten as

Lk k2 ≤ γα, ð53Þ

where

γ = 1
2 log2 2nð Þ: ð54Þ

Combining (51) with (53) gives

θ ≥
β

1/wð Þ + γαð Þ2 , ð55Þ

and from (50), we obtain that

ρ Fwð Þ2 ≤ ρ FT
wFw

� �
≤ 1 − 2/wð Þ − 1ð Þβ

1/wð Þ + γαð Þ2 , ð56Þ

for any w from the interval ð0, 2Þ. A further improvement is
gained by noting that the bound function

φ wð Þ = 1 − 2/wð Þ − 1ð Þβ
1/wð Þ + γαð Þ2 , ð57Þ

has a unique minimizer in this interval. Computing the
derivative of φðwÞ and eliminating w′ from the equality φ′
ðw′Þ = 0 shows that the minimizer lies at the point

w′ = 1
1 + γα

: ð58Þ

It is also easy to verify that

φ w′

 �

= 1 − 1/ α/βð Þ 1/α + 2γð Þ½ �, ð59Þ

while the assumption that A has unit rows implies α ≥ 1 and

φ w′

 �

≤ 1 − 1/ α/βð Þ 1 + 2γð Þ½ �: ð60Þ

In other words, the spectral radii of Fw′ and FT
w′Fw′ sat-

isfy the inequalities

ρ Fw′ð Þ2 ≤ ρ FT
w′Fw′

� �
≤ 1 − 1/ κcð Þ, ð61Þ

where

c = 1 + 2γ = 2 + log2n, ð62Þ

and κ = α/β denotes the condition number of G. The bound
on ρðFw′Þ can be simplified by using the inequality

1 − 1
κcð Þ ≤ 1 − 1/ 2κcð Þ½ �2, ð63Þ

which shows that

ρ Fw′ð Þ ≤ 1 − 1/ 2κcð Þ: ð64Þ

Let w″ ∈ ð0, 2Þ be a value of w for which ρðFT
wFwÞ attains

its smallest value. That is, w″ is an optimal relaxation
parameter for the symmetric Kaczmarz method. Then,
clearly,

ρ FT
w″Fw″

� �
≤ ρ FT

w′Fw′
� �

, ð65Þ
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and the inequalities (61) and (64) remain valid when w″
replaces w′. Similarly, let wopt denote the optimal relaxation
parameter for Kaczmarz’s method. Then, the inequality

ρ Fwopt


 �
≤ ρ Fw′ð Þ, ð66Þ

implies

ρ Fwopt


 �2
≤ 1 − 1

kcð Þ , ð67Þ

and

ρ Fwopt


 �
≤ 1 − 1

2kcð Þ : ð68Þ

Since α is often considerably larger than 1, the point w′
= 1/ð1 + γαÞ is often much smaller than 1. On the other
hand, in many cases, wopt is larger than 1, and the function

ψðwÞ = ρðFwÞ is decreasing in the interval ½w′, wopt�, which
implies that the bound

ρ Fwð Þ ≤ 1 − 1
2kcð Þ , ð69Þ

is likely to hold for all w ∈ ½w′, wopt�, including w = 1.
The main consequence from these bounds is that small

condition number forces fast rate of convergence, while large
condition number allows slow convergence. Yet the bounds
are not tight in the sense that the actual rate of convergence
is often considerably faster than the implied rate. This
behavior is due to a number of reasons. First, in many sym-
metric positive semidefinite matrices, the ratio ∥L∥2/∥G∥2 is
considerably smaller than γ. Second, as noted above, w′ is
expected to be considerably smaller than 1, so the rate of
convergence for wopt (or w = 1) is expected to be much fas-
ter. Third, let P ∈ℝn×n be an arbitrary permutation matrix
and consider the SOR method for solving the linear system

PGPT� �
z = Pb: ð70Þ

Then, since the iteration matrix of PGPT is not necessar-
ily similar to that of G, we might get a different rate of con-
vergence, e.g., [27, 32, 37]. On the other hand, since PGPT

has the same eigenvalues as G, both matrices share the same
upper bound. This shows that the bound holds for the worst
possible ordering.

Finally, we note that the above treatment of the positive
semidefinite case is easily adapted to the positive definite
case. In the latter case, A is an n × n invertible matrix, and
Fw is similar to Hw, so the bounds on ρðFwÞ apply to ρð
HwÞ.

4. Slow Rate of Convergence

The bounds derived in the former section indicate that slow
rate of convergence is possible only when G has a large con-
dition number. On the other hand, the assumption that G
has unit diagonal implies that the largest eigenvalue of G sat-
isfies 1 ≤ α ≤ n. Consequently, a large condition number
occurs whenever G has small positive eigenvalues. These
observations raise the question of whether small positive
eigenvalues are the reason behind slow convergence. Indeed,
as explained below, a small positive eigenvalue may cause
slow rate of convergence. The first two lemmas provide the
tools for proving this claim.

Lemma 8. Define τ = ð2 −wÞ/w. Then, G satisfies the equality

G =HT
wGHw + τ B−1

w G
� �T

B−1
w G

� �
: ð71Þ

Proof. The definition of Bw implies that Bw = ð1/wÞI − L and

BT
w + Bw −G = τI: ð72Þ

Now the equality Hw = I − B−1
w G shows that

G −HT
wGHw = B−1

w G
� �T

G +GB−1
w G − B−1

w G
� �T

G B−1
w G

� �
= B−1

w G
� �T

Bw B−1
w G

� �
+ B−1

w G
� �T

BT
w B−1

w G
� �

− B−1
w G

� �T
G B−1

w G
� �

= B−1
w G

� �T
Bw + BT

w − G
� �

B−1
w G

� �
= τ B−1

w G
� �T

B−1
w G

� �
:

ð73Þ

Lemma 9. Let β denote a nonzero eigenvalue of G and let v
denote the corresponding unit eigenvector. That is, Gv = βv,
vTv = 1, and β > 0. Then

B−1
w v

�� ��
2
≤ 1/ βτð Þ1/2: ð74Þ

Proof. Using (71) and the fact that the matrix HT
wGHw is

positive semidefinite, we obtain the inequalities

β = vTGv ≥ τvTGB−T
w B−1

w Gv = τβ2∥B−1
w v∥22, ð75Þ

and

∥B−1
w v∥22 ≤

1
τβð Þ : ð76Þ
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Theorem 10. Let v be an eigenvector of G as above, and let u
and η be defined by the equalities

u = B−1
w v

∥B−1
w v∥2

,

η = β∥B−1
w v∥2:

ð77Þ

Then

Hwv = v − ηu, ð78Þ

where η satisfies

η ≤
β

τ

� �1/2
, ð79Þ

and

Hwvk k2 ≥ 1 − η: ð80Þ

Proof. A further use of the equality Hw = I − B−1
w G gives

Hwv = v − B−1
w Gv = v − βB−1

w v = v − ηu, ð81Þ

while from (74) we see that

η = β B−1
w v

�� �� ≤ β/ βτð Þ1/2 = β/τð Þ1/2: ð82Þ

Finally, the inequality

v − ηuk k2 ≥ vk k2 − ηuk k2 = 1 − η, ð83Þ

proves (80).

One consequence of (79) is that small β implies small η,
while (80) shows that for small η the error component in the
direction of v decays slowly. That is, small β leads to slow
error decay. Another consequence is that small τ (which
means w close to 2) may compensate the slowing effect of
small β.

5. Concluding Remarks

The SOR method and Kaczmarz’s method have been inten-
sively studied for many years. Thus, naturally, some of the
mentioned results can be found elsewhere in different forms.
In particular, the Kaczmarz iteration matrix (34) and the
symmetric Kaczmarz iteration matrix (45) both easily come
out as special cases of a more general iteration, see [13]
(prop. 4 and 10). Also, the relation between the spectral
radius of Kaczmarz and symmetric Kaczmarz (first part of
Theorem 7) is already observed in [13] (§4).

Estimates of the rate of convergence in the semidefinite
case are derived in a series of papers by Lee et al. [23, 24,
40]. However, these estimates have a different flavor, as they
are not using the eigenvalues of G or its condition number.

More recently Oswald and Zhou [31] have used the con-
cept of stable Hilbert splittings to develop a unified approach
for studying the convergence of multiplicative Schwartz
methods. This approach was used in [31] to derive upper
bounds on the rate of convergence of Kaczmarz’s method,
and later in [32], it was modified to bound the SOR conver-
gence in the semidefinite case.

The current treatment of the semidefinite case is quite
different. It is based on direct arguments from linear algebra,
such as the Jordan canonical form of Hw and the relations
between the eigenvalues of Hw and Fw. This simplifies the
proof and adds important insight into the semidefinite case.

The upper bounds on the convergence factor explain
why small condition number ensures fast convergence.
Another related question is whether and why large condition
number leads to slow convergence. The analysis in Section 4
provides a convincing explanation. Yet, as this is the first
attempt to resolve this enigma, there may be further ways
to answer this question.

The relation between the condition number and the rate
of convergence stands behind the “Kaczmarz anomaly” phe-
nomenon [10, 11]. The Kaczmarz-SOR method is often con-
sidered as a prototype of more sophisticated methods from
the families of Row-action methods [5, 6, 9], Projection
methods [6, 33, 36], Column-action methods [8, 12, 38],
and Coordinate-descent algorithms [39]. This suggests that
other members of these families may share similar asymp-
totic behavior. Examples that illustrate this connection are
described in [9].
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