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Mikhlin’s integral equation is a classical integral equation for solving boundary value problems for Laplace’s equation. The kernel
of the integral equation is known as the Neumann kernel. Recently, an integral equation for solving the Riemann–Hilbert problem
was derived. The kernel of the new integral equation is a generalization of the Neumann kernel, and hence, it is called the
generalized Neumann kernel. The objective of this paper is to present a detailed comparison between these two integral
equations with emphasis on their similarities and differences. This comparison is done through applying both equations to
solve Laplace’s equation with Dirichlet boundary conditions in simply connected domains with smooth and piecewise smooth
boundaries.

1. Introduction

Fredholm integral equations of the second kind provide an
important and useful tool for solving linear boundary value
problems of the elliptic type [1]. Numerical methods based
on these equations have a variety of applications ranging
from mathematical physics to electrostatics, materials sci-
ence, and electromagnetism (see, e.g., [1–4]). In the context
of solving the Dirichlet problem for 2D Laplace’s equation,
a standard boundary integral equation method is to represent
the solution as a double-layer potential [1–5]. The integral
equation that arises in this method is equivalent to the inte-
gral equation of Mikhlin whose kernel is referred to as the
Neumann kernel [6, p. 282]. In the latter method, the solu-
tion is represented as the real part of a Cauchy-type integral
with a real density [2, §29]. Indeed, Mikhlin’s integral equa-
tion can be seen as the complex counterpart of the integral
equation where the solution is sought as a double-layer
potential, since the real part of a Cauchy-type integral is the
equivalent complex representation of the logarithmic
double-layer potential [3, p. 74]. Integral equations of Mikh-

lin type have been used to solve the interior and exterior
Dirichlet problem for Laplace’s equation both in simply
and multiply connected domains (see, e.g., [2, 5, 7]). Other
applications of Mikhlin’s integral equation include solving
Cauchy problems [8] and computing conformal map-
pings [6].

Recently, an integral equation for solving the Rie-
mann–Hilbert boundary value problem was derived in [9,
10]. The kernel of the derived integral equation is a gener-
alization of the classical Neumann kernel. Solvability has
been studied for simply connected domains in [10] and
for multiply connected domains in [11]. The integral
equation with the generalized Neumann kernel (briefly,
gNk) has been used to solve Laplace’s equation in simply
and multiply connected domains [12, 13]. Other applica-
tions include computing conformal mappings [14], the
logarithmic capacity of compact sets [15], and the capacity
of generalized condensers [16].

It may seem that the integral equation with the gNk
approach might be equivalent to Mikhlin’s integral equation
approach with no additional advantage. The purpose of this
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paper is to compare both integral equations through solving
Laplace’s equation with Dirichlet boundary condition. The
main motive behind that is twofold. First, to show the close
connection between the two integral equations. Second, to
give numerical evidence that the integral equation with the
gNk is not only as accurate as Mikhlin’s integral equation
for smooth and piecewise smooth boundaries but also con-
verges faster in many cases.

Depending on the domain, our results show that there is
a difference with respect to their efficiency as measured by
the number of discretization points required to attain the
same level of accuracy. This is very important from a numer-
ical point of view and reflects directly on the convergence
rate. In this sense and for a given level of accuracy, Mikhlin’s
integral equation method is more efficient particularly for
elongated ellipses. The integral equation with the gNk
method is more efficient for boundaries with highly varying
curvature and domains with several corners.

The paper is organized as follows. Section 2 contains
some preliminary material and known solvability conditions
for both integral equations. Section 3 is devoted to the Mikh-
lin’s integral equation method. A detailed numerical treat-
ment from derivation to discretization is presented. The
details for numerically computing the solution at interior
points are also highlighted. Section 4 covers the method
based on the integral equation with the gNk. A simpler setup
for deriving the integral equation is presented. Both methods
are applied to solve the Dirichlet problem in domains
bounded by ellipses in Section 5, and comparison of the
numerical results of two test cases is presented. Section 6
treats domains with rapidly changing curvature. Further
numerical test cases are compared. Domains with corners
are treated in Section 7. The paper ends with some conclud-
ing remarks and a discussion in Section 8.

2. Notation and Preliminaries

In this section, we recall some preliminary material and
establish solvability conditions.

2.1. The Domain and the Boundary. We consider in our
study both smooth and piecewise smooth planar domains
in the complex plane. Let G be a bounded simply connected
boundary domain with smooth bounding Jordan curve Γ
≔ ∂G. The boundary Γ is parameterized by a 2π-periodic
twice continuously differentiable complex function ηðtÞ, 0
≤ t ≤ 2π, with η′ðtÞ = dηðtÞ/dt ≠ 0 which traverses Γ in the
positive orientation, i.e., η : ½0, 2π�⟶ℂ and Γ = fηðtÞ: t
∈ ½0, 2π�g. The positive orientation in this context is that
for which G is on the left. We let G− denote the domain exte-
rior to Γ, i.e., G− =ℂ\�G, where �G≔G ∪ Γ and ℂ =ℂ ∪ f∞g.
We assume for convenience that the origin of the coordi-
nates is interior to Γ. See Figure 1 for an illustration.

We denote by H the space of Hölder continuous 2π
-periodic functions on the boundary Γ. A Hölder continuous
function defined on Γ can be viewed both as a function of
position and a function of parameter depending on the argu-
ment. In this respect, no distinction shall be made between a
function of position ϕðηðtÞÞ defined on the boundary Γ and

a function of parameterization ϕðtÞ of the same boundary
defined on ½0, 2π�. The case where Γ is piecewise smooth will
be discussed in Section 7.

2.2. Cauchy-Type Integrals and the Sokhotski-Plemelj
Formulae. An analytic function in a domain can be uniquely
expressed with the help of an integral over the boundary of
the domain. If f ðzÞ is an analytic function in G and contin-
uous in the closure �G, then according to the Cauchy integral
formula [3, 17]

1
2πi

ð
Γ

f ηð Þ
η − z

dη =
f zð Þ, z ∈G,
0, z ∈G−:

(
ð1Þ

If, however, f ðzÞ is analytic in G− and continuous in the
closure �G ≔G− ∪ Γ, then

1
2πi

ð
Γ

f ηð Þ
η − z

dη =
f ∞ð Þ, z ∈G,
−f zð Þ + f ∞ð Þ, z ∈G−:

(
ð2Þ

The integral on the left-hand sides of (1) and (2) is
known as Cauchy’s integral. For a Hölder continuous func-
tion h on Γ, the Cauchy-type integral

Ψ zð Þ≔ 1
2πi

ð
Γ

h ηð Þ
η − z

dη,  z∈Γ, ð3Þ

defines a function Ψ that is analytic in G and in G−, i.e., sec-
tionally analytic [3, 17, 18]. It is well known from the theory
of analytic functions [3] that the boundary values Ψ+ from
inside and Ψ− from outside can be determined by the
Sokhotski-Plemelj formulae

Ψ± ζð Þ = ± 1
2 h ζð Þ + 1

2πi

ð
Γ

h ηð Þ
η − ζ

dη, ζ ∈ Γ, ð4Þ

where the Cauchy integral in (4) exists as a Cauchy principal
value. The boundary functions Ψ± are both Hölder continu-
ous on Γ [3, 18].

2.3. The Generalized Neumann Kernel. Let AðζÞ be a given
continuously differentiable complex function on the bound-
ary Γ such that AðζÞ ≠ 0 everywhere. The gNk Nðs, tÞ is

G
–

G

Γ

0

Figure 1: A simply connected domain G with smooth boundary Γ.
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defined for ðs, tÞ ∈ ½0, 2π� × ½0, 2π� by [10]

N s, tð Þ≔ 1
π
Im A sð Þ

A tð Þ
η′ tð Þ

η tð Þ − η sð Þ

 !
, s ≠ t: ð5Þ

The kernel Nðs, tÞ is a generalization of the well-known
Neumann kernel which is a classical kernel in potential the-
ory obtained by setting A = 1 [6, p. 282]. Remarkably, the
kernel Nðs, tÞ is in fact continuous [10], although the
denominator looks problematic. We have

N t, tð Þ = 1
π
Im 1

2
η′′ tð Þ
η′ tð Þ

−
A′ tð Þ
A tð Þ

 !
: ð6Þ

Consequently, the integral operator N defined on H by

Nρ sð Þ≔
ð
Γ

N s, tð Þρ tð Þdt,  s ∈ 0, 2π½ �, ð7Þ

is compact. We consider also the following kernel:

M s, tð Þ≔ 1
π

Re A sð Þ
A tð Þ

η′ tð Þ
η tð Þ − η sð Þ

 !
, s, tð Þ ∈ 0, 2π½ � × 0, 2π½ �, s ≠ t,

ð8Þ

which is singular and its singular part involves the cotangent
function [10]. The kernel Mðs, tÞ can be split as

M s, tð Þ = −K s, tð Þ + ~M s, tð Þ, ð9Þ

where Kðs, tÞ is Hilbert’s singular kernel ([3, p. 46]; [2, p.
118]) known also as the conjugation kernel [19]

K s, tð Þ≔ 1
2π cot s − t

2

� �
: ð10Þ

The kernel ~Mðs, tÞ is continuous and takes on the diago-
nal the values

~M t, tð Þ = 1
π

1
2 Re η′′ tð Þ

η′ tð Þ
− Re A′ tð Þ

A tð Þ

 !
: ð11Þ

The integral operator M defined on H by

Mρ sð Þ≔
ð
Γ

M s, tð Þρ tð Þdt, s ∈ 0, 2π½ �, ð12Þ

is bounded on H [10].
The possibility of λ = ±1 being eigenvalues of the gNk

depends on the index of the function A, which is defined
as the winding number of A with respect to 0,

κ≔ ind Að Þ≔ 1
2π arg Að Þ

����2π
0
, ð13Þ

i.e., the change of the argument of A over one period divided
by 2π [3, 18].

In this paper, we consider two special cases of the gNk,
namely, the gNk N1ðs, tÞ formed with

A1 tð Þ≔ 1, ð14Þ

and the gNk N2ðs, tÞ formed with

A2 tð Þ≔ η tð Þ: ð15Þ

The kernel N1ðs, tÞ is the classical Neumann kernel (see
[6, p. 282], and [19, p. 371]). Ultimately, we define the ker-
nels M1ðs, tÞ and M2ðs, tÞ from (8) with AðtÞ replaced by
A1ðtÞ = 1 and A2ðtÞ = ηðtÞ, respectively.

We consider two integral equations. The first integral
equation is Mikhlin’s integral equation whose kernel is N1ð
s, tÞ [2]. The kernel of the second integral equation is N2ðs
, tÞ, and this integral equation is known as the boundary
integral equation with the gNk [10, 20].

Note that κ1 = ind ðA1Þ = 0 and κ2 = ind ðA2Þ = 1. Thus,
we have the following theorem (see, e.g., [1, p. 255], [12]).

Theorem 1. (a) λ = −1 is not an eigenvalue of N1 and λ = 1 is
a simple eigenvalue of N1 with the constant function as the
corresponding eigenfunction.

(b) λ = 1 is not an eigenvalue of N2 and λ = −1 is a simple
eigenvalue of N2 with the constant function as the corre-
sponding eigenfunction.

We have also the following theorem from [10, 12].

Theorem 2. (a) If λ is an eigenvalue of N1, then λ ∈ ð−1, 1�.
(b) If λ is an eigenvalue of N2, then λ ∈ ½−1, 1Þ.
(c) If λ ≠ 1(λ ≠ −1) is an eigenvalue of N1(N2), then −λ

(−λ) is an eigenvalue of N1(N2).

The following theorem follows from [12] (Theorem 8).

Theorem 3. If λ ≠ ±1, then λ is an eigenvalue of the kernel
N2 if and only if λ is an eigenvalue of N1.

2.4. The Dirichlet Problem. The interior Dirichlet problem
for Laplace’s equation is to find a harmonic function uðzÞ
which satisfies

Δu = 0, inG, ð16aÞ

u = γ, onΓ, ð16bÞ
where Δ is the Laplacian operator Δu = ð∂2u/∂x2Þ + ð∂2u/∂
y2Þ. The boundary data γ is a prescribed Hölder continuous
real-valued function on the boundary Γ. The Dirichlet prob-
lem has a unique solution u ([17], p. 93) which can be
regarded as the real part of a single-valued function F, ana-
lytic in G and continuous up to the boundary Γ ([2], p. 137),
i.e.,

u zð Þ = Re F zð Þ½ �, inG ∪ Γ: ð17Þ
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To ensure uniqueness of the function FðzÞ, we assume
that [3, p. 208]

Im F 0ð Þ½ � = 0: ð18Þ

It follows from (16b) that FðzÞ satisfies the boundary
condition

Re F+ ζð Þ½ � = γ ζð Þ for ζ ∈ Γ, ð19Þ

where F+ is the restriction of the function F on Γ. The prob-
lem (19) is known in [3] as Schwarz problem. In the follow-
ing two sections, we discuss two integral equation methods
for solving the Dirichlet problem.

3. Mikhlin’s Integral Equation

3.1. The Integral Equation. In this section, we review the
well-known Mikhlin’s integral equation which is used to
compute the values of the analytic function FðzÞ. We seek
the function FðzÞ in the form of a Cauchy-type integral [2,
§29]

F zð Þ = 1
2πi

ð
Γ

h ηð Þ
η − z

dη, z ∈ G, ð20Þ

where hðηÞ is an unknown Hölder continuous real-valued
density function defined on the boundary Γ. The task is
now reduced to find the density hðηÞ. Using the Sokhotski-
Plemelj formulae (4), we obtain

F+ ζð Þ = 1
2 h ζð Þ + 1

2πi

ð
Γ

h ηð Þ
η − ζ

dη: ð21Þ

Using the boundary condition (19), we get

Re 1
2 h ζð Þ + 1

2πi

ð
Γ

h ηð Þ
η − ζ

dη
� �

= γ ζð Þ: ð22Þ

Further simplification yields

1
2 h ζð Þ + 1

2π

ð
Γ

Im dη
η − ζ

� �
h ηð Þ = γ ζð Þ: ð23Þ

The resulting integral equation (23) is a Fredholm inte-
gral equation of the second kind known as Mikhlin’s integral
equation [2, §29].

We use the parameterization η = ηðtÞ, 0 ≤ t ≤ 2π, of the
boundary and set ζ = ηðsÞ, 0 ≤ s ≤ 2π to obtain

h η sð Þð Þ +
ð2π
0
N1 η sð Þ, η tð Þð Þh η tð Þð Þdt = 2γ η sð Þð Þ: ð24Þ

Equation (24) can be written as

h sð Þ +
ð2π
0
N1 s, tð Þh tð Þdt = 2γ sð Þ, ð25Þ

where the kernel N1 is the classical Neumann kernel defined
in Section 2.3. By Theorem 1, λ = −1 is not an eigenvalue of
the kernel N1. Consequently, by the Fredholm alternative,
the integral equation (25) is uniquely solvable. Since

Ð 2π
0 N1

ðs, tÞdt = 1, using regularization, the integral equation (25)
can be written as

2h sð Þ +
ð2π
0
N1 s, tð Þ h tð Þ − h sð Þ½ �dt = 2γ sð Þ: ð26Þ

In particular, using regularization before discretization
into a system of linear equations is advantageous and pro-
vides an alternative to using limits for the diagonal elements
(formula (6)), since the entire integrand in equation (9) van-
ishes for s = t ([21, p. 101]).

3.2. The Nyström Method. The integral equation (26) is dis-
cretized into a linear system Sx = y, where S is a square
matrix, by means of the Nyström method and the trapezoi-
dal quadrature rule. Note that since the integrand is smooth
and periodic, the trapezoidal rule is an optimal choice [22].
The Nyström method has the property of preserving both
the stability of the original integral equation ([17, p. 282])
([1, p. 383]) and the convergence order of the underlying
quadrature rule ([17, p. 282]).

Given a positive integer n, the integral in (26) is discre-
tized using the trapezoidal rule with equal weights wj = 2π/
n and equally spaced nodes t j = ðj − 1Þð2π/nÞ, j = 1,⋯, n.
We obtain the semidiscrete equation

2h sð Þ + 2π
n
〠
n

j=1
N1 s, t j
� �

h t j
� �

− h sð Þ� �
= 2γ sð Þ, s ∈ 0, 2π½ �:

ð27Þ

To get a fully discrete equation, we require that (27)
should hold at the quadrature points. We set s = tk, k = 1,
⋯, n. This results in the system of equations

2h tkð Þ + 2π
n

〠
n

j=1
j≠k

N1 tk, t j
� �

h t j
� �

− h tkð Þ� �
= 2γ tkð Þ, k = 1,⋯, n,

ð28Þ

where the term under the summation sign is zero when k = j
since the kernel N1 is continuous. Hence, (28) can be written
as

2 − 2π
n

〠
n

j=1
j≠k

N1 tk, t j
� �

0BBB@
1CCCAh tkð Þ + 2π

n
〠
n

j=1
j≠k

N1 tk, t j
� �

h tj
� �

= 2γ tkð Þ, k = 1,⋯, n:

ð29Þ

We can write (29) in matrix form as

Sx = y, ð30Þ
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where S≔ 2I − diag ðB1Þ + B, ðtÞk = tk, k = 1,⋯, n, x = hðtÞ,
y = 2γðtÞ, I is the n × n identity matrix, 1 is an n × 1 vector of
ones, diag ðB1Þ is a diagonal matrix whose diagonal ele-
ments are the elements of the vector B1, and

Bkj =
0, k = j,
2π
n

N1 tk, t j
� �

, k ≠ j:

8<: ð31Þ

Note that matrix B has zeros in the main diagonal.
Matrix S of the linear system (30) is nonsymmetric, invert-
ible, and dense.

3.3. Computing the Function uðzÞ. Once we solve the linear
system (30) and obtain an approximation of the density
function h, we use it to compute FðzÞ, according to

F zð Þ = 1
2πi

ð2π
0

h tð Þ
η tð Þ − z

η′ tð Þdt ≈ 1
ni〠

n

k=1

h tkð Þη′ tkð Þ
η tkð Þ − z

: ð32Þ

The solution u in the domain G can be evaluated as uð
zÞ = Re ½FðzÞ�.

It is worth mentioning that as long as z does not lie on Γ,
the integrand in the middle of equation (32) is a smooth
periodic function on ½0, 2π�. However, when z gets closer
to the boundary Γ, the integrand in (32) is nearly singular
and the accuracy of the quadrature in (32) is lost [23]. There
are several techniques to overcome such loss (see, e.g., [5,
23–25]). An accurate method has been presented in [5].
The idea in this method is to use the numerical solution of
the integral equation to first approximate the boundary
values F+ðζÞ of the analytic function FðzÞ and then use the
Cauchy integral formula with singularity subtraction to
compute the values of FðzÞ for z ∈G. This method gives
accurate results even when z is very close to the boundary
Γ [5, 26].

For convenience, we present here the details of the
method. Let us first split the second term on the right-
hand side in (21) into real and imaginary parts as

F+ ζð Þ = 1
2 h ζð Þ + Re 1

2πi

ð
Γ

h ηð Þ
η − ζ

dη
� �

+ iIm 1
2πi

ð
Γ

h ηð Þ
η − ζ

dη
� �

,

ð33Þ

which in view of (22) can be written as

F+ ζð Þ = γ ζð Þ + iIm 1
2πi

ð
Γ

h ηð Þ
η − ζ

dη
� �

: ð34Þ

Setting ζ = ηðsÞ in (34) and using the definition of M1ðs
, tÞ, we get

F+ ζ sð Þð Þ = γ sð Þ − i
2

ð2π
0
M1 s, tð Þh tð Þdt: ð35Þ

Since
Ð 2π
0 M1ðs, tÞdt = 0 [12], equation (35) can be writ-

ten as

F+ ζ sð Þð Þ = γ sð Þ − i
2

ð2π
0
M1 s, tð Þ h tð Þ − h sð Þ½ �dt: ð36Þ

Note that the kernel M1 is singular. As in (9), it can be
split as

M1 s, tð Þ = −K s, tð Þ + ~M1 s, tð Þ, ð37Þ

where ~M1ðs, tÞ is continuous and Kðs, tÞ is the Hilbert kernel
given by (10).

Equation (34) is the same as equation (24) in [5] (Eq.
(24)). In [5], the values of F+ðζðsÞÞ are approximated by dis-
cretization of the integral in (35) by the trapezoidal rule
where the integrand is rewritten such that it is continuous
even when t = s. However, for t = s, the integrand involves
the derivative of hðtÞ which is computed numerically via n
-point polynomial interpolation ([5, p. 2904]). In this paper,
we follow the approach used in [20] which is based on using
Wittich’s method and does not require the computation of
the derivative of the function hðtÞ.

We substitute s = tk, k = 1,⋯, n, to obtain

F+ tkð Þ = γ tkð Þ + i
2

ð2π
0

K tk, tð Þ − ~M1 tk, tð Þ� �
h tð Þ − h tkð Þ½ �dt:

ð38Þ

We proceed by discretizing the continuous kernel ~M1
using the trapezoidal rule and the Hilbert kernel K by Wit-
tich’s method [19] to get the fully discrete scheme for assem-
bling F+ðtkÞ, i.e.,

F+ tkð Þ = γ tkð Þ + i
2 〠

n

j=1
j≠k

Kkj − Ckj

� �
h t j
� �

− h tkð Þ� �
, k = 1,⋯, n,

ð39Þ

where the term under the summation sign is zero when k = j
since Kk,j = 0 whenever k = j and the kernel ~M1 is continu-
ous. The matrices C and K are given by

Ck,j =
0, k = j,

2
n
Re η′ tkð Þ

η tkð Þ − η t j
� � !

+ 1
n
cot k − jð Þπ

n
, k ≠ j:

8>><>>:
Kk,j =

0, k − j even,
2
n
cot k − jð Þπ

n
, k − j odd:

8<:
ð40Þ

Or

−Kkj +Ckj = Lkj +Dkj, ð41Þ

5Computational and Mathematical Methods



where

Lkj =
0, k = j,

−1ð Þk−j 1
n
cot k − jð Þπ

n
, k ≠ j,

8<: ð42Þ

Dkj =
0, k = j,
2π
n
M1 tk, t j
� �

, k ≠ j:

8<: ð43Þ

In light of (41), (42), and (43), equation (39) can be writ-
ten as

F+ tkð Þ = γ tkð Þ − i
2〠

n

j=1
Lkj h t j

� �
− h tkð Þ� �

−
i
2〠

n

j=1
Dkj h t j

� �
− h tkð Þ� �

ð44Þ

or equivalently in matrix form as

F+ = y −
i
2 L +Dð Þ − diag L1ð Þ + diag D1ð Þð Þ½ �x, ð45Þ

where F+ = F+ðtÞ, x = hðtÞ, y = γðtÞ, and 1 is a n × 1 vector of
ones.

Now that we have accurately computed an approxima-
tion of the boundary values F+, the function FðzÞ can be
evaluated at any point z in the domain G via the Cauchy
integral formula

F zð Þ = 1
2πi

ð
Γ

F+ ζð Þ
ζ − z

dζ, z ∈G: ð46Þ

The integrand in (46) has a pole at z = ζ. This singularity
can be removed by dividing the usual Cauchy integral for-
mula for F by the same formula for 1, i.e., ð1/2πiÞÐ

Γ
ð1/ðζ

− zÞÞdζ = 1, and rearranging to obtain [5, 26, 27]ð
Γ

F+ ζð Þ − F zð Þ
ζ − z

dζ = 0, z ∈G: ð47Þ

Contrary to the integrand in (46), the integrand in (47)
has no pole at z = ζ and is by consequence an analytic func-
tion of z ∈G whose Cauchy integral must be equal to zero
[26]. Using the trapezoidal rule to discretize this integral
yields

〠
n

j=1

F+ η t j
� �� �

− F zð Þ
η t j
� �

− z
η′ t j
� �

= 0, z ∈ G: ð48Þ

Solving for FðzÞ in (48) results in the barycentric for-
mula [5, 26, 27]

F zð Þ =
∑n

j=1 F+ η t j
� �� �

η′ t j
� �	 


/ η t j
� �

− z
� �

∑n
j=1 η′ t j

� �	 

/ η t j
� �

− z
� � : ð49Þ

Formula (49) is numerically stable even when the evalu-

ation point z approaches the boundary Γ arbitrarily closely
(see [5, 26]). It is referred to in [26] as discrete Cauchy inte-
gral of the second kind.

The above method for the numerical solution of the
Dirichlet problem can be summarized in the following
algorithm:

4. The Integral Equation with the gNk

The integral equation with the gNk has been derived for
solving the Riemann–Hilbert problem in simply and multi-
ply connected domains (see, e.g., [9–11]). As stated in [10]
(Theorem 11), the Dirichlet problem in simply connected
domains can be solved using the integral equation with the
gNk. However, as the objective of this paper is to compare
both integral equation methods, we proceed, for complete-
ness, with deriving the integral equation first. The approach
used here is slightly different, but simpler than the one used
in [10].

4.1. The Riemann–Hilbert Problem. Since we are interested
in computing uðzÞ = Re ½FðzÞ�, we can assume, without loss
of generality, that Fð0Þ = c for some real constant c. We
define a function f in G as

f zð Þ = F zð Þ − c
z

, ð50Þ

so that

F zð Þ = zf zð Þ + c: ð51Þ

The function f ðzÞ is analytic in G and its boundary
values satisfy the boundary condition

Re A2 tð Þf + η tð Þð Þ� �
= γ tð Þ − c for η tð Þ ∈ Γ, ð52Þ

with the function A2ðtÞ = ηðtÞ. The problem (52) is a Rie-
mann–Hilbert problem with the coefficient A2ðtÞ = ηðtÞ
which has the index κ2 = 1. This problem is solvable only if
the right-hand side satisfies one solvability condition [10].
If this condition is satisfied, then the problem has a unique
solution. The undetermined real constant c will be chosen
so that the solvability condition is satisfied.

4.2. Derivation of the Integral Equation. Let f ðzÞ be the
unique solution of the Riemann–Hilbert problem (52) and

μ ηð Þ≔ Im A2 ηð Þf + ηð Þ� �
for η ∈ Γ: ð53Þ

Thus, the boundary values of the function f ðzÞ satisfy

A2 ηð Þf + ηð Þ = γ ηð Þ − c + iμ ηð Þ for η ∈ Γ: ð54Þ

Let z ∈G−, since f ðzÞ is analytic in G, then by the Cauchy
integral formula (1)

1
2πi

ð
Γ

f + ηð Þ
η − z

dη = 0: ð55Þ
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Solving (54) for f + and substituting in (55) yields

1
2πi

ð
Γ

γ ηð Þ − c + iμ ηð Þ
A2 ηð Þ

dη
η − z

= 0, ð56Þ

which implies

1
2πi

ð
Γ

γ ηð Þ + iμ ηð Þ
A2 ηð Þ

dη
η − z

= c
1
2πi

ð
Γ

1/ηð Þ
η − z

dη: ð57Þ

Since the function gðzÞ = 1/z in the numerator of the
right-hand side in (57) is analytic for z ∈G− and Γ is coun-
terclockwise oriented, then using the Cauchy integral for-
mula (2) yields

1
2πi

ð
Γ

γ ηð Þ + iμ ηð Þ
A2 ηð Þ

dη
η − z

= −
c
z
,  z ∈G−: ð58Þ

We proceed by taking the limit G− ∋ z⟶ ζ ∈ Γ on both
sides of equation (58) and applying the Sokhotski-Plemelj
formula (4) to the left-hand side to obtain

−
1
2
γ ζð Þ + iμ ζð Þ

A2 ζð Þ + 1
2πi

ð
Γ

γ ηð Þ + iμ ηð Þ
A2 ηð Þ

dη
η − ζ

= −
c
ζ
: ð59Þ

Since A2ðζÞ = ζ, multiplying (59) by −2A2ðζÞ = −2ζ gives

γ ζð Þ + iμ ζð Þ − 1
πi

ð
Γ

γ ηð Þ + iμ ηð Þð ÞA2 ζð Þ
A2 ηð Þ

dη
η − ζ

= 2c: ð60Þ

Using the parameterization η = ηðtÞ, 0 ≤ t ≤ 2π, and ζ =
ηðsÞ, 0 ≤ s ≤ 2π, we get

γ sð Þ + iμ sð Þ − 1
i

ð2π
0

γ tð Þ + iμ tð Þð Þ 1
π

A2 sð Þ
A2 tð Þ

η′ tð Þ
η tð Þ − η sð Þ dt = 2c:

ð61Þ

Then, using the definitions of the kernels N2 andM2 (see
Section 2.3), we obtain

γ sð Þ + iμ sð Þ +
ð2π
0

−M2 s, tð Þμ tð Þ −N2 s, tð Þγ tð Þ + i M2 s, tð Þγ tð Þ −N2 s, tð Þμ tð Þð Þ½ �dt = 2c:

ð62Þ

Taking the imaginary parts of both sides in (62) yields

μ sð Þ −
ð2π
0
N2 s, tð Þμ tð Þdt = −

ð2π
0
M2 s, tð Þγ tð Þdt, ð63Þ

which is the integral equation in [10] (Eq. (98)). This equa-
tion is known as the integral equation with the gNk. The
integral equation (63) is uniquely solvable (Theorem 1).
Note that the integral equation (63) does not involve the
undetermined real constant c. Manifestly, computing the
boundary values of F requires only computing the function
μ, the solution of the integral equation (63). Indeed, from

(51) and (54), we have

F+ ζð Þ = γ ζð Þ + iμ ζð Þ, ζ ∈ Γ: ð64Þ

The values of FðzÞ for z ∈G can be computed using (49).
Note that the boundary values in formulas (34) and (64) can
differ from each other only by an imaginary constant [2].

4.3. Discretization of the Integral Equation. The regularized
form of the integral equation with the gNk (63) is discretized
by the Nyström method and the trapezoidal quadrature rule
which gives the linear system [20]

Ŝx̂ = −ŷ, ð65Þ

where Ŝ = 2I + diag ðB̂1Þ − B̂, x̂ = μðtÞ, and matrix B̂ is
defined by

B̂kj =
0, k = j,
2π
n

N2 tk, t j
� �

, k ≠ j:

8<: ð66Þ

The right-hand side in (65) is given by [20]

ŷ = D̂ − diag D̂1
� �

+ L
� �

y, ð67Þ

where y = γðtÞ, the matrix L is defined in equation (42), 1 is
a n × 1 vector of ones, and matrix D̂ is defined by

D̂kj =
0, k = j,
2π
n
M2 tk, t j
� �

, k ≠ j:

8<: ð68Þ

We omit the details here and refer the reader to [20] for
a thorough description of the method.

In [20], the linear system (65) was solved by the GMRES
iterative method accelerated by the Fast Multipole Method
(FMM). Since our objective here is the comparison between
the two integral equations, we shall solve both linear systems
using the MATLAB  \ operator.

5. Domains Bounded by Ellipses

In this section, we consider the simply connected domain G
interior to the ellipse Γ with the parameterization

η tð Þ = a cos tð Þ + i sin tð Þ, 0 ≤ t ≤ 2π, ð69Þ

for a > 0, i.e., the minor radius is 1 and the major radius is a
(see Figure 2 for a = 5). We present in the following subsec-
tions a comparison between Mikhlin’s integral equation
method and the integral equation with the gNk method in
domains bounded by the ellipse in (69). We start by compar-
ing the eigenvalues of the coefficient matrices.

5.1. Eigenvalues. For the ellipse (69), the explicit form of the
eigenvalues of the Neumann kernel are known and are given
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by (see [28], Lemma 1.1, and [1, p. 255])

bλ0 = 1, bλ2k−1 = −θk, bλ2k = θk, k = 1, 2, 3,⋯, ð70Þ

where

θ = a − 1
a + 1

���� ����, 0 ≤ θ < 1: ð71Þ

This is in agreement with Theorem 2(c). Further, since
θk ⟶ 0 as k⟶∞, the point 0 is an accumulated point
of the eigenvalues of the Neumann kernel. In view of Theo-
rems 1 and 3, the eigenvalues of the gNk are

~λ0 = −1, bλ2k−1 = θk, bλ2k = −θk, k = 1, 2, 3,⋯: ð72Þ

Consequently, in light of Theorem 2, the coefficient
matrix ð2I − diag ðB1Þ + BÞ of Mikhlin’s integral equation
(25) and the coefficient matrix ð2I + diag ðB̂1Þ − B̂Þ of the
integral equation with the gNk (63) have the same eigen-
values and these eigenvalues lie in the interval ð0, 2� for suf-
ficiently large values of n. The n approximate eigenvalues of
the coefficient matrices, sorted decreasingly, are given by

λ1 = 2, λ2 = 1 + θ, λ3 = 1 + θ2,⋯, λn−1 = 1 − θ2, λn = 1 − θ:

ð73Þ

Since θk ≈ 0 for small θ and large k, these eigenvalues are
clustered in a remarkably symmetric way around 1. In fact,
for small θ and for sufficiently large values of n, most of
these eigenvalues are equal to 1. For elongated domains,
for which a > >1 or a < <1 and hence θ near to 1, we can
notice that more eigenvalues are different from 1. In all
cases, the largest eigenvalue of the coefficient matrices is
λmax ≈ 2 and the smallest eigenvalue is λmin ≈ 1 − θ. For a
= 1:5, we have θ = 0:2 and the eigenvalues are too accumu-
lated around 1 (see Figure 3(a)), where the computed smal-
lest eigenvalue is λmin = 0:799999999999999. For the
elongated ellipse with a = 19, the computed eigenvalues are
shown in Figure 3(b). In this case, θ = 0:9, and hence, we
have several eigenvalues slightly away from 1 where the
computed smallest eigenvalue is λmin = 0:1.

In Figure 3, we present only the eigenvalues of the matrix
ð2I + diag ðB̂1Þ − B̂Þ. However, we chose the values of n
such that the maximum norm between the approximate
eigenvalues of the two matrices ð2I − diag ðB1Þ + BÞ and ð
2I + diag ðB̂1Þ − B̂Þ is less than 10−13.

5.2. Closed-Form Expressions for the Kernels N1,M1, N2, and
M2. In the case of the ellipse (69), it is well known that the
Neumann kernel can be expressed in closed form as (see
[21, p. 135–136])

N1 s, tð Þ≔ 1
π
Im η′ tð Þ

η tð Þ − η sð Þ

 !
= 1
π

a
1 + a2 + 1 − a2ð Þ cos s + tð Þ :

ð74Þ

The explicit closed-form expressions for the kernels M1,
N2, and M2 defined in Section 2.3 are given in the following
theorem.

Theorem 4. Let Γ be the ellipse parameterized by ηðtÞ≔ a
cos ðtÞ + i sin ðtÞ, where 0 ≤ t ≤ 2π and a > 0. The closed-
form expressions for the kernels M1, N2, and M2 are, respec-
tively, given by

(a)

M1 s, tð Þ = −
1
2π

cot s − t
2

� �
−

1
2π

1 − a2
� �

sin t + sð Þ
1 + a2 + 1 − a2ð Þ cos t + sð Þ , s ≠ t,

ð75Þ

(b)

N2 s, tð Þ = −
1
π

2a
1 + a2 − 1 − a2ð Þ cos 2tð Þ + 1

π

a
1 + a2 + 1 − a2ð Þ cos t + sð Þ ,

ð76Þ

(c)

M2 s, tð Þ = −
1
2π

cot s − t
2

� �
−

1
π

1 − a2
� �

sin 2tð Þ
1 + a2 − 1 − a2ð Þ cos 2tð Þ

−
1
2π

1 − a2
� �

sin t + sð Þ
1 + a2 + 1 − a2ð Þ cos t + sð Þ , s ≠ t:

ð77Þ

Proof. (a) For s ≠ t, we have

η′ tð Þ
η tð Þ − η sð Þ =

−a sin tð Þ + i cos tð Þ
a cos tð Þ − cos sð Þð Þ + i sin tð Þ − sin sð Þð Þ :

ð78Þ

Applying the sum-to-product trigonometric identities
cos ðtÞ − cos ðsÞ = −2 sin ððt + sÞ/2Þ sin ððt − sÞ/2Þ and sin ðt
Þ − sin ðsÞ = 2 cos ððt + sÞ/2Þ sin ððt − sÞ/2Þ, (78) becomes

η′ tð Þ
η tð Þ − η sð Þ = a sin tð Þ − i cos tð Þ

2 sin t − sð Þ/2ð Þ a sin t + sð Þ/2ð Þ − i cos t + sð Þ/2ð Þ½ � , =
a2 sin tð Þ sin t + sð Þ/2ð Þ + cos tð Þ cos t + sð Þ/2ð Þ + ia sin tð Þ cos t + sð Þ/2ð Þ − cos tð Þ sin t + sð Þ/2ð Þ½ �

2 sin t − sð Þ/2ð Þ a2 sin2 t + sð Þ/2ð Þ + cos2 t + sð Þ/2ð Þ� � :

ð79Þ
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Applying the half-angle identities sin2ðθ/2Þ = ð1 − cos ð
θÞÞ/2 and cos2ðθ/2Þ = ð1 + cos ðθÞÞ/2 to the bracket term in
the denominator and taking the real parts yields

Re η′ tð Þ
η tð Þ − η sð Þ

 !
= a2 sin tð Þ sin t + sð Þ/2ð Þ + cos tð Þ cos t + sð Þ/2ð Þ

sin t − sð Þ/2ð Þ 1 + a2 + 1 − a2ð Þ cos t + sð Þ½ � :

ð80Þ

Applying the product-to-sum trigonometric identities 2
sin A sin B = −cos ðA + BÞ + cos ðA − BÞ and 2 cos A cos B
= cos ðA + BÞ + cos ðA − BÞ to the numerator part of (80)
and rearranging, we get

Re η′ tð Þ
η tð Þ − η sð Þ

 !
= 1/2ð Þ 1 + a2

� �
cos t − sð Þ/2ð Þ + 1 − a2

� �
cos 3t + sð Þ/2ð Þ� �

sin t − sð Þ/2ð Þ 1 + a2 + 1 − a2ð Þ cos t + sð Þ½ � :

ð81Þ

However,

cos 3t + s
2

� �
= cos t − s

2 + t + sð Þ
� �

= cos t − s
2

� �
cos t + sð Þ − sin t − s

2

� �
sin t + sð Þ:

ð82Þ

Substituting this result into (71) and rearranging gives

Finally, multiplying both sides of (83) by 1/π and simpli-
fying gives (75).

(b) For s ≠ t, we have

η sð Þ
η tð Þ

η′ tð Þ
η tð Þ − η sð Þ = η sð Þ − η tð Þ + η tð Þ

η tð Þ
η′ tð Þ

η tð Þ − η sð Þ = −
η′ tð Þ
η tð Þ + η′ tð Þ

η tð Þ − η sð Þ :

ð84Þ

Observe that

η′ tð Þ
η tð Þ = 1 − a2

� �
sin 2tð Þ + 2ia

1 + a2 − 1 − a2ð Þ cos 2tð Þ : ð85Þ

So

N2 s, tð Þ = 1
π
Im η sð Þ

η tð Þ
η′ tð Þ

η tð Þ − η sð Þ

 !
= −

1
π
Im η′ tð Þ

η tð Þ

 !
+ 1
π
Im η′ tð Þ

η tð Þ − η sð Þ

 !
:

ð86Þ

In light of (74) and (85), we get

N2 s, tð Þ = −
1
π

2a
1 + a2 − 1 − a2ð Þ cos 2tð Þ +

1
π

a
1 + a2 + 1 − a2ð Þ cos t + sð Þ :

ð87Þ

(c) For s ≠ t, we have

M2 s, tð Þ = 1
π

Re η sð Þ
η tð Þ

η′ tð Þ
η tð Þ − η sð Þ

 !

= −
1
π

Re η′ tð Þ
η tð Þ

 !
+ 1
π

Re η′ tð Þ
η tð Þ − η sð Þ

 !
:

ð88Þ

Applying (85) and the result in (a) yields

M2 s, tð Þ = −
1
2π cot s − t

2

� �
−

1
π

1 − a2
� �

sin 2tð Þ
1 + a2 − 1 − a2ð Þ cos 2tð Þ

−
1
2π

1 − a2
� �

sin t + sð Þ
1 + a2 + 1 − a2ð Þ cos t + sð Þ :

ð89Þ

Example 5. To illustrate the accuracy of the two methods,
consider the Dirichlet problem inside a domain with a
boundary curve parameterized by the ellipse (69) and
boundary condition

u η tð Þð Þ = γ tð Þ≔ Re
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + 1 + η tð Þ

ph i
 for η tð Þ ∈ Γ: ð90Þ

0

–1

–2

–3

0 5–5

3

2

1

Figure 2: The ellipse with parameterization in equation (69) with
a = 5.

Re η′ tð Þ
η tð Þ − η sð Þ

 !
= 1/2ð Þ cos t − sð Þ/2ð Þ 1 + a2 + 1 − a2

� �
cos t + sð Þ� �

− 1/2ð Þ 1 − a2
� �

sin t − sð Þ/2ð Þ sin t + sð Þ
sin t − sð Þ/2ð Þ 1 + a2 + 1 − a2ð Þ cos t + sð Þ½ � : ð83Þ
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Note that −a is outside the domain and we can always
choose any analytic branch of the function

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a + 1 + z

p
.

For the sake of comparison, we first solve Mikhlin’s inte-
gral equation (25) using the method described in Section 3.2,
and then, for a = 1:5 and α + iβ ∈G with real numbers α and
β, we use formula (32) to compute the values at α + iβ (i.e.,
without computing F+ and without using the barycentric
formula (49)). Table 1 shows the estimated relative error
kun − uk∞/kuk∞ of the approximate solution un at two
given interior points. We observe that accurate results are
obtained for α = β = 0 even for small values of n (see
Table 1). For α = 0 and β = 0:999, the point α + iβ is close
to the boundary and the obtained results are very inaccurate
even for large values of n. To get an accurate approximation,
we compute the boundary values F+ according to equation
(35) and then compute the solution at α = 0 and β =
0,0:999 as described in Section 3.3. The values of the relative
error of the computed solution un are presented also in
Table 1. It is observed that accurate results are obtained for
both cases of β even for small values of n.

We solve Example 5 using the integral equation with the
gNk method, as described in Section 4.3 and summarized in
Algorithm 2. The estimated relative error of the approximate
solutions at α + iβ for α = 0 and β = 0,0:999 is presented in
Table 1. These results are also highly accurate at both points.

In Figure 4(a), the relative error of the approximate solu-
tion at 1000 random interior points is plotted against the
number of discretization points for a = 2. Both methods
achieve high accuracy, exhibit good efficiency, and converge
equally fast. However, in the case of the elongated ellipse
with a = 19 (see Figure 4(b)), although both methods achieve
the same accuracy, there is a difference in terms of the cost.
Mikhlin’s integral equation method converges faster and
achieves high accuracy at half the number of discretization
points needed using the integral equation with the gNk
method. This computational advantage in favour of Mikh-

lin’s integral equation method has been noticed for other
values of a for which the ellipse (69) is elongated.

6. Domains with Complex Geometry

In this section, we perform numerical experiments, aiming
to compare the two methods and highlight the differences
in their accuracy in case the boundary of the simply con-
nected domain G has a complex geometry. Using Mikhlin’s
integral equation method, we follow the steps described in
Algorithm 1, i.e., we solve the integral equation (25) first.
Next, we use the computed approximate solution to find
the boundary values F+ according to (35) and then we eval-
uate the solution according to (49). For the integral equation
with the gNk method, we follow the steps described in Algo-
rithm 2, i.e., we solve the integral equation (63). Then, we
evaluate the solution according to (49).

We consider two smooth Jordan curves, namely, the
boundary Γ1 parameterized by (see Figure 5(a))

Γ1 : η tð Þ = ecos t cos2 8tð Þ + esin t sin2 8tð Þ� �
eit , 0 ≤ t ≤ 2π,

ð91Þ

and the boundary Γ2 with the parameterization (see
Figure 5(b))

Γ2 : η tð Þ = 1 + 0:5 cos 30tð Þeit , 0 ≤ t ≤ 2π: ð92Þ

Example 6. Let G1 and G2 be the two simply connected
domains bounded by the two smooth Jordan curves Γ1 and
Γ2, respectively. The Dirichlet boundary conditions are con-
structed from a closed-form reference solution given by

u zð Þ = log z − z0j j, ð93Þ

where z is an interior point and z0 is an exterior point. We
fix z0 = 2 + 1:5i for Γ = Γ1 and z0 = 1:5 + i for Γ = Γ2.
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Figure 3: The eigenvalues of the coefficient matrices for (a) a = 1:5 and (b) a = 19.
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The approximate solution un is computed for several
values of n at one million randomly chosen interior points
using both methods for Γ1 and Γ2. The estimated relative
error kun − uk∞/kuk∞ is shown in Figure 6. For the curve
Γ1, getting a relative error in the order of 10−14 requires

around 1000 discretization points using the integral equa-
tion with the gNk method and around 1500 using Mikhlin’s
integral equation method. For Γ2, reaching a relative error in
the order of 10−14 requires around 1800 discretization points
using the integral equation with the gNk method and around

Table 1: The relative error kun − uk∞/kuk∞ of the approximate solution un of the Dirichlet problem for a = 1:5 at the points z = α + iβ with
α = 0 and two values of β for different values of n using Mikhlin’s integral equation and the integral equation with the gNk (IE with the gNk).

n
Mikhlin (CIF with h) Mikhlin (CIF with F+) IE with the gNk

β = 0 β = 0:999 β = 0 β = 0:999 β = 0 β = 0:999
8 3:58 × 10−03 1:92 × 10+02 8:65 × 10−05 8:20 × 10−07 1:25 × 10−04 1:10 × 10−06

16 5:71 × 10−06 9:59 × 10+01 1:00 × 10−07 2:64 × 10−08 1:62 × 10−07 2:76 × 10−08

32 1:45 × 10−11 4:77 × 10+01 2:25 × 10−13 6:14 × 10−11 3:84 × 10−13 6:14 × 10−11

64 2:22 × 10−16 2:36 × 10+01 1:40 × 10−16 5:51 × 10−16 2:22 × 10−16 5:51 × 10−16

128 1:40 × 10−16 1:15 × 10+01 1:40 × 10−16 1:38 × 10−16 1:40 × 10−16 1:38 × 10−16

Step 1. Solve the integral equation (25) for h.
Step 2. Find the boundary values of F given in equation (35).
Step 3. Compute the values of FðzÞ for z ∈G using (49).
Step 4. Finally, evaluate the solution uðzÞ through uðzÞ = Re ½FðzÞ�.

Algorithm 1: Solving the Dirichlet problem with Mikhlin’s integral equation method

Step 1. Solve the integral equation (63) for μ.
Step 2. Compute the values of FðzÞ for z ∈ G using formula (49), where the boundary values of F are given by (64).
Step 3. Finally, evaluate the solution uðzÞ as uðzÞ = Re ½FðzÞ�.

Algorithm 2: Solving the Dirichlet problem using the integral equation with the gNk method
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Figure 4: The relative error kun − uk∞/kuk∞ of the approximate solution un of the Dirichlet problem at 1000 interior points as a function of
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4600 discretization points using Mikhlin’s integral equation
method. The method based on the integral equation with
the gNk is more efficient in both cases.

Example 7. Let G1 and G2 be the two domains described in
Example 6. We assume that the exact solution is given by
the harmonic function

u zð Þ = Re 〠
3

j=1

1
z − zj

 !
, ð94Þ

where z is an interior point and the poles zj are located out-
side the domain, with z1 = 2:5 − 1:5i, z2 = 2:5 + 1:5i, and z3
= −1:5 + 2:5i for Γ = Γ1 and z1 = 1:5 + 1:5i, z2 = −1:5 − 1:5i
, and z3 = −1:5 + 1:5i for Γ = Γ2.

Both methods are applied to find the approximate solu-
tion un for different values of n at one million randomly cho-
sen points in each interior domain for Γ1 and Γ2. The values

of the relative error norm kun − uk∞/kuk∞ with the number
of discretization points are plotted in Figure 7. Here again,
we see that the integral equation with the gNk method
requires less discretization points than Mikhlin’s integral
equation method would require for the same level of
accuracy.

The results of Examples 6 and 7 show clearly that the
method based on the integral equation with the gNk is more
efficient for these types of curves with highly varying curva-
ture. The convergence is faster, and the required number of
discretization points for an accurate approximation of the
solution is less.

7. Domains with Piecewise Smooth Boundaries

We consider in this section domains bounded by piecewise
smooth curves. Now, in addition to the fact that the integral
operators N1 and N2 are no longer compact, additional dif-
ficulties arise: the solutions of the associated integral
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Figure 5: The boundary Γ1 parameterized by (91) (a) and Γ2 parameterized by (92) (b).
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equations exhibit a singular behaviour in the neighbourhood
of the corner points, the trapezoidal quadrature rule with
equidistant nodes looses its accuracy, and the Nyström
method produces ill-conditioned linear systems [29, 30].
There are many successful approaches to overcome difficul-
ties associated with corner points (see, e.g., [29–33]).

7.1. A Graded Mesh Quadrature. Since we are using the trap-
ezoidal quadrature rule, we use the approach suggested by
Kress in [29] which is based on replacing the equidistant
nodes by a graded mesh with the same number of nodes
constructed by a new variable substitution. This substitution
has the particularity of making the derivatives of the new
integrand vanish at the extremities of the integration inter-
val. In particular, using this substitution in the parameteriza-
tion of the curve renders the new transformed
parameterization many times continuously differentiable
along the whole curve. Kress [29] introduced a typical sub-
stitution based on the bijective and strictly monotonically
increasing rational function wðsÞ: ½0, 2π�⟶ ½0, 2π� defined
as

w sð Þ = v sð Þ½ �p
v sð Þ½ �p + v 2π − sð Þ½ �p , ð95Þ

where p ≥ 2 is the grading parameter and v is a cubic polyno-
mial given by

v sð Þ = 1
p
−
1
2

� �
π − s
π

	 
3
+ 1
p
s − π

π
+ 1
2 : ð96Þ

Notice that vð0Þ = 0 and vð2πÞ = 1 and that w is infinitely
differentiable.

Assume that the boundary Γ parameterized by ηðtÞ has n
corner points. These corner points are at

η 0ð Þ, η 2π/nð Þ, η 4π/nð Þ,⋯, η 2 n − 1ð Þπ/nð Þ: ð97Þ

Define the function ω as [34]

ω sð Þ =

w nsð Þ/n,  s ∈ 0, 2π/n½ Þ,
w ns − 2πð Þ + 2πð Þ/n,  s ∈ 2π/n, 4π/n½ Þ,
w ns − 4πð Þ + 4πð Þ/n,  s ∈ 4π/n, 6π/n½ Þ,
⋮

w ns − 2 n − 1ð Þπð Þ + 2 n − 1ð Þπð Þ/n,  s ∈ 2 n − 1ð Þπ/n, 2π½ �:

8>>>>>>>><>>>>>>>>:
ð98Þ

Since w has a zero of order p at s = 0 and s = 2π ([29],
Thm.2.1), then ω ∈ Cp. We substitute t = ωðsÞ in the param-
eterization of the boundary and consequently obtain

η tð Þ = η ω sð Þð Þ, η′ tð Þdt = ω′ sð Þη′ ω sð Þð Þds: ð99Þ

This substitution in the parameterization of the bound-
ary eliminates the complexity arising from corner regions
and the integral equations can be solved as in the case of
smooth domains.

7.2. Numerical Experiments. We are now in a position to
concretely use the described substitution technique in
numerical examples for solving (2.12) in domains with cor-
ners. We consider four examples. The first example is a fam-
ily of curves with one outward-pointing corner. The second
example is a family of curves with one reentrant corner. The
third example is a curve with 20 corners, half of them are
inward-pointing and the other half are outward-pointing.
The fourth example consists of two polygonal domains.
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Figure 7: The relative error kun − uk∞/kuk∞ of the computed solution un of the Dirichlet problem versus the number of discretization
points using both methods in Example 7 for (a) Γ1 and (b) Γ2.
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Example 8. Let Gθ be the domain bounded by the curve Γθ
parameterized by [33, §4.2]

η tð Þ = 2 sin t/2ð Þ − i tan θ/2ð Þ cos tð Þ − 1, t ∈ 0, 2π½ �, ð100Þ

where 0 < θ < π. The boundary Γθ has a corner at t = 0, with
interior angle θ. The boundary data are constructed from the
harmonic function (93), where z0 is a point outside Gθ. We

consider two instances of Γθ, more precisely, Γπ/2 and Γπ/20
(see Figure 8). We set z0 = −2 and use both methods to com-
pute the solution of the Dirichlet problem at z = 0 for differ-
ent values of n. Figure 9 compares the convergence results
for both methods. For Γπ/2, the two methods are almost
equivalent. For Γπ/20, the difference is remarkable, the gNk
method is more efficient, and the convergence rate decays
linearly. It is similar to convergence rates seen in smooth
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boundaries. The convergence rate of Mikhlin’s integral
equation on the other hand follows a nonlinear and slow
pattern.

Example 9. Let Γϕ denote the family of curves parameterized
by [33, §4.3]

η tð Þ = −2 sin 3t/2ð Þ + i tan ϕ/2ð Þ sin tð Þ − 1/2, ð101Þ

where π < ϕ < 2π is the interior angle. The boundary data
are prescribed using the function (93) with z0 = −3:5. We
consider in this example the two curves Γ3π/2 and Γ2π−π/10
(see Figure 10). We use both methods to compute the solu-
tion of the Dirichlet problem at z = 0 for different values of n
.

The relative error of the obtained solution is computed
for different values of n. The results appear in Figure 11.

We notice that both methods are equally efficient for Γ3π/2
with comparable accuracy.

Example 10. We consider the boundary curve parameterized
by ([33] §4.2)

η tð Þ = eit 4 + 2 cos 10 t −
π

20
	 
	 
��� ��� sin 10 t −

π

20
	 
	 
	 


:

ð102Þ

The boundary data are constructed from the function
(93) with z0 = −6. Both methods are used to compute the
solution of the Dirichlet problem at 1000 randomly chosen
interior points (see Figure 12(a)).

Figure 12(a) compares the convergence results using
both methods with different values of the grading parameter
p and different numbers of discretization points n. As we
clearly see, for all values of p, Mikhlin’s integral equation
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method stagnates at a lower accuracy. The gNk method is
more efficient and accurate at, substantially, any given num-
ber of discretization points.

Example 11. In the last example, we consider two polygonal
domains, namely, a hexagon and a five-armed star (see
Figure 13). The two polygonal domains were generated
using PlgCirMap (see [14]). The Dirichlet boundary condi-
tions are constructed from the harmonic function (93) with
z0 = −2 for the hexagon and z0 = −1:5 for the five-armed
star. The value of the grading parameter used is p = 9.
Figure 14 shows the estimated relative error of the computed
solution at z = 0 for different values of n.

In both polygonal domains, the method based on the
integral equation with the gNk is effectively more efficient,
reaching highly accurate results in both domains. The differ-
ence between the two methods is more remarkable in the
case of the five-armed star (see Figure 14).

8. Concluding Remarks and Discussion

In this work, we considered the comparison of two integral
equation methods for solving the Dirichlet problem for
Laplace’s equation in simply connected domains, namely,
Mikhlin’s integral equation method and the integral equa-
tion with the gNk method. Both integral equations were dis-
cretized using the Nyström method and the trapezoidal rule.
The resulting linear systems were solved using the MATLAB
 \ operator. The two integral equation methods are stable
and highly accurate and have the same computational
complexity.

Solving the Dirichlet problem with both methods
requires finding the boundary values F+ of the analytic func-
tion F where the unique solution of the Dirichlet problem in
the domain G is uðzÞ = Re ½FðzÞ� for z ∈G. In both methods,
once the boundary values F+ are determined, we use the
barycentric formula (49) to evaluate the solution at given
interior points. The main difference between the two
methods though is how we calculate the boundary values
F+. For Mikhlin’s integral equation, note that computing
F+ by (35) requires computing M1h, where h is an approxi-
mate solution of the integral equation (25). On the other
hand, solving the integral equation with the gNk provides
us directly with the boundary values F+ without any extra
calculations. However, the right-hand side of the integral
equation with the gNk is −M2γ and needs to be computed
first, i.e., we have only a computed approximation of the
right-hand side of the integral equation, in contrast to Mikh-
lin’s integral equation where the right-hand side is given
explicitly.

To sum up, the two methods are computationally equiv-
alent for computing F+. Both require solving a linear system
and both require computing a singular integral Mkϕ (k = 1
or 2). However, the function ϕ is a known function (= −γ)
for the integral equation with the gNk and ϕ is a computed
approximate solution (= h) for Mikhlin’s integral equation.

In conclusion, for simply connected domains, the two
methods based on these two integral equations are equiva-
lent in terms of computational complexity and accuracy.

The numerical examples show that for domains with simple
geometry, both methods are highly accurate and exhibit
good performance. The method based on Mikhlin’s integral
equation is more efficient particularly for elongated ellipses
(see Figure 4). However, for boundary curves with rapidly
varying curvature, the integral equation with the gNk
method is more efficient (see Figures 6 and 7). In domains
with corners, both methods have shown comparable accu-
racy (see Figures 9 and 11). However, for domains with sev-
eral corners, the integral equation with the gNk method has
shown better efficiency (see Figures 12 and 14).

It is natural to devote further investigation on the com-
parison between the two integral equations for multiply con-
nected domains. There are, actually, significant differences
between the two integral equation methods in multiply con-
nected domains. The integral equation with the gNk (63) is
still uniquely solvable as it is [12]. In contrast, Mikhlin’s
integral equation (25) is not uniquely solvable [27]. Other
reformulations need to be considered in order to make it
uniquely solvable (see [2, §31], [7]). A comparison between
the two integral equation methods in both bounded and
unbounded multiply connected domains will be the subject
of a future work. This comparison will include the applica-
tion of both integral equations in solving some other prob-
lems such as the computation of the Dirichlet-to-Neumann
map and numerical conformal mappings.
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