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A cell-centered finite volume semi-Lagrangian method is presented for the numerical solution of two-dimensional coupled
Burgers’ problems on unstructured triangular meshes. The method combines a modified method of characteristics for the time
integration and a cell-centered finite volume for the space discretization. The new method belongs to fractional-step algorithms
for which the convection and the viscous parts in the coupled Burgers’ problems are treated separately. The crucial step of
interpolation in the convection step is performed using two local procedures accounting for the element where the departure
point is located. The resulting semidiscretized system is then solved using a third-order explicit Runge-Kutta scheme. In
contrast to the Eulerian-based methods, we apply the new method for each time step along the characteristic curves instead of
the time direction. The performance of the current method is verified using different examples for coupled Burgers’ problems
with known analytical solutions. We also apply the method for simulation of an example of coupled Burgers’ flows in a
complex geometry. In these test problems, the new cell-centered finite volume semi-Lagrangian method demonstrates its ability
to accurately resolve the two-dimensional coupled Burgers’ problems.

1. Introduction

In this paper, given a two-dimensional bounded domain Ω
in R2 with Lipschitz boundary Γ and a time interval ½0, T�,
we are interested in solving the two-dimensional unsteady
nonlinear coupled Burgers’ equations
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where u = ðu, vÞΤ is the velocity field, with u the velocity in x
-direction and v the velocity in y-direction, and ν = 1/Re is a
coefficient of viscous diffusion with Re is the Reynolds num-

ber. It should be stressed that the Reynolds number is a non-
dimensional number which controls the relative dominance
of convective part with respect to the diffusive part in the
equation (1). To provide a well-posed mathematical prob-
lem, equation (1) is equipped with suitable boundary and
initial conditions. In practice, these conditions are prob-
lem-dependent, and their discussion is postponed for the
section on numerical results. The coupled Burgers’ equation
(1) arises in many physical phenomena such as turbulent
flows, fluid mechanics, gas dynamics, nonlinear acoustic
waves, and traffic flow, see [1–3] among others. The problem
is widely viewed as a simplified version of the incompressible
Navier-Stokes equations and is therefore an important
benchmark problem towards the development of robust
numerical methods for complicated incompressible flows.
For many applications in incompressible flows, the convec-
tion terms are distinctly more important than the diffusion
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terms particularly when the Reynolds number reaches high
values. In this case, solutions of coupled Burgers’ equations
(1) exhibit steep fronts, sharp gradients, shock discontinu-
ities, and boundary layers among other difficulties that most
of Eulerian methods fail to resolve accurately. In addition,
the nonlinear nature of the equation (1) is also a challenge
for most Eulerian-based methods which require lineariza-
tion techniques at each time step resulting in computation-
ally demanding solvers.

Many contributions have been published in the literature
to solve the two-dimensional coupled Burgers’ equation (1).
For instance, finite difference methods have been investi-
gated in [4–7] among others. An operator compact method
has been proposed in [8] for the numerical solution of the
coupled Burgers’ equations. This technique leads to a system
of nonlinear equations which is solved using the Newton
method at each time step. A fourth-order finite difference
method has also been proposed in [9] for solving the
coupled Burgers’ equations. The authors in this reference
eliminated the convective part by applying the Hopf-Cole
transformation which results in a class of heat equations to
be discretized using a fourth-order finite difference scheme.
Apparently, the main drawback in these finite difference
methods is the extension to irregular geometries with com-
plex boundaries. The same Hopf-Cole transformation has
been adopted in [10] using the finite volume discretization
of the coupled Burgers’ equations. A serious weakness in this
method is the necessity to approximate the initial and
boundary conditions via a quadrature rule which may create
accumulation of errors during the simulations. In [11], the
nonlinear advection part is separated from the diffusion part
using a time splitting operator to solve the coupled Burgers’
equations. The nonlinear part is linearized based on a special
Taylor expansion, whereas the diffusion part is discretized
using a finite element method. The authors in [12] have
introduced a MacCormack approach based on a predictor-
corrector formulation to solve the coupled Burgers’ equa-
tions. However, for highly convective problems on unstruc-
tured meshes, this method can involve numerical instability
specially at the areas with strong gradients within the com-
putational domain. In the framework of meshless methods,
the authors in [13] have combined the advantages of differ-
ential quadratures and local multiquadric radial basis func-
tions to solve the coupled Burgers’ equations. The main
advantage of these meshless methods lies on their potential
to handle complex geometries. However, these methods
require solutions of ill-conditioned linear systems which
become computationally demanding for coupled Burgers’
equations at high Reynolds numbers. The modified cubic
B-spline method has also been applied in [14] to the coupled
Burgers’ equations. The idea in this method consists of
approximating the spatial derivatives using the weighted
sum of the functional values at certain discrete points with
the weighting coefficients are determined using spline func-
tions. Recently, a strong form meshless collocation method
has been investigated in [15] for solving the coupled Burgers’
equations. The main idea of this method is to split the solu-
tion into a primary approximation which is treated as the
homogeneous solution satisfying the considered boundary

conditions and correcting the approximation by the series
of modified radial basis functions. However, time truncation
errors in these Eulerian methods dominate their numerical
solutions and are subject to the Courant-Friedrichs-Lewy
(CFL) stability conditions, which put severe restrictions on
the size of time steps taken in the numerical simulations of
the coupled Burgers’ equations.

Semi-Lagrangian methods employ the modified method
of characteristics and have been used to solve a wide variety
of physical and engineering applications. Indeed, finite ele-
ment semi-Lagrangian approaches have been used for exam-
ple in [16] for convection-diffusion problems, in [17] for
incompressible Navier-Stokes equations, in [18] for tidal
flows, and in [19] for natural and mixed convection flows.
The central idea in these finite element semi-Lagrangian
methods consists on rewriting the governing equations in
terms of Lagrangian coordinates as defined by the character-
istics associated with the problem under study. The time
derivative and the advection terms are associated in a direc-
tional derivative manner along the characteristics leading to
a characteristic time-stepping procedure. The time trunca-
tion errors are greatly reduced due to the Lagrangian treat-
ment, see, for instance, [20–23]. In addition, the semi-
Lagrangian method offers the possibility of using time steps
that go beyond those allowed by the CFL stability conditions
in Eulerian finite element methods for convection-
dominated flows. The main objective of the current study
is to devise a numerical approach able to accurately approx-
imate solutions of the coupled Burgers’ equations on
unstructured triangular grids. The aim is to develop a pow-
erful numerical algorithm which is robust, easy to imple-
ment, and accurately solves the coupled Burgers’ equations
without relying on highly demanding solvers. The proposed
cell-centered finite volume semi-Lagrangian algorithm can
be interpreted as a fractional-step scheme in which we treat
the convective and diffusive parts in a separate manner. In
[24], a conservative semi-Lagrangian finite volume approach
for convection-dominated diffusion equations has been pre-
sented. The method is limited to the linear scalar
convection-diffusion equations. To achieve an efficient
numerical algorithm for nonlinear problems, the present
study is carried out for the coupled Burgers’ equations. This
is reflected by the differences in the calculation of departure
points in [24] with the procedure proposed in the present
study. Since it was necessary to decouple the system of equa-
tions, we decided to design explicit procedures to eliminate
iterative procedures which are not possible with the method
reported in [24]. The use of explicit procedures in the cell-
centered finite volume semi-Lagrangian method improves
consistently the performance of the new numerical tools
for solving nonlinear problems. In addition, a third-order
explicit Runge-Kutta scheme is implemented in the present
work for the time integration. This feature yields a high pre-
cision in the numerical solution for the selected Reynolds
numbers, and therefore, it makes the method more efficient
and robust. The interpolation stage in the semi-Lagrangian
is carried using two procedures, namely, the least square
(LS) method [25, 26] and radial basis functions (RBF) [27,
28], using the host element where the departure point is
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allocated and its neighboring cells. It should be stressed out
that the presented method should not be confused with
splitting techniques widely used in the literature to split con-
vection and diffusion parts in the time direction. Here, we
integrate the system (1) along the characteristics using the
method of characteristics to deal with the convection part,
and no splitting is used in our method. The remaining diffu-
sion part is dealt with using the Runge-Kutta scheme while
the convection term is solved using the modified method
of characteristics. The proposed method should be inter-
preted as time stepping scheme along the characteristic curves
rather than in the time direction only. This is a well-
established technique used in the semi-Lagrangian methods
applied to transport and convection-diffusion problems.
Finally, a numerical comparison to the finite element semi-
Lagrangian approach is also presented in this study. This com-
parison is particularly interesting in the nonlinear case where
the strong gradients are expected in the computed results at
high Reynolds numbers. For the proposed cell-centered finite
volume semi-Lagrangian method, increasing the Reynolds
number in the simulations does not deteriorate the perfor-
mance of the method. Evaluation of the interpolation proce-
dures has also been discussed using both qualitative and
quantitative comparisons. For the considered examples, it
has been found that the RBF method is more accurate than
the LS method, and it provides highly accurate algorithm for
all examples. Moreover, the new cell-centered finite volume
semi-Lagrangian approach combined with RBF interpolation
has the potential to produce efficient numerical solutions free
from spurious oscillations, and it guarantees both strong sta-
bility and high accuracy for problems containing sharp gradi-
ents. The performance of the proposed cell-centered finite
volume semi-Lagrangian method is demonstrated for several
test examples of coupled Burgers’ equations. Combining a
cell-centered finite volume discretization with the semi-
Lagrangian method, to the best of our knowledge, is reported
for the first time. Numerical results presented in this study
show that an interesting feature of the semi-Lagrangian
method is to allow large time steps without deteriorating accu-
racy of the computed solutions.

This paper is organized as follows. Formulation of the cell-
centered finite volume semi-Lagrangian method for the con-
vective part is presented in Section 2. Two main interpolation
techniques are also introduced in this section. In Section 3, we
present the spatial discretization of the viscous part of the
coupled Burgers’ problems. The resulting semidiscrete equa-
tions are then integrated using a third-order explicit Runge-
Kutta scheme. The numerical performance of the proposed
method is examined in Section 4 using different test examples
of coupled Burgers’ problems. The obtained results confirm
the high accuracy and the strong stability achieved by our
cell-centered finite volume semi-Lagrangian method. Section
5 includes concluding remarks and future works.

2. Cell-Centered Finite Volume Semi-
Lagrangian Method

To formulate the cell-centered finite volume semi-
Lagrangian method, we consider the pure convection part

of the problem (1) reformulated using the material deriva-
tive as

Du
Dt

≔
∂u
∂t

+ u · ∇u = 0,  t, xð Þ ∈ 0, Tð Þ ×Ω, ð3Þ

where Du/Dt is the total derivative which measures the rate
of change of the solution u following the trajectories of the
flow particles. Notice that the central idea behind the semi-
Lagrangian approaches consists on imposing a regular mesh
at the new time level and backtracking the flow trajectories
to the previous time level. The quantities needed at the old
time level are approximated by interpolation from their
known values on a regular mesh. The formulation of main
steps of the cell-centered finite volume semi-Lagrangian pro-
posed in the present study is detailed in what follows.

2.1. Approximation of Departure Points. For the spacial dis-
cretization, we discretize the domain �Ω =Ω ∪ Γ into a set of
conforming triangles K i such as �Ω = ∪M

i=1K i where T h

denotes a partition of �Ω into conforming triangles, with M
denotes the total number of triangles in the computational
mesh. Here, each triangle represents a control volume where
the variables are located at the geometric centers of the cells.
We also divide the time interval into subintervals ½tn, tn+1�
with a length Δt and denote by wn the value of a generic
function w at time tn and wn

i to denote the average value
of w in the cell K i at time tn as

wn
i =

1
K ij j

ð
K i

w x, tnð Þ dx, ð4Þ

where jK ij denotes the area of the control volume K i.
Hence, the characteristic curves Xiðtn ; xi, tn+1Þ associated
with the advection problem (3) are calculated for each con-
trol volume K i, i = 1,⋯,M by solving the backward differ-
ential equations

dXi τ ; xi, tn+1ð Þ
dτ

= ui Xi τ ; xi, tn+1ð Þ, τð Þ, ∀τ ∈ tn, tn+1½ �,
ð5Þ

Xi tn+1 ; xi, tn+1ð Þ = xi, ð6Þ

where Xiðτ ; xi, tn+1Þ = ðXiðτ ; xi, tn+1Þ, Yiðτ ; xi, tn+1ÞÞΤ is the
departure point defined at time τ of a particle that will reach
xi = ðxi, yiÞΤ the center of the control volumeK i at time tn+1
. It is worth noting that the cell-centered finite volume semi-
Lagrangian method does not follow the flow particles for-
ward in time, as a Lagrangian method does, instead it traces
backwards the position at time tn of particles that will reach
the points of a fixed mesh at time tn+1, see Figure 1 for an
illustration. Therefore, the cell-centered finite volume semi-
Lagrangian method avoids the grid distortion difficulties
that the conventional Lagrangian schemes have.

Note that accurate approximation of the characteristic
curves Xiðτ ; xi, tn+1Þ is crucial to the overall accuracy of
the cell-centered finite volume semi-Lagrangian method.
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Some authors approximate the solutions of (3) using a
second-order explicit Runge-Kutta scheme, which is not
accurate enough to maintain a particle on its curved trajec-
tory, see, for instance, [19]. In [22, 29], a second-order
extrapolation based on the midpoint rule is used to approx-
imate the solution of (5), but this method involves an itera-
tive procedure which may become computationally
demanding. In the present study, we consider the third-
order explicit Runge-Kutta method introduced in [30].
Thus, the procedure to approximate the solution of the ordi-
nary differential equation (5) is achieved by

K 1ð Þ
i = xi − Δtuni , ð7Þ

K 2ð Þ
i = 3

4 xi +
1
4K

1ð Þ
i −

1
4Δtu

n
i , ð8Þ

Xi tn ; xi, tn+1ð Þ = 1
3 xi +

2
3K

2ð Þ
i −

2
3Δtu

n
i : ð9Þ

It should be stressed that since the departure points Xið
tn ; xi, tn+1Þ and the stages Kð1Þ

i and Kð2Þ
i would not necessar-

ily lie on a mesh point in the computational domain, the
solution at the departure points must be obtained by inter-
polation from known values at the gridpoints of the element

where the points Xiðtn ; xi, tn+1Þ and the stages Kð1Þ
i and Kð2Þ

i
are localized. In this study, a class of interpolation tech-
niques are presented using the host element associated with
the departure points and its neighboring control volumes as
detailed below.

2.2. Procedures for Interpolation Stage. Let us use the nota-
tion Xn

i ≔Xiðtn ; xi, tn+1Þ to denote the characteristics feet
calculated in (7). Hence, the finite volume solution of (3)
in the control volume K i at instant tn+1 is given by

un+1i = u Xn
i , tnð Þ: ð10Þ

Since in general the departure point Xn
i does not coin-

cide with a mesh point, the numerical solution uðXn
i , tnÞ is

computed by interpolation from known values at the control
volume K̂ i where Xn

i resides and its neighboring elements.
In the current work, we perform this step using the following
interpolation techniques.

2.2.1. Least Square (LS) Interpolation. This method is usually
used to find the best polynomial approximation to a given
set of input data, compare [25, 26]. Let us denote by Ini the
set of indices of control volumes which are close to the host
control volume K̂ i where the departure point Xn

i belongs at
time t = tn, and let Un be the vector of solutions unj at mesh
points x j with j ∈ Ini . Hence, the finite volume solution (10) is
obtained using the LS interpolation as

u Xn
i , tnð Þ = 〠

m

k=0
βn
kϕk Xn

ið Þ, ð11Þ

where βn
k are the fitting coefficients, ϕkðx, yÞ is the polyno-

mial basis functions, and m is the total number of fitting
data. Notice that we assume that m is less than the dimen-
sion of the set Ini . To solve the problem above, we use a linear
regression to calculate the coefficients βn

k . To this end, we
define the merit function F

F2 = 〠
j∈Ini

unj − 〠
m

k=0
βn
kϕk x j
� � !2

: ð12Þ

It should be noted that if βn minimizes the functional
(12), then the LS procedure precisely fits the vector βn =
ðβn

0 , βn
1 ,⋯, βn

mÞΤ for a given data set. Hence, we obtain the
fitting coefficients βn

k by solving the m normal equations

∂F2

∂βn
k

= 0, k = 0, 1,⋯,m: ð13Þ

Using equation (12), the normal equations yield

〠
j∈Ini

unj − 〠
m

l=0
βn
l ϕl x j
� � !

ϕk x j
� �

= 0, k = 0, 1,⋯,m, ð14Þ

which we can rewrite for each departure point Xn
i as a linear

system of the form

Aβn = r, ð15Þ

𝜏 = tn 𝜏 = tn+1

Xi (tn, xi, tn+1)

xiKi Ki 

Ki 

Time

Figure 1: A schematic diagram showing departure points for the cell-centered finite volume semi-Lagrangian method.
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where the matrix A is given by A = BΤB with B denotes the
matrix with entries ϕlðx jÞ, 1 ≤ l ≤m, j ∈ Ini . The right-hand

side vector r is given by r = BΤf in which f refers to the vec-
tor with entries unj , j ∈ I

n
i . Thereby, we define a linear approx-

imation for the function unðx, yÞ as follows:

un x, yð Þ = βn
0 + βn

1 x − Xn
ið Þ + βn

2 y − Yn
ið Þ: ð16Þ

To calculate the coefficients βn
0 , β

n
1 , and βn

2 , we first eval-

uate (16) at the departure point Xn
i = ðXn

i , Yn
i ÞΤ to obtain βn

0 ;
then, we solve the linear system (15) to obtain βn

1 and β
n
2 . For

instance, the inverse matrix A−1 is defined as

A−1 = 1
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〠
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� �
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� �
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〠
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xj − Xi
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0
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1
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ð17Þ

where

γi = 〠
j∈Ini

xj − Xi

� �2 !
〠
j∈Ini

yj − Yi

� �2 !
− 〠

j∈Ini

xj − Xi

� �
yj − Yi

� � !2

:

ð18Þ

A similar procedure is used for the component v in the
finite volume solution (10). In the current study, the number
m is related to the total number of neighbor elements of the
host control volume K̂ i. Thus, m can be either 2, 3, or 4, see
Figure 2 for an illustration. It is worth noting that the qua-
dratic interpolant in the least square framework is more
accurate than linear interpolant and would improve the
numerical results. In general, the least square techniques
have advantages of excellent computational and applicability
properties. However, these techniques suffer from the over-
smoothing properties, see [31] among others. It is also well
known that the least square approach can always achieve a
perfect fit to the measurements by selecting the polynomial
degree equals to m − 1, where m is the total number of data
measurements. In the present study, we have considered the
cases with m = 2, 3, or 4. More precisely, m is at most, equals
to 2 at the boundaries. Hence, high degree least square poly-
nomial would likely be unacceptable at the boundaries and
would introduce nonphysical oscillations. Moreover, the
polynomials tend to behave erratically near the boundaries.
Notice also that in highly stiff problems, as the case of non-
linear Burgers’ equations at high Reynolds numbers, it may
be desirable to have a lower degree least square polynomial
in steep gradient regions in order to avoid any overfitting,
see, for instance, [32, 33].

2.2.2. Radial Basis Function (RBF) Interpolation. Interpola-
tion using the RBF surface splines is a typical focus in the

theory of spline, see, for instance, [27, 28]. Here, the solution
u in (10) is calculated using the RBF interpolation as

u Xn
i , tnð Þ = 〠

j∈Ini

ζj Xn
i − x j

�� �� log Xn
i − x j

�� ��� �
+ γ0 + γ1xi + γ2yi,

ð19Þ

where Ini denotes the set with dimension Ni introduced pre-
viously, compare Figure 2 for an illustration. Notice that Ini
denotes the set of closing neighbors to the cell in question
which varies depending on the interpolation procedure used
whereas, m is at most 4 in the case of least square technique.
In (19), the coefficients ðζjÞj∈Ini , γ0, γ1, and γ2 are obtained by

solving the linear system

ψ11 ψ12 ⋯ ψ1Ni
1 x1 y1

ψ21 ψ22 ⋯ ψ2Ni
1 x2 y2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

ψNi1 ψNi2 ⋯ ψNiNi
1 xNi

yNi

0
BBBBB@

1
CCCCCA

ζ1

⋮

ζNi

γ0

γ1

γ2

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

=

u1

u2

⋮

uNi

0
BBBBBB@

1
CCCCCCA
,

ð20Þ

where ψij are the radial basis functions defined as

ψij = Xn
i − x j

�� �� log Xn
i − x j

�� ��� �
: ð21Þ

By introducing the following matrices

ψ =

ψ11 ψ12 ⋯ ψ1Ni

ψ21 ψ22 ⋯ ψ2Ni

⋮ ⋮ ⋱ ⋮

ψNi1 ψNi2 ⋯ ψNiNi

0
BBBBB@

1
CCCCCA, L =

1 x1 y1

1 x2 y2

⋮ ⋮ ⋮

1 xNi
yNi

0
BBBBB@

1
CCCCCA,

ð22Þ

ki

Xn
i

Xn
i

⌃

ki
⌃

Figure 2: The host control volume K̂ i where the departure point
Xn

i resides and its neighboring control volumes used for the LS
approach (a) and the set Ini of points surrounded by the dashed
circle used for RBF interpolation (b).
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and the following vectors

ζ =
ζ1

⋮

ζNi

0
BB@

1
CCA, U =

u1

u2

⋮

uNi

0
BBBBB@

1
CCCCCA, γ =

γ0

γ1

γ2

0
BB@

1
CCA, ð23Þ

the linear system (20) can be rewritten in a more compact
form as

ψ Lð Þ
ζ

γ

 !
=U: ð24Þ

It should be stressed that the linear system (24) contains
Ni equations with Ni + 3 unknowns. Consequently, to con-
struct a nonsingular system, we should add the natural con-
straints

〠
Ni

j=1
ζj = 0, 〠

Ni

j=1
ζjxj = 0, 〠

Ni

j=1
ζjyj = 0: ð25Þ

Hence, the coefficients ðζjÞj∈Ini , γ0, γ1, and γ2 in (19) are

obtained by solving the block linear system

ψ L
LT 0

 !
ζ

γ

0
@

1
A =

U
0

 !
: ð26Þ

It should be noted that other radial basis functions can
also be used in (19) without major conceptual modifications.
Note that a similar system to (26) is solved for the compo-
nent v in the finite volume solution (10).

3. Finite Volume Solution of Viscous Terms

Let us consider coupled Burgers’ problem (1) reformulated
using the total derivative as

Du
Dt

− νΔu = 0, ð27Þ

Dv
Dt

− νΔv = 0: ð28Þ

It should be stressed that, in contrast to most of numer-
ical methods discussed in the introduction where a large sys-
tem of nonlinear equations should be solved using the
Newton method at each time step, in our method, equation
(27) is decoupled and can be solved separately for each solu-
tion component. From a computational view point, this is
very advantageous because the nonlinearity is dealt with
using the semi-Lagrangian method, and thus, no need to
use nonlinear solvers which are computationally demanding.
Here, for brevity in the presentation, the method is formu-
lated only for the component u, and the same procedure is
carried out for the component v. Hence, integrating equa-

tion (27) over a control volume K i ∈T h and using the
divergence theorem, it yieldsð

K i

Du
Dt

dx − 〠
j∈Ni

þ
σi j

ν∇u · nijdσ = 0, ð29Þ

where σij is the edge between K i and K j, j ∈Ni with Ni is
the set of all neighboring elements, i.e., control volumes
which have a common one-dimensional face with K i. In
(29), nij denotes the unit outer normal vector to σij with
respect to K j. Introducing the approximation

ui =
1
K ij j

ð
K i

udx, ð30Þ

where ui denotes the value of u at centroid of the cell K i,
equation (29) becomes

Dui
Dt

= 1
K ij j 〠j∈Ni

þ
σi j

ν∇u · nijdσ: ð31Þ

It is clear that equation (31) can be rewritten as

Dui
Dt

= 1
K ij j 〠j∈Ni

sijF ij σij
�� ��, ð32Þ

where sij = nij · nσ, with nσ denotes the normal to the edge σij
, see, for example, [34]. In (32), the flux function F ij is
defined by

F ij =
1
σij

�� ��
þ
σi j

ν∇u · nσdσ: ð33Þ

In the current work, to discretize the diffusive fluxes, we
implement the Green-Gauss diamond reconstruction as pre-
sented [34, 35] among others. This reconstruction is demon-
strated to be efficient and second-order accurate with no
serious restrictions on the angles of control volumes as it
can be extended to general unstructured grids with large
deformation [34, 35]. Hence, connecting the barycenters of
the control volumes that share the edge σ and its endpoints
as shown in Figure 3, a diamond-cell denoted by Dh is
reconstructed as

1
Dhj j
ð
Dh

∇udx = 1
Dhj j
þ
∂Dh

u · nextdσ, ð34Þ

where next is the outward normal vector to ∂Dh. Following
[34], the discretization of (34) yields the following approxi-
mation of the gradient over σ

Gσ =
1
Dhj j 〠

γ∈∂Dh

1
2 uP1 γð Þ + uP2 γð Þ
� �

γj jnγ, ð35Þ

where nγ denotes the outward normal to the edge γ whereas
P1ðγÞ and P2ðγÞ are the endpoints of an edge γ of ∂Dh, see
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Figure 3 for an illustration. Here, uE and uW are solutions at
cell centers while uN and uS are the solutions at the vertices
xN and xS expressed in terms of cell center values uK using
the RBF interpolation technique discussed in the previous
section. Thus, the reconstructed gradient can be written as
follows

Gσ =
uE − uW

hσ
− θσ

uN − uS
σj j

� 	
nσ +

uN − uS
σj j tσ, ð36Þ

where hσ = lWE · nσ and jσj = lSN · tσ, with tσ is the unit tan-
gential vector to nσ. Here, lWE is the vector connecting the
points W and E, and lSN is the vector connecting the points
S and N , and

θσ = tan nσ, lWEð Þ = lWE · tσ
lWE · nσ

: ð37Þ

Using the approximated gradient Gσ, the numerical dif-
fusive flux in (33) can be then written as

F ij =
1
σij
�� ��

þ
σi j

νGσi j

� �
· nσi j dσ = νGσi j

· nσi j
: ð38Þ

Reformulating the semidiscrete system (31) in a compact
form, the equations lead to a system of ordinary differential
equations as

DU
Dt

= R Uð Þ, ð39Þ

where U is solution vectors with entries ui and RðUÞ = ½S�U ,
with ½S� denotes the stiffness matrix with entries given above.
In the current work, to solve the system (39), we consider the
third-order explicit Runge-Kutta method [30]. Thus, the
procedure to advance the solution of an equation of the
structure (39) from the time tn to the next time tn+1 can be
achieved by

U 1ð Þ = ~U
n + ΔtR ~U

n
� �

, ð40Þ

U 2ð Þ = 3
4
~U
n + 1

4U
1ð Þ + 1

4ΔtR U 1ð Þ
� �

, ð41Þ

Un+1 = 1
3
~U
n + 2

3U
2ð Þ + 2

3ΔtR U 2ð Þ
� �

, ð42Þ

where ~U
n
is the solution vector with entries uðXn

i , tnÞ calcu-
lated by interpolation as described in the previous section. It
should be pointed out that the main advantage of this
scheme lies on the fact that (40) is a convex combination
of the first-order Euler steps which exhibits strong stability
properties. Therefore, the scheme (40) is TVD, third-order
accurate in time, and stable under the Courant-Friedrichs-
Lewy (CFL) condition given for example in [36]

ν
Δt

h2
≤
1
2 : ð43Þ

Note that other time-stepping schemes can also be used
for solving the system (39).

4. Numerical Results

To examine the performance of the new cell-centered finite
volume semi-Lagrangian method proposed in this study,
we consider a number of numerical examples of two-
dimensional coupled Burgers’ problems. Since analytical
solutions for these examples are known, the relative L1

-error and L2-error at time tn are evaluated as

L1 − error =
Ð
Ω
uni − uexact xi, tnð Þj jdxÐ
Ω
unexact xi, tnð Þj jdx ,

 L2 − error =
Ð
Ω
uni − unexact xi, tnð Þj j2dx� �1/2
Ð
Ω
unexact xi, tnð Þj j2dx� �1/2 , ð44Þ

where uni and uexactðxi, tnÞ are, respectively, the numerical
and exact solutions at time tn in the control volume with
centroid xi. For all results reported in this section, the radius
of the circle used in the RBF procedure is set to 2h, with h is
the space stepsize. The total number of points within this
circle are used for the interpolation in the RBF procedure.
For comparison reasons, we also compare the results
obtained using our cell-centered finite volume semi-
Lagrangian method to those obtained using the finite ele-
ment semi-Lagrangian method. For completeness, the refor-
mulation of this method is briefly described in the
Appendix. All the computations were performed on an Intel
Core(TM) i7-7500U @ 2.70GHz with 16GB of RAM.

4.1. Example 1. In this example, we solve the coupled Bur-
gers’ equations (1) in the squared domain Ω = ½0, 1� × ½0, 1�
with initial and boundary conditions obtained from the fol-
lowing analytical solution

u x, y, tð Þ = 3
4 −

1
4 1 + exp − 4x − 4y + tð Þ Reð Þ/32ð Þð Þ , ð45Þ

v x, y, tð Þ = 3
4 + 1

4 1 + exp − 4x − 4y + tð Þ Reð Þ/32ð Þð Þ :

ð46Þ

xS

xW
W xN

xE

E

lWE
lSN

Dh

n𝛾

t𝜎
n𝜎

𝜃𝜎

𝛾

𝜎

Figure 3: Illustration of a covolume reconstructed from two
adjacent control volumes used to discretize the viscous terms in
the present study.
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This example has been widely used in the literature to
examine numerical methods for solving the two-
dimensional Burgers’ equations, see, for instance, [9–12,
15]. The exact solution (45) is used to quantify the errors
in the proposed cell-centered finite volume semi-
Lagrangian method for solving the Burgers’ system for two
different Reynolds numbers Re = 100 and Re = 1000 at time
t = 1 using a time step Δt = 0:01. Notice that the considered
values of the Reynolds numbers yield two different flow
regimes with different solution features.

In Table 1, we summarize the relative errors, convergence
rates, and CPU times for the proposed cell-centered finite vol-
ume semi-Lagrangian method using the LS and RBF interpo-
lation techniques on different uniform structured meshes with
spatial step h. For comparison purposes, we also include in
Table 1 the computational results obtained using the finite ele-
ment semi-Lagrangian method (FEM). It is clear that refining
the mesh results in a decrease of the relative L1-error and L2

-error and an increase in the computational cost for all consid-
ered methods. In addition, better convergence rates are
obtained for all considered methods for the simulations using
Re = 100 than using Re = 1000. However, using the RBF inter-
polation technique, the proposed cell-centered finite volume
semi-Lagrangian method is more accurate than the LS inter-
polation technique and the FEM. To have a fair comparison
between the LS and RBF interpolation, the same number of
points used in the LS interpolation is used for the RBF proce-
dure, and the obtained results are presented in Table 1. It is
clear that using the same number of points in the interpolation
stage, the RBF (4) scheme exhibits better results than the LS
scheme for all considered meshes and Reynolds numbers. In
terms of errors, the RBF (4) procedure achieves higher conver-
gence rates than its LS counterpart with a slightly higher com-
putational cost. For both values of the Reynolds numbers, the
RBF scheme exhibits a higher order accuracy than the LS
scheme and the FEM. In terms of computational time,

Table 1: Results for Example 1 obtained by the LS and RBF procedures using different meshes and two Reynolds numbers at time t = 1.
Computational results obtained using the finite element method are also included. The listed CPU times are in seconds.

Re = 100 Re = 1000
h L1 − error Rate L2 − error Rate CPU L1 − error Rate L2 − error Rate CPU

LS

1
8 5.62809E-02 — 6.66197E-02 — 1.58 4.13981E-01 — 4.10072E-01 — 1.85

1
16 1.92205E-02 1.55 2.43842E-02 1.65 4.17 1.38469E-01 1.58 1.37162E-01 1.50 4.96

1
32 6.12442E-03 1.65 8.50242E-03 1.71 15.0 4.35143E-02 1.67 4.46236E-02 1.62 16.3

1
64 1.79573E-03 1.77 2.69050E-03 1.82 63.2 1.28475E-02 1.76 1.36396E-02 1.71 85.6

RBF (4)

1
8 2.51041E-02 — 3.82963E-02 — 2.51 2.32246E-01 — 2.90329E-01 — 2.69

1
16 6.23066E-03 2.01 1.07381E-02 1.83 6.11 6.10053E-02 1.93 8.10952E-02 1.87 7.16

1
32 1.45335E-03 2.10 2.47027E-03 2.12 19.23 1.47318E-02 2.05 1.93136E-02 2.07 21.22

1
64 2.87052E-04 2.34 5.05109E-04 2.29 81 3.13500E-03 2.23 4.29168E-03 2.17 89

RBF

1
8 1.55020E-02 — 1.96313E-02 — 3.31 2.01827E-01 — 2.84819E-01 — 4.25

1
16 1.74416E-03 3.15 2.55042E-03 2.94 9.59 2.42007E-02 3.06 4.82984E-02 2.56 10.6

1
32 1.88486E-04 3.21 3.25501E-04 2.97 37.5 1.96833E-03 3.62 5.55544E-03 3.12 27.6

1
64 1.98122E-05 3.25 4.01275E-05 3.02 176 1.44283E-04 3.77 4.87645E-04 3.51 239

FEM

1
8 4.24047E-02 — 5.09578E-02 — 3.01 3.10254E-01 — 3.21647E-01 — 3.76

1
16 1.08899E-02 1.96 1.37588E-02 1.89 7.99 7.81031E-02 1.99 8.44095E-02 1.93 8.76

1
32 2.74141E-03 1.99 3.55840E-03 1.95 28.8 1.92569E-02 2.02 2.02081E-02 2.02 20.9

1
64 6.62007E-04 2.05 8.83457E-04 2.01 125 4.39940E-03 2.13 4.68917E-03 2.15 169
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Table 1 reveals that the RBF scheme requires almost the triple
of CPU time required for the LS scheme and about 1.5 times
larger than the FEM.

Figure 4 depicts the results obtained for the solution u by
the proposed cell-centered finite volume semi-Lagrangian
method using the LS and RBF interpolation techniques on
a uniform structured mesh with h = 1/64. For comparison
reason, we also include the analytical solution in the same

figure. Note that since the solution for this example satisfies
u + v = 3/2, only the solution u is presented. For both con-
sidered Reynolds numbers, it is clear that the LS technique
involves a numerical diffusion which is more pronounced
than in those obtained using the RBF interpolation tech-
nique. At Re = 1000, strong gradients are formed in the solu-
tion which has been well captured by the proposed cell-
centered finite volume semi-Lagrangian method using the
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Figure 4: Results for the solution u in Example 1 at time t = 1 obtained using the LS approach (1st column), RBF approach (2nd column),
and exact solution (3rd column) on a mesh with h = 1/64 and the Reynolds number Re = 100 (1st row) and Re = 1000 (2nd row).
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Figure 5: One-dimensional cross-sections of the computed solution u at y = 1 − x for Example 1 at time t = 1 on a mesh with h = 1/64 using
Re = 100 (a) and Re = 1000 (b).
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RBF interpolation technique. The LS interpolation technique
fails to correctly capture this sharp solution, and the numer-
ical diffusion can clearly be seen in its results presented in
Figure 4. To further demonstrate these features, one-
dimensional cross-sections of the computed solutions at
the off-diagonal line y = 1 − x are shown in Figure 5. The
results computed using the FEM and the analytical solutions
are also included in Figure 5 for comparison reasons. For
Re = 100, the physical diffusion dominates the flow solution,
and both results computed using the FEM and RBF methods
coincide with the analytical solution. However, the results
obtained using the LS interpolation technique are less accu-
rate than those obtained using the FEM and RBF methods.
Increasing the Reynolds number to Re = 1000, the results
obtained using the FEM are oscillatory and do not preserve
monotonicity, observe the overshoots and undershoots in
the FEM results in Figure 5. From the same figure, we can
see that the results obtained using the RBF method are
monotone and free from any nonphysical oscillations. It is

also evident that the proposed cell-centered finite volume
semi-Lagrangian method using the RBF interpolation tech-
nique preserves the high-order accuracy for selected values
of the Reynolds number.

4.2. Example 2. We solve the Burgers’ system (1) in a
squared domain Ω = ½0, 1� × ½0, 1� subject to initial and
boundary conditions obtained from the following analytical
solution

u x, y, tð Þ = −
4π exp − 5π2t/Re

� �� �
cos 2πxð Þ sin πyð Þ

Re 2 + exp − 5π2t/Reð Þð Þ sin 2πxð Þ sin πyð Þð Þ ,

ð47Þ

v x, y, tð Þ = −
2π exp − 5π2t/Re

� �� �
sin 2πxð Þ cos πyð Þ

Re 2 + exp − 5π2t/Reð Þð Þ sin 2πxð Þ sin πyð Þð Þ :

ð48Þ

Table 2: Results for Example 2 obtained by the LS and RBF procedures using different meshes and two Reynolds numbers at time t = 2.
Computational results obtained using the finite element method are also included. The listed CPU times are in seconds.

Re = 100 Re = 1000
h L1 − error Rate L2 − error Rate CPU L1 − error Rate L2 − error Rate CPU

LS

1
8 1.22884E-02 — 1.54575E-02 — 3.56 1.44367E-02 — 2.00704E-02 — 4.55

1
16 4.62427E-03 1.41 5.98037E-03 1.37 9.32 5.74246E-03 1.33 8.09481E-03 1.31 9.89

1
32 1.65775E-03 1.48 2.25048E-03 1.41 28.2 2.16095E-03 1.41 3.17553E-03 1.35 30.6

1
64 5.62228E-04 1.56 7.84711E-04 1.52 115 7.64011E-04 1.50 1.16231E-03 1.45 122

RBF(4)

1
8 5.51041E-03 — 6.83363E-03 — 4.51 6.52321E-03 — 7.13223E-03 — 5.69

1
16 1.46628E-03 1.91 1.76865E-03 1.83 10.41 1.73578E-03 1.93 1.93771E-03 1.88 12.11

1
32 3.71687E-04 2.10 4.36075E-04 2.12 33.53 4.36963E-04 2.05 4.48865E-04 2.11 35.22

1
64 8.55054E-05 2.12 8.79391E-05 2.31 138 9.84533E-05 2.15 9.56795E-05 2.23 145

RBF

1
8 4.49127E-04 — 5.66690E-04 — 8.18 5.18864E-04 — 5.95316E-04 — 10.6

1
16 8.80945E-05 2.35 1.19132E-04 2.25 22.3 1.03912E-04 2.32 1.22564E-04 2.28 24.1

1
32 1.56814E-05 2.49 2.18024E-05 2.45 70.5 1.91493E-05 2.44 2.52357E-05 2.41 78.3

1
64 2.69630E-06 2.54 3.72287E-06 2.55 299 3.33855E-06 2.52 4.49211E-06 2.49 324

FEM

1
8 9.34059E-03 — 1.05866E-02 — 7.36 9.88733E-03 — 9.91181E-03 — 9.63

1
16 2.55534E-03 1.87 2.81701E-03 1.91 18.2 2.74267E-04 1.85 2.74946E-03 1.81 20.1

1
32 6.52258E-04 1.96 7.29088E-04 1.95 53.1 7.09847E-04 1.95 7.26557E-04 1.92 60.2

1
64 1.57509E-04 2.05 1.67724E-04 2.12 207 1.73809E-04 2.03 1.80385E-04 2.01 231
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It is easy to verify that the pair solution ðu, vÞ satisfies the
relation u = 2v, and therefore, only results obtained for the
solution u are presented for this problem. Compared to the
previous test example, the solution of this problem is
smother with a fast decay as the time progresses. This exam-
ple has also been investigated in many references, see [9, 12]
among others. Similarly, we present numerical results
obtained for two different Reynolds numbers Re = 100 and
Re = 1000 at time t = 2 using a time step Δt = 0:01. Table 2
summarizes the relative errors, convergence rates, and
CPU times for the proposed cell-centered finite volume
semi-Lagrangian method using the LS and RBF interpola-
tion techniques on different uniform structured meshes
varying the spatial step h. In Table 2, we also include the
computational results obtained using the finite element
semi-Lagrangian method (FEM) and the RBF scheme (RBF
(4)) using the same number of interpolant points as the LS
scheme. A decrease in the relative L1- and L2-error is clearly
seen in all the results as the mesh is refined with a faster con-
vergence in the results obtained using the RBF interpolation
technique compared to the other schemes. It is also worth
remarking that higher convergence accuracy is achieved for
Re = 100 in all considered methods compared to the results
for Re = 1000. For this test example, the proposed cell-
centered finite volume semi-Lagrangian method using the
RBF interpolation technique is the most accurate compared
to the other methods. For instance, at Re = 100 on the mesh
with h = 1/64, convergence rates in the L2-error for the LS,
RBF (4), RBF, and FEM schemes are 1:52, 2:31, 2:55, and
2:12, respectively. At Re = 1000, these rates become 1:45,

2:23, 2:49, and 2:01 for the LS, RBF (4), RBF, and FEM,
respectively. Under the considered flow conditions, the com-
putational time required for the simulations using the RBF
procedure is higher than for the LS and FEM. Using the
same number of points in the RBF (4) procedure as in the
LS scheme, it also demonstrates the better convergence rates
achieved in the RBF method for this example.

Results obtained for the solution u using the proposed
cell-centered finite volume semi-Lagrangian method and
the analytical solution are illustrated in Figure 6 for Re =
100 and Re = 1000 at time t = 2 on the mesh with h = 1/64.
For both values of the Reynolds number, there is no visible
difference between the results obtained using the RBF inter-
polation technique and the exact solutions. On the other
hand, the results obtained using the LS interpolation tech-
nique are less accurate with excessive numerical diffusion
particularly for the simulations using Re = 1000. To further
demonstrate these features, we illustrate in Figure 7 the
one-dimensional cross-sections of the computed solutions
at the diagonal y = x. For comparison, we depict in the same
figure the computational results obtained using the finite ele-
ment semi-Lagrangian method. As expected, a smooth
behavior can be seen in the solution u for this test example
at both Reynolds numbers Re = 100 and Re = 1000. Obvi-
ously, the LS interpolation introduces a noticeable numerical
diffusion, and it becomes more intense at Re = 1000, com-
pare its failure to resolve sharp gradients in Figure 7. From
the same figure, we can see that the results obtained using
the RBF interpolation technique are slightly more accurate
than those obtained using the FEM. From the results
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Figure 6: Results for the solution u in Example 2 in a squared domain at time t = 2 obtained using the LS approach (1st column), RBF
approach (2nd column), and exact solution (3rd column) on a mesh with h = 1/64 and the Reynolds number Re = 100 (1st row) and Re
= 1000 (2nd row).
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presented, it is clear that the proposed cell-centered finite
volume semi-Lagrangian method using the RBF interpola-
tion technique performs very well for this test example.

Our next objective is to test and examine the perfor-
mance of the present cell-centered finite volume semi-
Lagrangian for solving the Burgers’ equation (1) in complex
domains using unstructured meshes. To this end, we solve
this example on the complex domain shown in Figure 8
for which the initial and boundary conditions are obtained
from the analytical solution (47). Here, the computational
domain is defined by its parametric curved boundary

Γ = x, yð Þ∈2 :  x θð Þ = R θð Þ cos θð Þ, y θð Þ = R θð Þ sin θð Þ
 �
,

ð49Þ

where

R θð Þ = 2 + 1
2 sin 7θð Þ, θ ∈ 0, 2π½ �: ð50Þ

Note that similar geometry has been considered in [15,
37] among others. An unstructured mesh with 4056 ele-
ments is used in our simulations, and the obtained results
are presented for two different Reynolds numbers Re = 100
and Re = 1000 at time t = 1 using a fixed time step Δt =
0:01. In Figure 9, we display the numerical results for the
solution u obtained by the proposed cell-centered finite vol-
ume semi-Lagrangian method using the LS and RBF inter-
polation techniques along with the analytical solution. In
contrast to the previous simulation in the squared domain
for which one period in the results is obtained, the results
in this complex domain exhibit several periods. As it can
be seen in the results obtained using the LS approach, signif-

icant differences between these results and the exact solution
are observed especially for the convection-dominated regime
at Re = 1000. Indeed, the computational treatment of such
complex patterns on complex geometries often requires effi-
cient numerical algorithms, and clearly, the LS approach is
not suitable for these situations. However, the RBF method
shows a very good behavior and matches the exact solution
at both Re = 100 and Re = 1000. An examination of the
one-dimensional cross-sections of the computed results at
y = x in Figure 10 confirms these claims. For a comparison
reason, we depict in the same figure the computational

–2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

–1 0 1 2
Distance x

D
ist

an
ce

 y

Figure 8: Computational mesh used for Example 2 in a complex
domain.

0

–5

0

5

10

15

20

25
×10–3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

So
lu

tio
n 
u

Distance x

Re = 100

LS
FE

RBF
Exact

0
–2

0.2 0.4 0.6 0.8 1

–1

0

1

2

3

4

5

6

So
lu

tio
n 
u

Distance x

Re = 1000

Figure 7: One-dimensional cross-sections of the computed solution u at y = x for Example 2 in a squared domain at time t = 2 on a mesh
with h = 1/64 using Re = 100 (a) and Re = 1000 (b).

12 Computational and Mathematical Methods



–2 –1.5 –1 –0.5 0 0.5 1 1.5
–0.02

–0.015

–0.01

–0.005
0
0.005

0.01

0.015

0.02

2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

LS

D
ist

an
ce

 y

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

RBF

D
ist

an
ce

 y

D
ist

an
ce

 y

–2 –1.5 –1 –0.5 0 0.5 1 1.5

–2

–3

–1

0

1

2

3
×10–3 ×10–3 ×10–3

2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

LS

D
ist

an
ce

 y

–2 –1 0 1
–3

–2

–1

0

1

2

3

2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

RBF

D
ist

an
ce

 y

–2 –1 0 1
–3

–2

–1

0

1

2

3

2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

Exact

D
ist

an
ce

 y

–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

Distance x

Exact

–0.02

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

Figure 9: Results for the solution u in Example 2 in a complex domain at time t = 1 obtained using the LS approach (1st column), RBF
approach (2nd column), and exact solution (3rd column) using Re = 100 (1st row) and Re = 1000 (2nd row).

–1.5

–0.05

–0.04

–0.03

–0.02

–0.01So
lu

tio
n 
u

0

0.01

0.02

0.03

0.04

–1 –0.5 0
Distance x

Re = 100

0.5 1

LS
FE

RBF
Exact

–1.5

–8

–6

–4

–2

0

2

4

6

So
lu

tio
n 
u

–1 –0.5 0
Distance x

Re = 1000

0.5 1

×10–3

Figure 10: One-dimensional cross-sections of the computed solution u at y = x for Example 2 in a complex domain at time t = 1 using
Re = 100 (a) and Re = 1000 (b).

13Computational and Mathematical Methods



results of the finite element semi-Lagrangian approach.
Again, the LS method produces results with large numerical
diffusion, and it fails to capture the exact solutions. The FEM
is in reasonable agreement with exact solution although it sub-
stantially manifests small distortion particularly in regions
near sharp gradients. From the same figure, the accuracy in

the results obtained using the RBF method is superior to those
obtained using the FEM and LS methods. It should also be
stressed that the complex nature of the geometry in this exam-
ple reflects the ability of the proposed cell-centered finite vol-
ume semi-Lagrangian method using the RBF interpolation
technique to resolve the complex patterns.
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Figure 11: Computational mesh used for Example 3 in a complex domain.
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4.3. Example 3. Our final test example consists in solving the
Burgers’ equation (1) in the complex domain shown in
Figure 11 defined by its parametric boundary

Γ = x, yð Þ∈2 :  x θð Þ = R θð Þ cos θð Þ,  y θð Þ = R θð Þ sin θð Þ
 �
,

ð51Þ

where

R θð Þ = 5
3 cos 3θð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 − sin 3θð Þ3

q� 	1/3
, θ ∈ 0, 2π½ �:

ð52Þ

A similar geometry has been considered in [15] for the
coupled Burgers’ equations. To obtain the corresponding

initial and boundary conditions, we use the following exact
solution

u x, y, tð Þ = 1
2 1 − tanh x

4ν + y
4ν −

t
4ν

� 	� 	
,

v x, y, tð Þ = 1
2 1 − tanh x

4ν + y
4ν −

t
4ν

� 	� 	
:

ð53Þ

This test example has also been studied in [38, 39] for a
squared domain. In our simulations, we consider an
unstructured mesh with 4883 elements, and numerical
results are presented at time t = 1 for two different Reynolds
numbers Re = 10 and Re = 1000 using a time step fixed to
Δt = 0:01. Note that to reduce the computational cost, the
time steps Δt are chosen as large as possible in our simula-
tions. This makes most explicit Eulerian-based methods
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noncompetitive, since they are subject to stability restriction
conditions for the convection terms. Therefore, the criteria
of choosing time steps in our simulations performed in this
study was mainly based on accuracy considerations and sta-
bility condition (43) required for the solution of viscous
parts.

In Figure 12, we present results obtained for the solution
u using the proposed cell-centered finite volume semi-
Lagrangian method using the LS and RBF interpolation
techniques compared to the analytical results. The one-
dimensional plots in Figure 13 correspond to cross-section
solutions at the off-diagonal y = 1 − x of these results includ-
ing those obtained using the FEM. A visual comparison of
the results in these figures shows severe numerical dissipa-
tion in the solutions obtained using the LS method. This
numerical dissipation is more pronounced for large values
of Re, and it reduces as the mesh is refined. Under the con-
sidered flow conditions, the FEM and LS methods exhibit
substantially large numerical diffusion particularly at the feet
of areas where the gradient of the solution is very sharp.
However, such numerical dissipation is completely absent
in the results attained using the RBF method. It is also clear
that the proposed cell-centered finite volume semi-
Lagrangian method using the RBF interpolation technique
performs best for this test example. It should be mentioned
that the proposed cell-centered finite volume semi-
Lagrangian method is typically designed to solve this class
of convection-dominated flow problems using time steps
ten to twenty times larger than its Eulerian counterparts. It
should be noted that the proposed cell-centered finite vol-
ume semi-Lagrangian method performs very well as the
solution remains stable and accurate even in the case of
coarse meshes with no need for nonlinear solvers or small
time steps in the simulations.

5. Conclusions

We have proposed a new cell-centered finite volume semi-
Lagrangian method for the numerical solution of two-
dimensional coupled Burgers’ problems on unstructured tri-
angular meshes. The new method incorporates the combina-
tion of a semi-Lagrangian scheme with a cell-centered finite
volume for space discretization and an explicit Runge-Kutta
scheme for time integration. In this study, we have assessed
two different interpolation techniques accounting for the
element where the departure points are located. The pro-
posed cell-centered finite volume semi-Lagrangian method
is suitable for complex geometries, independent of the sizes,
and arrangement of the mesh elements, and it can be per-
formed using time steps larger than those required for its
Eulerian counterparts. In addition, the proposed method is
simple and stable and eliminates the numerical difficulties
related to the discretization of nonlinear convective terms
in the considered problems. A comparison to the conven-
tional finite element semi-Lagrangian method shows the
practicability of the current cell-centered finite volume
semi-Lagrangian approach combined with the RBF interpo-
lation, to solve the two-dimensional coupled Burgers’ prob-
lems. Verification of the proposed cell-centered finite

volume semi-Lagrangian method has been carried out using
several test problems with known analytical solutions. Com-
parison between two different interpolation methods reveals
that the LS method is about three times faster than the RBF
method. However, incorporating the RBF interpolation in
the Lagrangian stage results in a highly accurate algorithm
exhibiting good capturing of sharp gradients, high accuracy,
and strong stability for all flow regimes considered. On the
other hand, the LS method introduces excessive numerical
diffusion and fails to capture steep gradients in the com-
puted solutions. The presented results demonstrate the capa-
bility of the cell-centered finite volume semi-Lagrangian
method that can provide insight to complex coupled Bur-
gers’ features. The current study has been devoted to the
numerical computations of two-dimensional coupled Bur-
gers’ problems. However, our future interest consists on
the use of the effective high-order cell-centered finite volume
semi-Lagrangian method for coupled Burgers’ problems in
three space dimensions using parallel processing. Our cur-
rent effort is therefore to extend these techniques to coupled
Burgers’ problems and incompressible Navier-Stokes equa-
tions in three space dimensions using unstructured meshes.

Appendix

A. Conventional Finite Element Semi-
Lagrangian Method

In this appendix, we briefly describe the finite element semi-
Lagrangian method used in our study to assess the results
obtained using the proposed cell-centered finite volume
semi-Lagrangian method. In contrast to the proposed
method for which the unknowns are localized at the centers
of the elements, the finite element semi-Lagrangian method
consists of applying the modified method of characteristics
at the nodal points of each element. Here, quadratic P2 finite
elements with six nodes at each element are used in the
implementation. Following for example [16, 19], the charac-
teristic trajectories of equation (3) are the nodal solutions of
initial-value problem for ordinary differential equations

dX j τ ; x j, tn+1
� �

dτ
= uj X j τ ; x j, tn+1

� �
, τ

� �
, ∀τ ∈ tn, tn+1½ �,

ðA:1Þ

X j tn+1 ; x j, tn+1
� �

= x j, ðA:2Þ

where X jðτ ; x j, tn+1Þ = ðXjðτ ; x j, tn+1Þ, Y jðτ ; x j, tn+1ÞÞΤ is
the departure point defined at time τ of a particle that will
reach x j = ðxj, yjÞΤ the nodal point of the elementK j at time
tn+1, see Figure 14 for an illustration. To approximate the
solutions Xn

j ≔X jðtn ; x j, tn+1Þ of (A.1), we use the third-
order explicit Runge-Kutta method (7). It is worth noting
that the departure point Xn

j does not necessarily coincide
with the spatial position of a nodal point in the mesh. Thus,
a search-locate algorithm should be implemented in order to
identify the host element K̂ j where the departure point Xn

j

resides [16, 19]. Therefore, the finite element solution un+1j
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of the pure convection equation (3) in the point x j and at
instant tn+1 is interpolated using Lagrange polynomials
using known solution values un at the nodes of the triangle
K̂ j as

ûnj = u Xn
j , tn

� �
= 〠

6

i=1
un x∗ið Þφi Xn

j

� �
, ðA:3Þ

where x∗i are nodes of the element K̂ j and φi are their
associated local finite element basis functions characterized
by the property φiðx∗j Þ = δij, with δij denotes the Kronecker
symbol. Using the weak formulation, it follows that (1)
reduces to a system of ordinary differential equations as

M½ �DU
Dt

+ S½ �U = 0, t ∈ tn, tn+1½ �, ðA:4Þ

where u∧n is known as initial condition at tn. In (A.4), U
= ðU1,⋯,UMÞT with M is the total number of nodes in
the finite element mesh; ½M� and ½S� are sparse symmetric
matrices, the elements of which are given by

mij =
ð
Ω

ϕiϕj dx, i, j = 1, 2⋯ ,M,

sij =
ð
Ω

ν∇ϕi∇ϕj dx, i, j = 1, 2⋯ ,M,
ðA:5Þ

respectively. Here, fϕjgMj=1 are the set of global nodal basis

functions characterized by the property ϕiðx jÞ = δij. To solve
the semidiscrete equation (A.4), we use the third-order
explicit Runge-Kutta method (40) with RðUÞ = −½M�−1½S�U.
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