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We propose a discrete data classification method of scattered data in N-dimensional by solving the minimax problem for a set of
points. The current research is extended from 2-dimensional and 3-dimensional to N-dimensional. The problem can be applied to
artificial intelligence classification problems (machine learning, deep learning), point data analysis problems (data science
problem), the optimized design of nanoscale circuits, and the location of facility problems, circle detection on 2D image, or
sphere detection on depth image. We generalized the discrete data classification methodology in N-dimensional. Finally, we
resolved to find an exact solution of the location of a manifold for our suggested problem in N-dimensional.

1. Introduction

Data classification has been emphasized to developing artifi-
cial intelligence (machine learning, deep learning) perfor-
mance from the big data. And from the image big data,
image classification is an important part of the data classifi-
cation [1, 2]. Some classification methods are support vector
machine (SVM) [3], the decision tree [4], artificial neural
network [5], and the naive Bayes classifier [6]. The measure-
ment of data classification is key role of the performance of
the methodology. In the measurement of data classification,
we describe the minimax problem. Our constrained optimi-
zation problem is then formulated as an unconstrained mini-
max problem of finding X∗ such that

J∞ X∗ð Þ = min
X∈ℝN

J∞ Xð Þ: ð1Þ

The organization of the paper is as follows. Section 1 is
the introduction. 1.1. Literature review, Section 2 states the
problem statement 2.1 and Innovative Research Contribu-
tion 2.2. The algorithm and the data classification methodol-
ogy to solve our problem are described in Section 3. We
prove that the algorithm searches an exact minimax solu-
tion. The data classification methodology is verified. Then,

in Section 4, numerical results are presented. Our methodol-
ogy is validated. Conclusions are given in Section 5.

1.1. Literature Review. A class of similar problems to (1) has
a long history of development in operation research. It goes
back to Pierre de Fermat who considered the case of djðXÞ
= jPj −Xj, n = 2 and p = 1 with equal weights whose solu-
tion is called Fermat point. Consider the case of djðXÞ = jPj

−Xj, for a general n and p = 1 with equal weights. Then,
the problem is to find the geometricmedian of the set of points
Pj, j = 1,⋯, n, which is a standard problem in facility location
to minimize the cost of transportation. The minimizer X∗ of
J1ðXÞ is known as the Fermat-Weber [7] point or 1-median.
The Fermat-Weber problem has drawn much attention from
mathematicians and facility location scientists and engineers;
see, for instance [8–20] and the references therein. For Euclid-

ean metric dðx, yÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − y1Þ2 + ðx2 − y2Þ2 + ðx3 − y3Þ2

q
only, see the references [12–16, 18–21], and for rectilinear
(Manhattan) metric dðx, yÞ = jx1 − y1j + jx2 − y2j and Euclid-
ean metric, see the references [10, 17]. For a survey paper on
the Fermat-Weber problem, see Wesolowsky [22–25].

The case of djðXÞ = jPj −Xj − jQ1 −Xj, with equal
weights without the constraint on the circle passing through
any point was dealt by Drezner et al. [21] for p = 1, 2, and∞
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and that with equal and unequal weights by Brimberg et al.
[26] for p =∞:

For nonlinear minimax problems with successive
approximation methods for finding a stationary point is also
studied by Demjanov [27]. This literature is helpful for us to
suggest a new minimax model with a measurement for the
general N-dimensional.

2. Problem Statement and
Research Contribution

2.1. Problem Statement. We generalize the discrete data clas-
sification method from 2-dimensional and 3-dimensional to
N-dimensional. In the N-dimensional case, let Pjðx1 j, x2 j,
⋯,xN jÞ, j = 1,⋯, n, be a given set of discrete points on the
space. Additionally, suppose that two additional points Q1
and Q2 are given which are distinct from Pj, j = 1,⋯, n:
We are interested in the constrained optimization problem
of finding a N-dimensional manifold that is closest to all dis-
crete points Pj, j = 1,⋯, n, among the manifolds that are
constrained to pass through Q1 and Q2, see Figure 1 for
the previous suggested problem setting in the 2-
dimensional case. In 2 dimensions, the closeness of a circle
to a set of discrete points is given by the weighted maximum
distance from the circle to the points. In 3 dimensions, the
closeness of a sphere to a set of discrete points is given by
the weighted maximum distance from the sphere to the
points, see Figure 2. Generally, the closeness of a manifold
to a set of discrete points is given by the weighted maximum
distance from the manifold to the points in the N-dimen-
sional. Denote by X the center of a manifold which passes
through the two points Q1 and Q2 and by DwðXÞ the n
-dimensional vector

Dw Xð Þ = w1d1 Xð Þ,⋯,wndn Xð Þð Þ, ð2Þ

where djðXÞ = jPj −Xj − jQ1 −Xj and the weight wj ∈ ð0, 1Þ,
j = 1,⋯, n:

Set the objective function JpðXÞ = kDwðXÞkp, where k·kp
denotes the ℓp-norm for 1 ≤ p ≤∞:

Then, we resolve the minimax problem of (1).
Figure 2 is in the 3-dimensional case, and we introduce

the 2-dimensional case in Figure 1. Since the spheres are
constrained to pass Q1 and Q2, the centers should lie on
the straight line which bisects the line segment �Q1Q2 per-
pendicularly. Those three points are on the same plane.
We extended these problems to N-dimensional space. To
simplify the problem, let us translate and rotate Q1, Q2,
and Pj, j = 1,⋯, n so that the locations of Q1 and Q2 are ð
a1, a2,⋯,aN−1, 0Þ and ð−a1,−a2,⋯,−aN−1, 0Þ, where 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a12 + a22+⋯+a2N−1
p

is the distance between Q1 and Q2.
Also denote the coordinates of Pj by ðx1 j, x2 j,⋯,xN jÞ, j = 1,
⋯, n. Since the center of the N-dimensional manifold lies
on the N-axis, problem (1) is then reduced to a one-
dimensional problem. Denoting by ð0, 0,⋯,tÞ the coordinate
of N-dimensional, the radius of the manifold which passes
through Q1 and Q2 is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p
.

For j = 1,⋯, n, let ψjðtÞ denote the weighted distance
ϕ jðtÞ = jψjðtÞj, where

ψj tð Þ =wjdj Xð Þ,

dj Xð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p
:

ð3Þ

Since DwðXÞ = ðψ1ðtÞ,⋯,ψnðtÞÞ, problem (1) can be
rewritten as finding t∗ ∈ℝ such that

ϕ t∗ð Þ =min
t
ϕ tð Þwhere ϕ tð Þ≔max

j
ϕj tð Þ = J∞ Xð Þ: ð4Þ

2.2. Innovative Research Contribution. Our previous sug-
gested optimized discrete data classification method (Kim
method) in 2-dimensional case can be applied to the detec-
tion of a circle on the image [28, 29]. The sphere detection
method (Kim method in 3-dimensional) can be applied to
the 3-dimensional image with the depth intensity. And our
suggested method can be applied to the optimized design

t

Q2(−a,0) Q1(a,0)

: Datapoint

Figure 1: The constrained optimization problem of finding a circle
in 2D that is closest to all points among all the circle that are
constrained to pass through Q1 and Q2:

t

Q1(a, b, 0)

Q2(–a, –b, 0)

: Datapoint

Figure 2: The constrained optimization problem of finding a
sphere in 3D that is closest to all points among all the sphere that
are constrained to pass through Q1 and Q2:
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of nanoscale circuits to reduce the defect rate in 2-
dimensional and 3-dimensional.

Our method is very effective for big discrete data classi-
fication problems of machine learning models and algo-
rithms [30].

As described in the beginning of the section, in this
paper, we generalized to the optimization problem of finding
a manifold which passes through two given points. We pro-
pose the discrete data classification methodology (Kim
method) in N-dimensional to resolve this minimax problem,
obtaining an exact solution algorithm which is very fast. We
generalized this methodology to N-dimensional and
obtained the mathematical verification of N-dimensional
and physical validation with simple cases.

3. Proposed Methodology of Data
Classification Method

In this section, we proposed the data classification method-
ology. Verification and validation are critical. We propose
the methodology with mathematical verification. Validation
will be shown in Section 4.

Lemma 1. Supposes that there does not exist a manifold
which passes through Q1, Q2, and the data points P j, j = 1,
⋯, n. A local optimum to the minimax problem is then taken
at the intersection point of the graph of y = ϕk1ðtÞ and y =
ϕk2ðtÞ for some k1 and k2.

Assume that the function ϕðtÞ has a local minimum at a
point t ′ which is not an intersection point of any two graphs
of y = ϕk1ðtÞ and y = ϕk2ðtÞ for any k1 and k2. Since the graph
of y = ϕðtÞ is a finite number of piecewise smooth curves, there
should exist some j and a sufficiently small positive ε such that
ϕðtÞ = ϕjðtÞ on ðt ′ − ε, t ′ + εÞ, where t ′ is a critical point of ϕ,
and thus, it is a critical point of ϕj thereon. Such critical points
should be either the zeros of the first derivative of ψjðtÞ or the
zero of ϕjðtÞ. Thus, the exact critical point t ′ of the function
ϕ jðtÞ should be either t± = ðða12 + a2

2+⋯+aN−1
2ÞxN j ± xN jð

a1
2 + a2

2+⋯+aN−1
2ÞRÞ/ða12 + a2

2+⋯+aN−1
2 − ðx12j + x2

2
j+

⋯+xN−1
2
j ÞÞ, with R =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx12j + x2

2
j+⋯+xN−1

2
j Þ

q
or

t0 =
x1

2
j + x2

2
j+⋯+xN−1

2
j + xN

2
j

� �
− a1

2 + a2
2+⋯+aN−1

2� �
2xN j

,

ð5Þ

which are zeros of ψj
′ðtÞ =wjðððt − xN jÞ/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1
2
j + x2

2
j+⋯+xN−1

2
j + ðt − xN jÞ2

q
Þ − ðt/ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2 + a12 + a22+⋯+aN−12
p ÞÞ

or ϕjðtÞ, respectively. To derive a contradiction from the
existence of such critical points, notice that the second deriv-
ative of ψjðtÞ is given as follows:

with S = ðx12j + x2
2
j+⋯+xN−1

2
j + ðt − xN jÞ2Þ.

We treat the two cases separately.

(i) First, let us consider the points t ′ = t±. Observe that
ψjðt±Þψj′′ðt±Þ < 0.

This means that if ψjðt±Þ is greater (or less) than zero,

then ψj′′ðt±Þ is less (or greater) than zero, and thus, the func-
tion ψjðtÞ has a local maximum (or local minimum) at t±.
Since ϕjðtÞ = jψjðtÞj, it follows that the function ϕ jðtÞ has a
local maximum at t±

(ii) Next, consider the point t ′ = t0: Since the function
ϕðtÞ has a local minimum at t0 and ϕðtÞ = ϕjðtÞ on
ðt ′ − ε, t ′ + εÞ, it is trivial that ϕðt0Þ = ϕ jðt0Þ = 0

Both cases (i) and (ii) lead to a contradiction to our
assumption. Therefore, the local minimum of ϕðtÞ must be
taken at a point t ′ which is an intersection point of two
graphs of y = ϕk1ðtÞ and y = ϕk2ðtÞ for some k1 and k2. This
completes the proof.

In Figure 3, the graphs of y = ϕjðtÞ, y = ϕkðtÞ, and y =
ϕjkðtÞ =max fϕjðtÞ, ϕkðtÞg are depicted. The local minima
of y = ϕjkðtÞ are taken at the intersection points of y = ϕ jðtÞ
and y = ϕkðtÞ. Figure 3 is in 2-dimensional case.

Theorem 2. Let t jk’s be all the intersection points of the
graphs of y = ϕjðtÞ and y = ϕkðtÞ for all j, k = 1,⋯, n: Let t∗
be such that

ϕ t∗ð Þ =min
j,k

ϕ t jk
� �

: ð7Þ

ψj
′′ tð Þ =wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r
− t − xN j

� �2
S −1/2ð Þ

x1
2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p
− t2 t2 + a1

2 + a2
2+⋯+aN−1

2� � −1/2ð Þ

t2 + a12 + a22+⋯+aN−1
2ð Þ

0
BB@

1
CCA,

ð6Þ
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If ϕðt∗Þ ≤max jwjjyjj, then ϕðt∗Þ is a global minimum for
problem (2); otherwise, problem (2) does not have a global
minimum solution.

Let us begin with finding the candidates of global mini-
mum of ϕðtÞ using the above Lemma 1. Since the equation
ϕjðtÞ = ϕkðtÞ is equivalent to the equation ϕ2j ðtÞ = ϕ2kðtÞ, we
can find the intersection points of ϕj and ϕk by solving

0 = ϕ2j tð Þ − ϕ2k tð Þ = wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r 

−wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
k + x2

2
k+⋯+xN−1

2
k + t − xNkð Þ2

q

− wj −wk

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p !

× wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r 

+wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
k + x2

2
k+⋯+xN−1

2
k + t − xNkð Þ2

q

− wj +wk

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p !
≕ Iw1 tð Þ × Iw2 tð Þ:

ð8Þ

The above equation is divided into Iw1 ðtÞ = 0 or Iw2 ðtÞ = 0.
To solve the equation Iw1 ðtÞ = 0, move the radical term

ðwj −wkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p
to the right side of the

equation and square both sides. Then, we get

2wjwk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r
T

=w2
j x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2� �
+w2

k x1
2
k + x2

2
k+⋯+xN−1

2
k + t − xNkð Þ2� �

− wj −wk

� �2 t2 + a1
2 + a2

2+⋯+aN−1
2� �
,

ð9Þ

with T =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
k + x2

2
k+⋯+xN−1

2
k + ðt − xNkÞ2

q
.

To isolate the radical expression on the left side, move all
the other terms to the right and square both sides of the
equation again. Then, one gets the following cubic polyno-
mial:

pjk tð Þ = a0t
3 + a1t

2 + a2t + a3, ð10Þ

where

a0 = 4w2
j w

2
k xNk + xN j

� �
− 2 wj

4xN j +wk
4xNk

� �
+ 2 wj −wk

� �2 wj
2xN j +wk

2xNk

� �
,

a1 =w4
j xN

2
j + 2 x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �n o
+w4

k xN
2
k + 2 x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �	 

+ 2 wj −wk

� �4 a1
2 + a2

2+⋯+aN−1
2� �

+ 2w2
j w

2
k

� x1 j
2 + x2 j

2+⋯+xN−1
2
j + xN

2
j

� �n
+ x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �
− 4xN jxNk

o
−w2

k wj −wk

� �2 x1k
2 + x2k

2+⋯+xN−1
2
k + xN

2
k

� �	
+ a1

2 + a2
2+⋯+aN−1

2� �

−w2

j wj −wk

� �2
� x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �
+ a1

2 + a2
2+⋯+aN−1

2� �n o
− 4w2

j w
2
k x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �	
+ x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �
+ 4xN jxNk

o
,

a2 =w4
j −2xN j x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �n o
+w4

k −2xNk x1k
2 + x2k

2+⋯+xN−1
2
k + xN

2
k

� �	 

+ 2 wj

2wk
2� �

−2xN j x1 j
2 + x2 j

2+⋯+xN−1
2
j + xN

2
j

� �n
− 2xNk x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �o
−w2

k wj −wk

� �2 −2xNk a1
2 + a2

2+⋯+aN−1
2� �	 


−w2
j wj −wk

� �2 −2xN j a1
2 + a2

2+⋯+aN−1
2� �n o

+ 8w2
j w

2
k xN j x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �n
+ xNk x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �o
,
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Figure 3: The 2-dimensional case graphs of y = ϕjðtÞ, y = ϕkðtÞ,
and y = ϕjkðtÞ =max fϕjðtÞ, ϕkðtÞg: Two local minima of y = ϕjkðtÞ
are taken at the intersection points of y = ϕjðtÞ and y = ϕkðtÞ.
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a3 =w4
j x1 j

2 + x2 j
2+⋯+xN−1

2
j + xN

2
j

� �2� �

+w4
k x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �2
+ wj −wk

� �4 a1
2 + a2

2+⋯+aN−1
2� �2 + 2 wj

2wk
2� �

� x1 j
2 + x2 j

2+⋯+xN−1
2
j + xN

2
j

� �
� x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �
−w2

k wj −wk

� �2
� x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �
a1

2 + a2
2+⋯+aN−1

2� �
−w2

j wj −wk

� �2 x1 j
2 + x2 j

2+⋯+xN−1
2
j + xN

2
j

� �
� a1

2 + a2
2+⋯+aN−1

2� �
− 4w2

j w
2
k

� x1 j
2 + x2 j

2+⋯+xN−1
2
j + xN

2
j

� �
� x1k

2 + x2k
2+⋯+xN−1

2
k + xN

2
k

� �
:

ð11Þ

Similarly, solving the equation Iw2 ðtÞ = 0 is equivalent to
solving the following cubic polynomial:

qjk tð Þ = b0t
3 + b1t

2 + b2t + b3: ð12Þ

By using Cardano’s formula, one can find all the real
roots of pjkðtÞ = 0 and qjkðtÞ = 0. In this way, one can find
the intersection points of y = ϕjðtÞ and y = ϕkðtÞ for j, k = 1
,⋯, n: Then, by comparing the values of the function ϕðtÞ
at these points, one can find the candidate of global mini-
mum at t∗. Of course, as the function ϕðtÞ is defined on ℝ,
the global minimum may not exist. However, using the
expression

ϕj tð Þ =
wj x1

2
j + x2

2
j+⋯+xN−1

2
j + xN

2 − a1
2 − a2

2−⋯−aN−1
2 − 2xN jt




 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1

2
j + x2

2
j+⋯+xN−1

2
j + t − xN j

� �2r
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 + a12 + a22+⋯+aN−12

p ,

ð13Þ

we have ϕðtÞ⟶maxjwjjyjj as t⟶ ±∞. Thus, if ϕðt∗Þ ≤
max jwjjyjj, then ϕðt∗Þ is a global minimum. If ϕðt∗Þ >
max jwjjyjj, then the function ϕðtÞ does not have a global
minimum. This completes the proof.

Summarizing the above procedure in the proof of Theo-
rem 2, we propose the following algorithm for solving the
minimax problem (1).

Step 1. Compute the distance 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a12 + a22+⋯+a2N−1

p
between Q1 and Q2; choose the coordinate system such that
Q1ða1, a2,⋯,aN−1, 0Þ and Q2ð−a1,−a2,⋯,−aN−1, 0Þ; by a rigid
motion transform to Pj associate the coordinates ðx1 j, x2 j,
⋯,xN jÞ for j = 1,⋯, n.

Step 2. If Q1, Q2, and Pj, j = 1,⋯, n are on one specific man-
ifold, then it is done.

Step 3. Find all intersection points t jk’s of the graphs z = ϕj

ðtÞ and z = ϕkðtÞ for all j, k.

Step 4. For all such intersection points t jk’s, evaluate ϕiðt jkÞ
for all i = 1,⋯, n; then, compute ϕðt jkÞ =maxiϕiðt jkÞ, and
find the minimum ϕðt∗Þ =minj,kϕðt jkÞ.

Step 5. If ϕðt∗Þ ≤maxjwjjzjj, then ϕðt∗Þ is the global mini-
mum. If ϕðt∗Þ >maxjwjjzjj, the global minimum of the
function ϕðtÞ does not exist.

This is our optimized suggested data classification
method in N-dimensional (Kim method). Our N-dimen-
sional discrete data classification methodology is mathemat-
ically verified in this section.
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Figure 5: The constrained optimization problem of finding a circle
in 2D that is closest to all 200 points among all the circle that are
constrained to pass through (4, 6) and (-4, 1). The solution is the
center (-0.93750, 5.0000) with radius 27.270.
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Figure 4: The validation figure of the constrained optimization
problem of finding a circle in 2D that is closest to all 4 points, (3.58,
1.78), (-3.00, 2.61), (2.12, -3.45), and (-3.26, -2.34) among all the
circle that are constrained to pass through (-4, -4) and (4, 4). The
solution is the center (0.034375, 0.034375) with radius 1.7081.
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4. Numerical Results

In this section, we show validation with simple example and
results, see Figure 4. From Figure 4, we used 4 distinct
points. The expected center is (0,0). Through our suggested
methodology, we obtain the center ð0:034375,0:034375Þ
with the radius ð1:7081Þ: This is validated with an error <
4:86135 × 10ð−2Þ. With big data (200 points), we calculate
our methodology, see Figure 5. In the data classification
problem, we test two groups with 200 points, see Figure 6.
We can classify the scattered data with our suggested meth-
odology. Obviously, we can obtain the two distinct circles
with two groups. Through the intersection area of the two
circles, we can analyze the relation of the data.

We show the comparison study with our suggested
methodology and other methodology of the data classifica-
tion [31], see Table 1 with comparison study of several
methodology with the random data set from [31]. AUC is
area under curve. Our method result of AUC (KIM) has
1:0000 in Table 1 because the two distinct circles are not
overlapped. DT is a decision tree method. k −NN is k
-nearest neighbor method. LogR is logistic regression
method. NB is Naive Bayes method. C4.5 is a decision tree
with divide-and-conquer. SVM is support vector machine.
LC is linear classifier method [31]. Our methodology is to
find the mathematical exact solution. We find the two dis-
tinct circles with centers and radii.

We have developed a minimax circle and sphere code to
find the solution of the suggested minimax problem. We
show a simple test case with 20 input data including the

weight, see Table 2. The table shows the detailed input data
with the weights (the weights are 1). X∗ is the numerical
solution from the exact solution procedure of the suggested
problems. We tested many times for various random input
data, and the results are very satisfactory with the robust-
ness. The computation is executed using the Fortran com-
piler in a window system with the architecture Intel 11th
Gen Core i7-1165G7 of 2.80GHz. These plots show that
the algorithm is very efficiently.

5. Conclusions

We have investigated the suggested minimax problem by
our suggested data classification methodology (Kim method)
in N-dimensional space, and this methodology is verified
and validated (VV). This problem is applied to artificial
intelligence classification problems (machine learning, deep
learning), point data analysis problems (data science prob-
lem), the optimized design of nanoscale circuits, and the
location of facility problems and circle or sphere detection
problem on the image. Here, we also consider the general
weighted case. And we obtain the exact solution of the min-
imizing manifold to maximize the distance between the
manifold through two fixed points and multiple points. By
finding the local optima, we find the global optimum. After
we proved the exact solution of the suggested problem, we

Table 2: Q1 = ð4:00,6:00Þ and Q2 = ð−4:00,1:00Þ are given with the
equal weighted 20 points (value is 1). The minimax value is 15.025.

Pj xj yj
P1 0.300 0.500

P2 -0.200 1.53

P3 1.97 1.90

P4 -2.30 8.63

P5 5.70 12.9

P6 -2.20 3.53

P7 7.97 6.90

P8 -12.3 8.63

P9 23.7 25.9

P10 -24.3 22.6

P11 6.7 4.90

P12 -6.2 3.53

P13 2.7 1.92

P14 -22.3 12.6

P15 8.67 16.9

P16 -4.62 12.5

P17 5.97 6.90

P18 -12.3 4.63

P19 14.7 1.90

P20 -12.3 15.6

Solution -9.8515 19.262
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Figure 6: The validation figure of the constrained optimization
problem of finding a circle in 2D that is closest to the different
two groups; each group has 100 points. Group A (close dots) has
the center (-1.7661, -8.8790) with minimax radius 9.2144, and
group B (open dots) has the center (13.433, 18.536) with
minimax radius 12.416.

Table 1: AUC values for dataset with sample size 200 with other
methodology [31].

KIM DT k-NN LogR
1.0000 0.7941 0.7683 0.6328

NB C4.5 SVM LC

0.7126 0.7452 0.7448 0.6408
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proposed a very efficient algorithm. This is the optimized
data classification methodology of N-dimensional scattered
data (Kim Method). As future work, the proposed method-
ology can be applied to the image processing. We investigate
the detection algorithm of the image processing with our
methodology. In the different images, we will analyze the
mutual information. And our methodology can be applied
to analyze supply chain problems with data.
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