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In this paper, a computational procedure for solving singularly perturbed nonlinear delay differentiation equations (SPNDDEs) is
proposed. Initially, the SPNDDE is reduced into a series of singularly perturbed linear delay differential equations (SPLDDEs)
using the quasilinearization technique. A trigonometric spline approach is suggested to solve the sequence of SPLDDEs.
Convergence of the method is addressed. The efficiency and applicability of the proposed method are demonstrated by the
numerical examples.

1. Introduction

Consider a nonlinear singularly perturbed delay differential
equation in the form

εθ′′ =F s, θ, θ′ s − δð Þ
� �

on 0, 1ð Þ, ð1Þ

under the interval and boundary conditions

θ sð Þ = μ sð Þ on − δ ≤ s ≤ 0, θ 1ð Þ = γ, ð2Þ

where 0 < ε≪ 1 is a perturbation parameter and δ is a delay
parameter of oðεÞ. The solution θðsÞ of Equations (1) and
(2) must be continuous on [0,1] and differentiable continu-
ously on (0,1). Suppose F is smooth function and follows
the conditions

∂
∂w

F s, θ,wð Þ ≥ 0,
∂
∂w

F s, θ,wð Þ ≤ 0: ð3Þ

(1) ðð∂/∂θÞ − ð∂/∂wÞÞFðs, θ,wÞ ≥ φ > 0,φ is a positive
constant

(2) The growth condition Fðs, θ,wÞ =Οðjwj2Þ asw
⟶∞for all s ∈ ½0, 1� and all real θ and w.

Under the above conditions, Equations (1) and (2) have
a unique solution [1] for δ = 0.

The proposed equation usually plays an important role
in illustrating different applications, such as theory of non-
premixed combustion [2], geodynamics [3], oceanic and
atmosphere circulation [4], and chemical reactions [5]. More
attention has been given in the past to the computational
analysis of SPDDEs [6–9]. However, motivation for the
research and solution of the SPNDDE has been increasing
in the last few years. These problems may have steep expo-
nential boundary layers as a solution. Classical methods for
solving such types of problems are ineffective since a bound-
ary layer structure is present when the perturbation param-
eter goes to zero. For these equations, effective numerical
methods should be established, the accuracy of which does
not depend on ε. Hence, in this work, we proposed a higher
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order numerical scheme using a trigonometric spline which
gives more accuracy with a smaller number of mesh points.
The existence and originality of the solutions of a SPNDDE
with shift were studied by Lange and Miura [10]. The
authors in [11] presented a fixed-point strategy to solve a
second order SPDDE. The authors in [12] assemble two
methodical spectral Legendre’s derivative methods to solve
numerically the Lane-Emden, Bratu’s, and singularly per-
turbed type equations. For generating numerical spectrum
solutions to linear and nonlinear second-order boundary
value problems, a new operational matrix approach based
on shifted Legendre polynomials is introduced and studied
in [13].

In [14], the authors proposed schemes with finite differ-
ences for solving the system of SPNDDE. In [15], a B-spline
collocation method is constructed to solve Equations (1) and
(2). In [16], the authors used shifted Legendre polynomials
for studying the spectral collocation approach to solve neu-
tral functional-differential equations with proportional
delays. In [17], the Legendre spectral collocation approach
is suggested by the authors for handling multipantograph
delay boundary value problems. In [18], a new numerical
method is proposed for solving a class of delay time-
fractional partial differential equations. The fractional partial
differential equations are reduced into an associated system
of algebraic equations that may be solved by some robust
iterative solvers using the localization method, which is
based on space-time collocation in some appropriate points.
In [19], the authors developed a numerical technique for
nonlinear singly perturbed two-point boundary value prob-
lems based on a noniterative integration method with a
modest deviation argument.

The following is a concise summary of the contents of
the paper. In Section 2, the approach of quasilinearization
and the analysis of convergence are discussed. The continu-
ous problem is discussed in Section 3. In Section 4, the pro-
cedure using a trigonometric spline for the solution of the
problem is derived. Error estimates of the proposed scheme
are discussed in Section 5. Numerical examples and compu-
tational results are shown in Section 6. Finally, the Section 7
ends with the conclusion.

2. The Method of Quasilinearization

Using the method of quasilinearization [20], the given non-
linear differential Equations (1) and (2) are reduced into a
sequence of SPLDDEs. We take the initial approximation
θ0ðsÞ which serves as a starting point for the function θðsÞ
in F and expand Fðs, θðsÞ, θ′ðs − δÞÞ, around the function
θ0ðsÞ; we get

F s, θ 1ð Þ, θ′ 1ð Þ
s − δð Þ

� �
=F s, θ 0ð Þ, θ′ 0ð Þ

s − δð Þ
� �

+ θ 1ð Þ − θ 0ð Þ
� � ∂F

∂θ

� �
s,θ 0ð Þ,θ′ 0ð Þð Þ

+ θ′ 1ð Þ − θ′ 0ð Þ� � ∂F
∂θ′

� �
s,θ 0ð Þ ,θ′ 0ð Þ� �+⋯:

ð4Þ

In general, we can write

F s, θ ν+1ð Þ, θ′ ν+1ð Þ
s − δð Þ

� �
=F s, θ 0ð Þ, θ′ 0ð Þ

s − δð Þ
� �

+ θ ν+1ð Þ − θ νð Þ
� � ∂F

∂θ

� �
s, θ 0ð Þ ,θ′ 0ð Þð Þ

+ θ′ ν+1ð Þ − θ′ νð Þ� � ∂F
∂θ′

� �
s, θ 0ð Þ , θ′ 0ð Þ� �+⋯,

ð5Þ

for ν = 0, 1, 2,⋯
Using the quasilinearization technique, Equations (1)

and (2) become

εθ′′ ν+1ð Þ
sð Þ + −

∂F νð Þ

∂θ′

 !
θ′ ν+1ð Þ

s − δð Þ + −
∂F νð Þ

∂θ

 !
θ ν+1ð Þ sð Þ

= F νð Þ − −
∂F νð Þ

∂θ

 !
−

∂F νð Þ

∂θ′

 !
θ′ νð Þ

s − δð Þ
 !

, ν = 0, 1,⋯,

ð6Þ

with

θ ν+1ð Þ sð Þ = μ sð Þ,−δ ≤ s ≤ 0,  θ ν+1ð Þ 1ð Þ = γ, ð7Þ

and FðνÞ =Fðs, θðνÞ, θ′ðνÞðs − δÞÞ. Thus, Equation (6) with
Equation (7) is linear in θðν+1ÞðsÞ. Now, we solve the prob-
lems given by Equations (6) and (7) using the nonpolyno-
mial spline method.

Theoretically, the solution to the nonlinear problem sat-
isfies

lim
n⟶∞

θ νð Þ sð Þ = θ∗ sð Þ, 0 ≤ s ≤ 1, ð8Þ

where θ∗ðsÞ is the solution of the nonlinear problem. Com-
putationally, we require

θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
��� ��� < Tol:, 0 ≤ s ≤ 1: ð9Þ

Here, Tol. is a prescribed small tolerance. Once the toler-
ance test is achieved, the iteration is terminated.

3. Convergence Analysis

The convergence of the sequence of solutions hθðνÞi is
obtained as follows. For convenience purpose, we refer Fðs
, θ, θ′ðs − δÞÞ as FðθÞ in the entire convergence part. Con-
sider the problem

εθ′′ =F θð Þ, ð10Þ

with

θ sð Þ = φ sð Þ on − δ ≤ s ≤ 0, θ 1ð Þ = γ: ð11Þ

After quasilinearization, we have a sequence hθðνÞi of
linear equations defined by the following recurrence
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relation:

εθ′′ ν+1ð Þ
sð Þ =F θ νð Þ

� �
+ θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

F ′ θ νð Þ
� �

,

ð12Þ

θ ν+1ð Þ sð Þ = φ sð Þ,−δ ≤ s ≤ 0, θ ν+1ð Þ 1ð Þ = γ, ð13Þ

where F ′ðθÞ = ∂FðθÞ/∂θ:
Let θð0ÞðsÞ be an initial approximation; then using Equa-

tion (12), we have

εθ′′ νð Þ
sð Þ =F θ ν−1ð Þ

� �
+ θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �

F ′ θ ν−1ð Þ
� �

:

ð14Þ

Using Equations (12) and (14), we have

ε θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

′′ =F θ νð Þ
� �

−F θ ν−1ð Þ
� �

− θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �

F ′ θ ν−1ð Þ
� �

+ θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

F ′ θ νð Þ
� �

:

ð15Þ

Equation (15) is a differential equation of second order
in ðθðν+1ÞðsÞ − θðνÞðsÞÞ. Thus, by using Green’s function, the
integral form of Equation (15) is

ε θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

=
ð1
0
G s, tð Þ F θ νð Þ

� �
−F θ ν−1ð Þ

� �
− θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �

F ′ θ ν−1ð Þ
� �h

+ θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

F ′ θ νð Þ
� �i

ds,

ð16Þ

where the Gðs, tÞ is the Green’s function and determined by
[21]

G s, tð Þ =
s − 1ð Þt, 0 ≤ t ≤ s ≤ 1,

s t − 1ð Þ, 0 ≤ s ≤ t ≤ 1,

(
ð17Þ

where max
s,t

jGðs, tÞj = 1/4 . By using the mean value theorem,

we have

F θ νð Þ
� �

−F θ ν−1ð Þ
� �

= θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �

F ′ θ ν−1ð Þ
� �

+
θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �2

2
F ′′ tð Þ,

ð18Þ

where θðν−1ÞðsÞ ≤ t ≤ θðνÞðsÞ. Substituting Equation (18) into
Equation (16), we get

ε θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

=
ð1
0
G s, tð Þ F θ νð Þ

� �
−F θ ν−1ð Þ

� �� �2 F ′′ θð Þ
2

"

+ θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
� �

F ′ θ νð Þ
� � i

ds:

ð19Þ

Let max
kwk≤1

F ′ðθÞ = a1, max
kwk≤1

F ′′ðθÞ = a2. On both sides of

Equation (18), taking the maximum of the moduli over the
region of interest, we get

max
0≤s≤1

θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
��� ��� ≤ 1

4ε

ð1
0

max
0≤s≤1

θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �

2
max
0≤s≤1

F ′′ θð Þ�� ��
2
4

3
5ds

+
1
4ε

ð1
0
max
0≤s≤1

θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� ���� ��� max

0≤s≤1
F ′ θ νð Þ
� ���� ���h i

ds:

ð20Þ

A simplification yields

max
0≤s≤1

θ ν+1ð Þ sð Þ − θ νð Þ sð Þ
��� ��� ≤ K1 max

0≤s≤1
θ νð Þ sð Þ − θ ν−1ð Þ sð Þ
� �2

,

ð21Þ

where K1 = ða2/ð8εð1 − a1/4εÞÞÞ < 1. This shows that, given
K1 < 1, the sequence hθðνÞðsÞi of linear equations converges
quadratically. As a result, to get the approximate solution of
Equation (1) with Equation (2), it is required to estimate the
solution of the sequence of SPLDDEs of the form

εθ′′ ν+1ð Þ
sð Þ + aν sð Þθ′ ν+1ð Þ

s − δð Þ + bν sð Þθ ν+1ð Þ sð Þ = cν sð Þ,  ν = 0, 1,⋯,

ð22Þ

with

θ ν+1ð Þ sð Þ = μ sð Þ,−δ ≤ s ≤ 0, θ ν+1ð Þ 1ð Þ = γ, ð23Þ

where

aν sð Þ = −
∂F νð Þ

∂θ′

 !
,

bν sð Þ = −
∂Fν

∂θ

� �
,

cν sð Þ = Fν − θ νð Þ ∂F νð Þ

∂θ

 !
−

∂F νð Þ

∂θ′

 !
θ′ νð Þ

s − δð Þ
 !

:

ð24Þ

4. Continuous Problem

When the delay argument δ is oðεÞ, sequential expanding for
the term θ′ðν+1Þðs − δÞ in Equation (22) yields

Lπ = εθ′′ ν+1ð Þ
sð Þ + pν sð Þθ′ ν+1ð Þ

sð Þ + qν sð Þθ ν+1ð Þ sð Þ = rν sð Þ, ν = 0, 1,⋯,

ð25Þ
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where

pν sð Þ = aν sð Þ
1 − aν sð Þδ/εð Þð Þ ,

qn sð Þ = bν sð Þ
1 − bν sð Þδ/εð Þð Þ ,

rν sð Þ =
Fν sð Þ − θ νð Þ ∂F νð Þ/∂θ

� �
− θ′ νð Þ

sð Þ − δθ′′ νð Þ
sð Þ

h i
∂F νð Þ/∂θ′
� �

1 − aν sð Þδ/εð Þð Þ ,

ð26Þ

with

θ ν+1ð Þ 0ð Þ = μ 0ð Þ = μ0, θ
ν+1ð Þ 1ð Þ = γ: ð27Þ

The boundary layer appears on the left or right side of
the interval depending on the sign of the coefficient pνðsÞ,
i.e., as pνðsÞ > 0 or pνðsÞ < 0, respectively.

The operator Lπ = εðd2/ds2Þ + pνðsÞðd/dsÞ + qνðsÞI in
Equation (25) satisfies Lemma 1.

Lemma 1. Assume GðsÞ is a smooth function satisfying
G ðν+1Þð0Þ ≥ 0, G ðν+1Þð1Þ ≥ 0. Then, LπG

ðν+1ÞðsÞ ≤ 0, ∀x ∈ ð0,
1Þ implies G ðν+1ÞðsÞ ≥ 0, ∀s ∈ ½0, 1�,k = 0, 1,⋯

Proof. Let k ∈ ½0, 1� be such that Gðν+1ÞðkÞ < 0 and

G ν+1ð Þ kð Þ = min
s∈ 0,1½ �

G ν+1ð Þ sð Þ ð28Þ

Clearly, k ∉ f0, 1g; therefore, G′ðν+1ÞðkÞ = 0 and G′′ðν+1Þ
ðkÞ ≥ 0.☐

Now, consider

LπG
ν+1ð Þ mð Þ

���
s=k

= εG ′′ ν+1ð Þ
kð Þ + pν kð ÞG ′ ν+1ð Þ

kð Þ + qν kð ÞG ν+1ð Þ kð Þ > 0,

ð29Þ

which is opposite to our assumption.
Hence, G ðν+1ÞðsÞ ≥ 0, ∀s ∈ ½0, 1�.

Lemma 2. Let θðν+1ÞðsÞ be the solution of Equation (25) with
Equation (27); then, we have

θ ν+1ð Þ
			 			 ≤ β∗ð Þ−1 r νð Þ

			 			 +max μ0j j, γj jð Þ, ∀ν = 0, 1,⋯,

ð30Þ

where k:k is the L∞ norm given by kθðν+1Þk =max
0≤s≤1

jθðν+1ÞðsÞj.

Proof. Let ψ±ðν+1ÞðsÞ be two barrier functions specified by

ψ± ν+1ð Þ sð Þ = β∗ð Þ−1 r νð Þ
			 			 +max μ0j j, γj jð Þ ± θ ν+1ð Þ sð Þ:

ð31Þ

☐

Then, this implies

ψ± ν+1ð Þ sð Þ = β∗ð Þ−1 r νð Þ
			 			 +max μ0j j, γj jð Þ ± θ ν+1ð Þ 0ð Þ

= β∗ð Þ−1 r νð Þ
			 			 +max μ0j j, γj jð Þ ± μ0 ≥ 0,

ψ± ν+1ð Þ sð Þ = β∗ð Þ−1 r νð Þ
			 			 +max ∣μ0∣,∣γ ∣ð Þ ± θ ν+1ð Þ 1ð Þ

= β∗ð Þ−1 r νð Þ
			 			 +max ∣μ0∣,∣γ ∣ð Þ ± γ ≥ 0,

Lπψ ν+1ð Þ sð Þ = ε ψ± ν+1ð Þ sð Þ
� �

′′ sð Þ + pν sð Þ ψ± ν+1ð Þ sð Þ
� �

′

+ qν sð Þ ψ± ν+1ð Þ sð Þ
� �

= q νð Þ sð Þ β∗ð Þ−1 r νð Þ
			 			 +max ∣μ0∣,∣γ ∣ð Þ

h i
± Lπθ

ν+1ð Þ sð Þ
= q νð Þ sð Þ β∗ð Þ−1 r νð Þ

			 			 +max ∣μ0∣,∣γ ∣ð Þ
h i

± r νð Þ sð Þ:
ð32Þ

As qνðsÞ ≤ −β∗ < 0 implies qνðsÞ ≤ ðβ∗Þ−1 ≤ −1 and since
krðνÞk ≥ rðνÞðsÞ, we have Lπϕ

ðν+1ÞðsÞ ≤ 0, ∀s ∈ ½0, 1�: Using
Lemma 1, the required estimate is obtained.

Lemma 3. If θðν+1ÞðsÞ satisfies Equations (25)–(27), then

θ ν+1ð Þ sð Þ = u ν+1ð Þ sð Þ + v ν+1ð Þ sð Þ + z ν+1ð Þ sð Þ, ν = 0, 1, 2,⋯,
ð33Þ

where

u ν+1ð Þ sð Þ = −
εθ′ ν+1ð Þ

0ð Þ
p νð Þ 0ð Þ exp

−p νð Þ 0ð Þs
ε

� �
,

v ν+1ð Þ sð Þ = −
εθ′ ν+1ð Þ

1ð Þ
p νð Þ 1ð Þ exp

−p νð Þ 1ð Þ 1 − sð Þ
ε

� �
,

z ν+1ð Þ sð Þ ≤M 1 + ε−s+1 exp
−c1 1 − sð Þ

ε

� �
 �
, s = 0, 1, 2, 3, 4, 5, 6,

ð34Þ

where c1 is constant and M is positive constant independent
of h and ε.

5. Trigonometric Spline

The integration domain [0, 1] with mesh size h = 1/N is
decomposed into N equal subintervals, so that si = ih, i = 0

4 Computational and Mathematical Methods



Table 1: MAEs in Example 1 with δ = 0:8ε.

ε/N 64 128 256 512 1024 2048

Proposed method

10−1 1:1651e − 03 3:2884e − 04 8:7186e − 05 2:2435e − 05 5:6893e − 06 1:4325e − 06

10−2 3:3515e − 03 1:0682e − 03 2:9959e − 04 7:9176e − 05 2:0341e − 05 5:1542e − 06

10−3 3:8819e − 03 1:2730e − 03 3:6165e − 04 9:6155e − 05 2:4775e − 05 6:2866e − 06

10−4 3:9415e − 03 1:2967e − 03 3:6893e − 04 9:8159e − 05 2:5299e − 05 6:4208e − 06

10−5 3:9476e − 03 1:2991e − 03 3:6967e − 04 9:8363e − 05 2:5352e − 05 6:4344e − 06

10−6 3:9482e − 03 1:2994e − 03 3:6974e − 04 9:8383e − 05 2:5358e − 05 6:4358e − 06

10−7 3:9482e − 03 1:2994e − 03 3:6975e − 04 9:8385e − 05 2:5358e − 05 6:4359e − 06

10−8 3:9482e − 03 1:2994e − 03 3:6975e − 04 9:8385e − 05 2:5358e − 05 6:4359e − 06
Results in [15]

10−1 6:036e − 02 1:973E − 02 5:134e − 03 1:276e − 03 3:185e − 04 7:963e − 05

10−2 5:894e − 02 1:902e − 02 5:945e − 03 1:812e − 03 5:279e − 04 1:444e − 04

10−3 5:891e − 02 1:895e − 02 5:906e − 03 1:791e − 03 5:164e − 04 1:382e − 04

10−4 5:893e − 02 1:902e − 02 5:921e − 03 1:789e − 03 5:153e − 04 1:376e − 04

10−5 5:892e − 02 1:901e − 02 5:943e − 03 1:806e − 03 5:172e − 04 1:376e − 04

10−6 5:899e − 02 1:901e − 02 5:938e − 03 1:806e − 03 5:250e − 04 1:409e − 04

10−7 5:973e − 02 1:902e − 02 5:938e − 03 1:805e − 03 5:237e − 04 1:420e − 04

10−8 6:713e − 02 1:915e − 02 5:940e − 03 1:805e − 03 5:234e − 04 1:416e − 04

Table 2: MAEs in Example 1 with δ = 0:5ε.

ε/N 32 64 128 256 512

Proposed method

2−1 3:6533e − 04 9:5648e − 05 2:4452e − 05 6:1804e − 06 1:5535e − 06

2−2 5:6399e − 04 1:4855e − 04 3:8081e − 05 9:6382e − 06 2:4243e − 06

2−4 9:0467e − 04 2:4051e − 04 6:1920e − 05 1:5704e − 05 3:9539e − 06

2−6 1:0520e − 03 2:8073e − 04 7:2400e − 05 1:8377e − 05 4:6288e − 06

2−8 1:0954e − 03 2:9264e − 04 7:5510e − 05 1:9171e − 05 4:8293e − 06

2−12 1:1097e − 03 2:9655e − 04 7:6529e − 05 1:9431e − 05 4:8950e − 06

2−16 1:1106e − 03 2:9679e − 04 7:6594e − 05 1:9447e − 05 4:8992e − 06

2−32 1:1106e − 03 2:9681e − 04 7:6598e − 05 1:9449e − 05 4:8995e − 06
Result in [23]

2−1 4:84e − 4 1:31e − 4 3:39e − 5 8:66e − 6 2:18e − 6

2−2 1:54e − 3 4:28e − 4 1:13e − 4 2:90e − 5 7:37e − 6

2−4 8:86e − 3 2:82e − 3 8:17e − 4 2:21e − 4 5:78e − 5

2−6 3:87e − 2 1:23e − 3 2:91e − 3 6:93e − 4 1:68e − 4

2−8 3:68e − 2 8:95e − 3 2:12e − 3 5:22e − 4 1:30e − 4

2−12 4:05e − 2 8:33e − 3 1:87e − 3 4:46e − 4 1:11e − 4

2−16 4:84e − 2 8:33e − 3 1:87e − 3 4:45e − 4 1:09e − 4

2−32 4:84e − 2 8:33e − 3 1:87e − 3 4:45e − 4 1:09e − 4

5Computational and Mathematical Methods



, 1, 2,⋯,N are the nodes with 0 = s0, 1 = sN . Let θðsÞ be the
exact solution and θi be an approximation to θðsiÞ by the
trigonometric spline SiðsÞ passing through the points ðsi, θi
Þ and ðsi+1, θi+1Þ. Here, SiðsÞ meets the interpolatory condi-
tions at si and si+1; also the continuity of first derivatives at
the common nodes ðsi, θiÞ is fulfilled. For each ith subinter-

val, the trigonometric spline function SiðsÞ has the form

Si sð Þ = ai + bi s − sið Þ + ci sin τ s − sið Þ + di cos τ s − sið Þ, i = 0, 1,⋯,N − 1,

ð35Þ

where ai, bi, ci, and di are constants and τ is a free parameter.

Table 3: MAEs in Example 2 with δ = 0:4ε.

ε/N 64 128 256 512 1024 2048

Proposed method

10−2 1:9998e − 04 5:2245e − 05 1:3345e − 3:3720e − 06 8:4746e − 07 2:1242e − 07

10−3 2:0404e − 04 5:3327e − 05 1:3624e − 3:4429e − 06 8:6532e − 07 2:1690e − 07

10−4 2:0446e − 04 5:3438e − 05 1:3653e − 3:4501e − 06 8:6714e − 07 2:1736e − 07

10−5 2:0450e − 04 5:3449e − 05 1:3656e − 3:4508e − 06 8:6732e − 07 2:1741e − 07

10−6 2:0450e − 04 5:3450e − 05 1:3656e − 3:4509e − 06 8:6734e − 07 2:1741e − 07

10−7 2:0450e − 04 5:3450e − 05 1:3656e − 3:4509e − 06 8:6734e − 07 2:1741e − 07

10−8 2:0450e − 04 5:3450e − 05 1:3656e − 3:4509e − 06 8:6734e − 07 2:1741e − 07
Results in [15]

10−2 5:623e − 02 1:717e − 02 5:387e − 03 1:630e − 03 4:750e − 04 1:300e − 04

10−3 5:641e − 02 1:718e − 02 5:367e − 03 1:620e − 03 4:692e − 04 1:269e − 04

10−4 5:640e − 02 1:727e − 02 5:418e − 03 1:623e − 03 4:687e − 04 1:266e − 04

10−5 5:638e − 02 1:725e − 02 5:426e − 03 1:650e − 03 4:776e − 04 1:267e − 04

10−6 5:638e − 02 1:725e − 02 5:421e − 03 1:646e − 03 4:836e − 04 1:338e − 04

10−7 5:640e − 02 1:725e − 02 5:420e − 03 1:645e − 03 4:820e − 04 1:335e − 04

10−8 5:655e − 02 1:725e − 02 5:420e − 03 1:645e − 03 4:817e − 04 1:331e − 04

Table 4: MAEs in Example 2 with δ = 0:5ε.

ε/N 32 64 128 256 512

Proposed method

2−1 2:1589e − 06 9:4190e − 07 2:3548e − 07 5:8869e − 08 1:4717e − 08

2−2 2:2793e − 05 4:9244e − 06 1:2344e − 06 3:0893e − 07 5:0693e − 08

2−4 2:1081e − 05 1:2064e − 06 3:3601e − 06 2:9526e − 07 5:3741e − 08

2−8 2:7909e − 05 7:0930e − 06 1:7870e − 06 3:0396e − 07 7:5799e − 08

2−12 2:7908e − 05 7:0926e − 06 1:7869e − 06 3:0461e − 07 7:5949e − 08

2−16 2:7908e − 05 7:0926e − 06 1:7869e − 06 3:0461e − 07 7:5949e − 08

2−18 2:7908e − 05 7:0926e − 06 1:7869e − 06 3:0461e − 07 7:5949e − 08
Result in [23]

2−1 7:32e − 6 1:71e − 6 4:07e − 7 9:85e − 8 2:42e − 8

2−2 2:88e − 5 6:10e − 6 1:37e − 6 3:21e − 7 7:75e − 8

2−4 4:98e − 5 9:33e − 6 1:92e − 6 4:26e − 7 9:96e − 8

2−8 2:34e − 4 4:54e − 5 6:89e − 6 9:22e − 7 1:20e − 7

2−12 2:41e − 4 5:85e − 5 1:43e − 5 3:54e − 6 8:48e − 7

2−16 2:41e − 4 5:85e − 5 1:43e − 5 3:54e − 6 8:80e − 7

2−18 2:41e − 4 5:85e − 5 1:43e − 5 3:54e − 6 8:80e − 7
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To get the values of the coefficients of Equation (35) in
terms of θi, θi+1,Mi, andMi+1, the following are defined:

S sið Þ = θi, S si+1ð Þ = θi+1, s′′ sið Þ =Mi, s′′ si+1ð Þ =Mi+1: ð36Þ

Using simple calculations, the following expressions are
obtained for the coefficients:

ai = θi +
Mi

τ2
,

bi =
θi − θi+1

h
+
Mi+1 −Mi

τθ
,

ci =
Mi cos θ −Mi+1

τ2 sin θ
,

di = −
Mi

τ2
,

ð37Þ

where θ = τh, for i = 0, 1, 2,⋯,N − 1. Using the first deriva-
tive continuity at ðsi, θiÞ, that is Si+1′ ðsiÞ = Si′ðsiÞ, we get the
following relation:

αMi+1 + 2βMi + αMi−1 =
θi−1 − 2θi + θi+1

h2
, for i = 1, 2, 3,⋯,N − 1:

ð38Þ

Here, α = ð−1/θ2Þ + ð1/θ sin θÞ, β = ð1/θ2Þ − ðcos θ/θ sin
θÞ , Mj = θ′′ðsjÞ, j = i − 1, i:i + 1 and θ = τh.

6. Method of Solution

At the grid points si, Equation (25) may be discretised by

εM ν+1ð Þ
j = rν sj

� �
− pν sj

� �
θ′ ν+1ð Þ

sj
� �

− qν sj
� �

θ ν+1ð Þ sj
� �

, ∀j = i, i ± 1:

ð39Þ

Using Equation (39) in Equation (38) and utilising the
first derivatives of θ using the following estimations:

θi+1′ ν+1ð Þ = θi−1 − 4θi + 3θi+1
2h

,

θi−1′ ν+1ð Þ = −3θi+1 + 4θi − θi−1
2h

,

θi′ ν+1ð Þ = 1 + 2ωh2qi+1 + ωh 3pi+1 + pi−1½ �
2h

" #
θi+1

− 2ω pi+1 + pi−1½ �θi −
1 + 2ωh2qi−1 − ωh pi+1 + 3pi−1½ �

2h

" #
θi−1

+ ωh ri+1 − ri−1½ �,
ð40Þ

we get

ε +
3αpi−1h

2
− βpiwh

2 pi+1 + 3pi−1½ � + 2βpiωh
3qi−1 −

αhpi+1
2

− h2αqi−1 + hβpi


 �
θi−1

+ −2ε − 2hαpi−1 + 4βpi 2ω pi+1 + pi−1ð Þ½ � + 2hαpi+1 − 2h2βqi
� 

θi

+ ε +
αhpi−1

2
− βpih

2ω 3pi+1 + pi−1½ � − 2βpih
3ωqi+1 −

3hαpi+1
2

− h2αqi+1 − hβpi


 �
θi+1

= h2 α − 2βhωð Þri−1 + 2βri + α + 2βhωð Þri+1f g:

ð41Þ

Using Equation (41), we have the following tridiagonal
system:

Ei−1θi−1 + Fiθi +Gi+1θi+1 =Hi, for i = 1, 2, 3,⋯,N − 1:
ð42Þ
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Figure 1: Layer profile in Example 1 with ε = 10−1.
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Figure 2: Layer profile in Example 1 with ε = 10−2.
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Here,

Ei−1 = ε + 3αpi−1h
2

− βpiwh
2 pi+1 + 3pi−1½ � + 2βpiωh

3qi−1

−
αhpi+1

2
− h2αqi−1 + hβpi,

Fi = −2ε − 2hαpi−1 + 4βpi 2ω pi+1 + pi−1ð Þ½ � + 2hαpi+1 − 2h2βqi

Gi+1 = ε +
αhpi−1

2
− βpih

2ω 3pi+1 + pi−1½ � − 2βpih
3ωqi+1

−
3hαpi+1

2
− h2αqi+1 − hβpi

Hi = h2 α − 2βhωð Þri−1 + 2βri + α + 2βhωð Þri+1f g: ð43Þ

7. Error Estimate

The truncation error in the proposed numerical scheme is
given by

μi hð Þ = 1 − 2 α + βð Þ½ �h2εθi″+ 4ωε +
1
3

� �
β −

2α
3

� �
Piθ

‴
i




+ −1 − 12αð Þ εθi
4

12
gh4 + o h6

� �
:

ð44Þ

Thus, for different values of ω, α andβ in the approach
(Equation (42)), the following different orders are indicated:

(1) The scheme of Equation (44) yields the second order
approach for any arbitrary choice of α and β with
α + β = 1/2 and for any value of ω

(2) For α = 1/12, β = 5/12, ω = −1/20ε, the scheme Equa-
tion (44) gives the sixth order

Theorem 4. Let Wðν+1Þ
j , j = 0, 1, 2,⋯: N be an approximate

solution to θðν+1ÞðsÞ of Equation (1) obtained by the proposed
method. Then, the required estimate is

max
j

θ
ν+1ð Þ
j −W ν+1ð Þ

j

��� ��� ≤Mh4 1 + e −k1sj/εð Þ + e −k2 1−sjð Þ/εð Þh i
,

ð45Þ

for α = 1/12, β = 5/12, ω = −1/20ε. Here, k1, k2,M are positive
constants, independent of h and ε.

Proof. Using Lemma 3, we have

U 6ð Þ ν+1ð Þ
j =

−p νð Þ 0ð Þ
ε

� �5

exp
−p νð Þ 0ð Þsj

ε

 !
: ð46Þ

Therefore

μj u ν+1ð Þ
� ���� ��� ≤ Mh6

ε5
exp

−p νð Þ 0ð Þsj
ε

 !
: ð47Þ
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Figure 4: Layer profile in Example 2 with ε = 10−2.
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Similarly,

μj ϑ ν+1ð Þ
� ���� ��� ≤ Mh6

ε5
exp

−p νð Þ 1ð Þ 1 − sj
� �
ε

 !
,

z 6ð Þ ν+1ð Þ
j

��� ��� ≤M 1 + ε−5 exp
−c1 1 − sj
� �
ε

 !( )
,

μi z ν+1ð Þ
� ���� ��� ≤Mh6 1 + ε−5 exp

−c1 1 − sj
� �
ε

 !( )
:

ð48Þ

Now,

μi θ ν+1ð Þ
� �

= μi u k+1ð Þ
� �

+ μi ϑ ν+1ð Þ
� �

+ μi z ν+1ð Þ
� �

,

μi θ ν+1ð Þ
� ���� ��� ≤ Mh6

ε5
1 + exp

−p νð Þ 0ð Þsj
ε

 !
+ exp

−p νð Þ 1ð Þ 1 − sj
� �
ε

 !" #
:

ð49Þ

☐

The matrix form of the system Equation (42) is

Aθ ν+1ð Þ = B, l = 0, 1,⋯, ð50Þ

where A is the matrix of the system Equation (42), θðν+1Þ

and B are the corresponding vectors, and μiðθðν+1ÞÞ is the
local truncation error. Thus,

max
j

θ
ν+1ð Þ
j −W ν+1ð Þ

j

��� ��� ≤ A−1		 		 max
j

μi θ ν+1ð Þ
� ���� ���, ν = 0, 1,⋯

ð51Þ

By using a result in [22], we have

A−1		 		 ≤ max
1≤i≤N−1

E νð Þ
i

��� ��� + F νð Þ
i

��� ��� + G νð Þ
i

��� ���n o
, ν = 0, 1,⋯,

ð52Þ

giving kA−1k ≤ 1/ch2.
Therefore,

max
j

θ
ν+1ð Þ
j −W ν+1ð Þ

j

��� ��� ≤Mh4 1 + e −p νð Þ 0ð Þsj/εð Þ + e −p νð Þ 1ð Þ 1−sjð Þð Þ/εð Þh i
,

ð53Þ

for α = 1/12, β = 5/12, ω = −1/20ε. Here, k1, k2,M are posi-
tive constants, independent of h and ε.

8. Numerical Examples

To show the relevance and validity of the approach, it was
implemented for the following problems. The maximum
pointwise errors (MAEs) (EK

N ,ε) are determined by using

the double mesh principle [3]:

EK
N ,ε =max

0≤s≤1
θl
� �N

i
− θl
� �2N

2i

����
����: ð54Þ

Example 1. εθ′′ðsÞ + θðsÞθ′ðs − δÞ − θðsÞ = 0 with the inter-
val and boundary constraints

θ sð Þ = 1,−δ ≤ s ≤ 0, θ 1ð Þ = 1: ð55Þ

Example 2. εθ′′ðsÞ + 2θ′ðs − δÞ − eθðsÞ = 0 with the interval
and boundary constraints

θ sð Þ = 0,−δ ≤ s ≤ 0, θ 1ð Þ = 0: ð56Þ

9. Conclusion

To solve a singularly perturbed nonlinear delay differentia-
tion equation, a computational technique is proposed using
a trigonometric spline. The SPNDDE is reduced into a series
of linear SPDDEs using quasilinearization. A trigonometric
spline approach is suggested to solve the sequence of linear
SPDDEs. The scheme was implemented on two problems.
The values of the maximum absolute errors produced by
the suggested scheme are compared to the results in [15,
23] presented in Tables 1–4. Comparisons reveal that the
suggested scheme outperforms the methods given in [15,
23] in terms of maximum error. Results of simulation have
shown that as we increase the value of the parameter N ,
the accuracy of the computed approximate solutions is sig-
nificantly improved.

In addition, while the error values generally increase as
the perturbation parameter ε decreases, they are usually
within reasonable limits even for small values of it. It is also
worth noting that the approach works well even when h ≥ ε
is used. Figures 1–4 depict the layer behaviour at various δ
values. It has been noticed that when the delay value
increases, the thickness of the boundary layer increases as
well. The simulation results show that the computational
method proposed in this study is capable of giving accurate
results for SPNDDE.

Data Availability

The proposed equations usually play an important role in
illustrating different applications, such as theory of nonpre-
mixed combustion, geodynamics, oceanic and atmosphere
circulation, and chemical reactions.
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