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The log-logistic distribution is widely used in different fields of study such as survival analysis, hydrology, insurance, and
economics. Recently, Ahsanullah and Alzaatreh studied the best linear unbiased estimators for the location and the scale
parameters of the three-parameter log-logistic model. The same authors also propose a shift-invariant Hill estimator for the
unknown shape parameter. In this work, we propose a new estimation method for the shape parameter. We derive its
nondegenerate asymptotic behaviour and analyse its finite sample performance through a Monte Carlo simulation study. To
have precise estimates, we present a method for selecting the threshold. To illustrate the improvement achieved, efficiency
comparisons are also provided.

1. Introduction

Over the last decades, the need to solve problems in a diver-
sity of applied areas, such as finance, hydrology, insurance,
or survival analysis, gave rise to many new statistical distri-
butions in the literature. A significant effort has been made
toward the generalization of some classic distributions. A
common technique consists in adding a parameter to a
well-known distribution. It is often observed that the intro-
duction of such an extra parameter brings more flexibility
to the class of distribution functions. Here, we are interested
in the three-parameter or shifted log-logistic distribution
which is obtained from the classic log-logistic model with
the addition of a location parameter. Thus, a random vari-
able X follows a three-parameter log-logistic distribution if
its probability density function and distribution function
(d.f.) are, respectively, given by

x ∣ α, μ, σð Þ = α x − μð Þ/σð Þα−1
1 + x − μð Þ/σð Þαð Þ2

, x > μ, ð1Þ

F x ∣ α, μ, σð Þ = 1 − 1
1 + x − μð Þ/σð Þα = 1

1 + x − μð Þ/σð Þ−α , x > μ:

ð2Þ
The corresponding quantile function is

QX p ∣ α, μ, σð Þ = μ + σ
p

1 − p

� �1/α
, 0 ≤ p < 1: ð3Þ

The constants α > 0, μ ∈ R, and σ > 0 are the shape, loca-
tion, and scale parameters, respectively. Once there is no
restriction between the values of the parameters, they can
vary freely in the parameter space. If α = 1, X has a location
and scale beta prime distribution. When α > 1, the probabil-
ity density function f is unimodal with mode at the value
μ + σððα − 1Þ/ðα + 1ÞÞ1/α. Since the log-logistic model is
heavy tailed, with a tail index equal to α, the i-th moment
of X is finite only when i < α. In the following, the notation
X ~ llogistðα, μ, σÞ will be used whenever the random vari-
able X has the distribution function in (2). If X ~ llogistðα,
μ, σÞ, then ðX − μÞ/σ, with σ > 0, has a standard log-logistic
distribution, llogistðα, 0, 1Þ, with d.f. given by
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F x ∣ α, 0, 1ð Þ = 1 − 1
1 + xα

, x > 0: ð4Þ

Figure 1 illustrates the probability density function and
cumulative distribution function, for selected values of the
shape parameter of the standard log-logistic distribution.
As noted in [1], the standard log-logistic model is character-
ized by the relation

xf x ∣ α, 0, 1ð Þ = αF x ∣ α, 0, 1ð Þ 1 − F x ∣ α, 0, 1ð Þð Þ, α > 0:
ð5Þ

The three-parameter log-logistic distribution is also
known as a Pareto type III distribution (see Arnold [2]).
Also, the two-parameter log-logistic distribution is a mem-
ber of Burr’s type XII family of distributions [3] and is
known as the Fisk [4] distribution in the economic literature.

The log-logistic distribution in (2) is closely related with the
logistic distribution. More precisely, if X ~ llogistðα, μ, σÞ, then

W = α ln X − μ

σ

� �
, ð6Þ

is a logistic random variable with probability density function
f ðwÞ = ew/ð1 + ewÞ2, w ∈ R.

The half-logistic model, that is, the absolute value of the
standard logistic model is another important model in the
scientific literature. Extensions of the log-logistic or half-
logistic models can be found in Cordeiro et al. [5, 6],
Alizadeh et al. [7], Mohammad [8], Lemonte [9], and
Shakhatreh [10] among others.

Considerable attention has been paid to the estimation of
the model parameters of the log-logistic distribution. Although
more attention has been paid to the two-parameter case, several
estimation procedures for the three-parameter log-logistic
model are already available in the literature. Balakrishnan
et al. [1] derived the best linear unbiased estimators (BLUE)

for the location and scale parameters of a three-parameter
log-logistic model, with a known shape parameter. In practice,
it is unrealistic to assume that the shape parameter α is known,
and it should be estimated. More recently, Ahsanullah and
Alzaatreh [11] considered again the BLUE for the location
and scale parameters of the log-logistic model. The authors
propose the estimation of the shape parameter with the recip-
rocal of a Hill-type estimator applied to a tail sample fraction,
shifted by the sample minimum. Moreover, Ahsanullah and
Alzaatreh [11] proposed a sample fraction of 10%, if the sample
size is greater than 100. However, such a simple suggestion has
no theoretical or empirical support. The main objective of this
paper is to improve the estimation of the shape parameter α of
the log-logistic model. The motivation comes from the fact that
the Hill estimator is biased and the sample fraction proposed in
[11] is nonoptimal.

The paper is organized as follows. Section 2 describes the
estimator proposed [11] and presents two alternative estima-
tors and their asymptotic properties. It is shown that the
estimators are asymptotically normal distributed and the
choice of the sample fraction is discussed. In Section 3, we
introduce a simple threshold selection method. The results
of a Monte Carlo simulation that evaluates the mean value,
the median, the standard deviation, and the root mean
squared error of the estimators under study are reported in
Section 4. Finally, Section 5 concludes the paper.

2. Estimator of the Shape Parameter and
Their Properties

In what follows, we consider the estimation of the shape
parameter of the log-logistic model in (2). We shall assume
that ðX1, X2,⋯, XnÞ is a sample of size n of independent
and identically distributed random variables, with a com-
mon d.f. F, given in (2). All three parameters are assumed
unknown. The corresponding sample of nondecreasing
order statistics is denoted by ðX1:n, X2:n,⋯, Xn:nÞ.
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Figure 1: Plots of the probability density function (a) and cumulative distribution function (a) and for some shape parameter values of the
standard log-logistic distribution.
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2.1. Hill-Type Estimator. Ahsanullah and Alzaatreh [11]
noted that the log-logistic distribution has a Pareto-type tail
behaviour. More precisely, we can write

1 − F x ∣ α, 0, 1ð Þ = x−αl xð Þ, ð7Þ

with α the tail (or Pareto) index and lðxÞ = ð1 + x−αÞ−1, x > 0, a
slowly varying function at infinity. Moreover, since lðxÞ admits
the Taylor expansion lðxÞ = 1 − x−α + oð−xαÞ, as x⟶∞, the
standard log-logistic model belongs to Hall’s subclass (see equa-
tion (1) of [12]) of Pareto-type models with survival function,

1 − F xð Þ = x
c

� �− 1/ξð Þ
1 + β

ρ

x
c

� �ρ/ξ
+ o xρ/ξ
� �� �

, ð8Þ

with ξ > 0, c > 0 is a first-order scale parameter, and ρ < 0
and β are second-order tail parameters. The second-order
parameter ρ quantifies the deviation of the model to the
Pareto distribution. For the standard log-logistic model, we
have ξ = α−1, ρ = −1, and c = β = 1. Therefore, F is in the
max domain of attraction of the extreme value distribution
with a positive shape parameter. This means that there exist
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Figure 2: Simulated mean values (a), median (b), standard deviation (c), and RMSE (d) of the estimators of α, versus k for samples of size
n = 500 drawn from the log-logistic distribution with ðα, μ, σÞ = ð0:5,1, 1Þ.

(i) Generate 5000 samples of size n from a log-logistic distribution, with n taking values between 50 and 2000, with step 50
(ii) Let bα jðk, iÞ denote the estimates based on the i-th sample. For each sample size, compute bα jðk, iÞ, k = 1, 2,⋯, n − 2, i = 1,⋯, 5000
(iii) Compute the empirical root mean squared error as a function of k
(iv) Obtain the level kjðnÞ that minimizes the empirical root mean squared error
(v) Finally, perform a power regression with kjðnÞ as the response variable and the sample size as the predictor variable. The regres-

sion coefficients are the vector values (a1, a2).

Algorithm 1: Method to determine the constants (a1, a2).
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sequences of normalizing constants an > 0 and bn such that
ðXn:n − bnÞ/an converges in distribution to a nondegenerate
random variable with distribution function

EVξ xð Þ =
exp − 1 + ξxð Þ−1/ξ

� �
, 1 + ξx > 0, if ξ ≠ 0,

exp −exp −xð Þð Þ, x ∈ R, if ξ = 0,

8<:
ð9Þ

with a positive shape parameter ξ. This parameter is the so-
called extreme value index. In the statistic literature, one
can find several estimators for ξ or, equivalently, for the
shape parameter α. For a general overview of the available
estimators, we refer to [13, 14]. Whenever working with
Pareto-type models, the Hill estimator [15] is frequently
used to estimate the extreme value index. This estimator
is defined as the average of the log excesses over the thresh-
old u = Xn−k:n > 0,

H kð Þ≔ 1
k
〠
k

i=1
ln Xn−i+1:n − ln Xn−k:n, k = 1, 2,⋯, n − 1,

ð10Þ

where k represents the number of upper order statistics
used in the estimation. For the strict Pareto model, with
d.f. FðyÞ = 1 − ðy/cÞ−α, y > 0, (α > 0, c > 0), the Hill estimator
is consistent and asymptotically unbiased for the estimation of
α−1. Moreover, if k = n − 1, HðkÞ is the maximum likelihood
estimator of the reciprocal of the shape parameter α of the
strict Pareto distribution. If F differs from the strict Pareto
model, HðkÞ is consistent if k is intermediate, i.e., if k =
kn ∈ ½1, n − 1�is a sequence of positive integers satisfying

k⟶∞, k
n
⟶ 0, as n⟶∞: ð11Þ

Also, the variance of HðkÞ decreases and the absolute bias
increases, as k increases. Therefore, the choice of k leads to a
trade-off between the bias and the variance of the estimator.

Many of the estimators that have been suggested to esti-
mate a positive extreme value index, including the one in
(10), are only scale-invariant. A change in the location can
modify the asymptotic behaviour of the tail and the bias of
a location-variant estimator (for more information, see the
papers [16, 17]). The properties of the Hill estimator and
the fact that the d.f. in (2) has a location parameter, lead
Ahsanullah and Alzaatreh [11] to propose the estimation
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Figure 3: Simulated mean values (a), median (b), standard deviation (c), and RMSE (d) of the estimators of α, versus k for samples of size
n = 500 drawn from the log-logistic distribution with ðα, μ, σÞ = ð1:5,0, 1Þ.
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of the shape parameter α with the following location-
invariant Hill-type estimator,

bα1 kð Þ = 1
H∗ kð Þ , H

∗ kð Þ = 1
k
〠
k

i=1
ln Xn−i+1:n − X1:n

Xn−k:n − X1:n
, 1 ≤ k ≤ n − 2:

ð12Þ

The sample values are thus shifted by the sample mini-
mum. In the following, we always add the notation ∗ to
any statistic based on shifted data. Note that the estimator
H∗ðkÞ in (12) is a member of the class of estimators in refer-
ences [16, 18, 19]. Regarding the choice of the parameter k,
Ahsanullah and Alzaatreh [11] proposed k = ½n/10�, if n >
100, where ½x� denotes the integer part of x. In order to
improve the choice of the threshold k, it is crucial to gain
information about the asymptotic behaviour of bα1. We
begin with the following proposition that provides the distri-
butional representation of bα1. The proof can be found in the
appendix.

Proposition 1. Assume that k is an intermediate sequence
of integers satisfying (11). Then, the following distributional
representation

bα1 kð Þ=d α 1 −
Zkffiffiffi
k

p +Op

ffiffiffi
k

p

n

 !
−

k
2n

1 + op 1ð Þ� � !
, ð13Þ

is valid, where Zk is asymptotically standard normal. More-
over, if

ffiffiffi
k

p ðk/2nÞ⟶ c then

ffiffiffi
k

p bα1 kð Þ − αð Þ⟶d
N −αc, α2
� �

: ð14Þ

A typical approach in the literature is to choose the
threshold through the minimization of the asymptotic
mean squared error (AMSE) of bα1ðkÞ. Because such a
choice depends on asymptotic arguments, it may only be
reliable when the sample size becomes large. Alternative
methods for selecting the threshold can be found in refer-
ences [20–23]. From (13), it follows that the AMSE of
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n = 500 drawn from the log-logistic distribution with ðα, μ, σÞ = ð2:5,2, 3Þ.
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bα1ðkÞ is given by

AMSE bα1 kð Þð Þ = α2
1
k
+ k2

4n2

 !
: ð15Þ

Then, the level k0 that minimizes the AMSE in
Equation (15) is asymptotically equivalent to

k 1ð Þ
0 = argmin AMSE bα1 kð Þð Þ½ � = 2n2

� �1/3
: ð16Þ

Furthermore, the level kð1Þ0 leads to a biased estimate of

the α (
ffiffiffiffiffiffiffi
kð1Þ0

q
ðkð1Þ0 /2nÞ⟶ 1/

ffiffiffi
2

p
).

2.2. Alternative Estimators. Despite its wide use to estimate
the extreme value index, the Hill estimator is difficult to
apply in real data problems due to the substantial bias.
This problem motivated several researchers to reduce
the bias of such an estimator and to construct alternative
estimators. Reduced bias estimators of the extreme value

index usually have a stable sample path, close to the tar-
get value, which makes them less sensitive to the choice
of k. We mention the first reduced bias estimators of
the extreme value index in references [24–27] (see also
the papers [28, 29] for a general overview on bias
reduction).

Bias reduction of tail parameter estimators typically
requires the estimation of tail second-order parameters.
However, in the present paper, we are assuming the para-
metric log-logistic distribution, a model within the class
of heavy tailed models in (8), with ðρ, βÞ = ð−1, 1Þ. There-
fore, in this paper, we shall consider two alternative esti-
mators, which provide a reduction of the bias whenever
ðρ, βÞ = ð−1, 1Þ. We shall consider the following alterna-
tive estimators:

bα2 kð Þ = 1
G∗
1 kð Þ , bα3 kð Þ = 1

WH∗ kð Þ , k = 1, 2,⋯, n − 2,

ð17Þ
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Table 1: Simulated values of the optimal sample fraction, mean values, and RMSE at the simulated optimal threshold, computed for the
llogistðα, μ, σÞ model.

n 20 50 100 200 500 1000 2000 5000

α, μ, σð Þ = 0:5,1, 1ð Þ
k̂

1ð Þ
0 /n 0.4500 0.3600 0.2700 0.2200 0.1540 0.1110 0.0980 0.0754

k̂
2ð Þ
0 /n 0.8000 0.7800 0.7600 0.7400 0.7040 0.6410 0.5940 0.5456

E bα1 k̂
1ð Þ
0

� �� �
0.3962 0.4172 0.4412 0.4500 0.4645 0.4741 0.4765 0.4816

E bα2 k̂
2ð Þ
0

� �� �
0.6951 0.5928 0.5584 0.5404 0.5266 0.5174 0.5129 0.5090

RMSE bα1 k̂
1ð Þ
0

� �� �
0.1677 0.1259 0.1002 0.0815 0.0620 0.0501 0.0408 0.0305

RMSE bα2 k̂
2ð Þ
0

� �� �
0.3532 0.1812 0.1207 0.0852 0.0557 0.0406 0.0302 0.0202

α, μ, σð Þ = 1:5,0, 1ð Þ
k̂

1ð Þ
0 /n 0.4000 0.3000 0.2700 0.2150 0.1540 0.1110 0.0980 0.0744

k̂
2ð Þ
0 /n 0.8000 0.7800 0.7600 0.7400 0.7040 0.6410 0.5940 0.5456

E bα1 k̂
1ð Þ
0

� �� �
1.1794 1.2904 1.3065 1.3449 1.3896 1.4203 1.4282 1.4453

E bα2 k̂
2ð Þ
0

� �� �
2.0714 1.7706 1.6712 1.6188 1.5785 1.5513 1.5382 1.5268

RMSE bα1 k̂
1ð Þ
0

� �� �
0.5302 0.3913 0.3081 0.2489 0.1877 0.1512 0.1230 0.0918

RMSE bα2 k̂
2ð Þ
0

� �� �
1.0482 0.5306 0.3559 0.2525 0.1656 0.1210 0.0902 0.0603

α, μ, σð Þ = 2:5,2, 3ð Þ
k̂

1ð Þ
0 /n 0.3500 0.2800 0.2200 0.1750 0.1340 0.1090 0.0870 0.0656

k̂
2ð Þ
0 /n 0.8000 0.7800 0.7800 0.7550 0.7340 0.6860 0.6290 0.5844

E bα1 k̂
1ð Þ
0

� �� �
1.8626 2.0328 2.1485 2.2263 2.2932 2.3333 2.3710 2.4038

E bα2 k̂
2ð Þ
0

� �� �
3.1386 2.7714 2.6780 2.6219 2.5901 2.5635 2.5455 2.5348

RMSE bα1 k̂
1ð Þ
0

� �� �
0.9756 0.7189 0.5638 0.4548 0.3403 0.2706 0.2183 0.1624

RMSE bα1 k̂
2ð Þ
0

� �� �
1.4794 0.7467 0.5109 0.3682 0.2438 0.1810 0.1363 0.0920

α, μ, σð Þ = 4, 2, 0:5ð Þ
k̂

1ð Þ
0 /n 0.3000 0.2200 0.1600 0.1400 0.0900 0.0760 0.0600 0.0430

k̂
2ð Þ
0 /n 0.8000 0.8400 0.8500 0.8600 0.8540 0.8320 0.8045 0.7684

E bα1 k̂
1ð Þ
0

� �� �
2.6513 3.0091 3.2582 3.3449 3.5425 3.6160 3.6949 3.7747

E bα2 k̂
2ð Þ
0

� �� �
4.1997 3.9457 3.9195 3.9602 4.0043 4.0102 4.0082 4.0095

RMSE bα1 k̂
1ð Þ
0

� �� �
1.7873 1.3664 1.1050 0.9007 0.6932 0.5593 0.4547 0.3429

RMSE bα2 k̂
2ð Þ
0

� �� �
1.8306 0.9646 0.6696 0.4872 0.3233 0.2392 0.1802 0.1243
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where

G∗
1 kð Þ = M 2ð Þ∗ kð Þ − M 1ð Þ∗ kð Þ� �2

M 1ð Þ∗ kð Þ =MR∗ kð Þ −H∗ kð Þ, k = 1, 2,⋯, n − 2,

ð18Þ

M jð Þ∗
n kð Þ≔ 1

k
〠
k

i=1
ln Xn−i+1:n − X1:n

Xn−k:n − X1:n

� �j

, j > 0, M 1ð Þ∗
n kð Þ ≡H∗ kð Þ

� �
,

ð19Þ
are the moments of order j of the shifted log-excesses.
The statistic WH∗ is defined as

WH∗ kð Þ = 1
k
〠
k

i=1
4 1 − i

k + 1

� �
ln Xn−i+1:n − X1:n

Xn−k:n − X1:n

� �
, k = 1, 2,⋯, n − 2:

ð20Þ

Both statistics in (18) and (20) are data-shifted ver-
sions of statistics already considered in the literature.
The nonshifted version of (18) was first introduced in
[30], a particular case of a generalized Jackknife statistic
based on the Hill and the moment ratio (MR) [31] esti-
mators. Moreover, both HðkÞ and MRðkÞ are members of
Lehmer mean-of-order-p class of extreme value index
estimators studied in [32, 33]. The nonshifted version of
the estimator G∗

1 ðkÞ was also independently introduced
in [34] (see also [35]). The statistic in (20) is a location
invariant modification of the class of weighted Hill esti-
mators introduced in [36]. Next, we provide the asymp-
totic representation of the alternative estimators in (17).
We do not provide proofs, since the arguments required
to obtain the results are similar to the ones provided in
the proof of Proposition 1 and in references [30, 36].

Proposition 2. Assume the conditions of Proposition 1. Then,
the following distributional representation holds:

bα2 kð Þ=d α 1 −
ffiffiffi
5

p
Zkffiffiffi
k

p +Op

ffiffiffi
k

p

n

 !
+ op

k
2n

� �
1 + op 1ð Þ� � !

,

ð21Þ

bα3 kð Þ=d α 1 −
2Zkffiffiffi
k

p +Op

ffiffiffi
k

p

n

 !
+ op

k
2n

� �
1 + op 1ð Þ� � !

,

ð22Þ
where Zk is an asymptotically standard normal variable.
Moreover, if

ffiffiffi
k

p ðk/2nÞ⟶ c, thenffiffiffi
k

p bα2 kð Þ − αð Þ⟶d
N 0, 5α2
� �

,
ffiffiffi
k

p bα3 kð Þ − αð Þ⟶d
N 0, 4α2
� �

:

ð23Þ

Regarding the asymptotic variances, note that we have
Vðbα1ðkÞÞ <Vðbα3ðkÞÞ < Vðbα2ðkÞÞ. The absolute asymptotic
bias of either bα2ðkÞ or bα3ðkÞ is null, while the absolute
asymptotic bias of bα1ðkÞ is ∣Biasðbα1ðkÞÞ ∣ = k/2n. Moreover,

the results in (21) and (22) do not allow to evaluate the
asymptotic optimal value of k. To find such an optimal
value, it is necessary to obtain higher-order terms of the
asymptotic expansion of bias. The major drawback of such
an approach is that it can lead to inaccurate results for small
sample sizes. For that reason, we shall address the choice of k
in the next section.

3. A Threshold Selection Method

In practice, the threshold is fundamental to obtain accu-
rate estimates, and it must be chosen before applying
any of the aforementioned estimators of the parameter α.
The naive method of selecting the top 10% of the data is
extremely simple but has some drawbacks. Since such a
threshold is not an intermediate sequence, it is not well
supported by the theory. To have precise estimates for
small sample sizes, we now propose a method for selecting
the threshold that combines theoretical and empirical
results. Hall [12] noted that the optimal performance of
the Hill estimator is achieved if k =Oðδ1nδ2Þ for some δ1
> 0 and δ2 ∈ ½0, 1�. Such a result also holds for other esti-
mators of α, with a similar limit distribution. In the fol-
lowing, let bα jðkÞ denote any of the aforementioned
estimators of the shape parameter. We propose the follow-
ing threshold selection procedure:

kj = kj nð Þ = a1n
a2b c, ð24Þ

with a1 > 0 and a2 ∈ ð0, 1Þ as suitable real numbers, chosen
independently for each estimator. Additionally, it is worth
noting that, at least for the estimator bα1ðkÞ, the constants a1
and a2 are asymptotically independent of any parameter of
the log-logistic model in (2). We propose Algorithm 1 to
obtain empirically both constants (a1, a2) in (24).

0 500 1000 1500 2000
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K1/n
K2(n)/n
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n

1.3n0.66/n
1.1n0.922/n

Figure 6: Simulated mean values of the optimal sample fraction forbα1ðkÞ and bα2ðkÞ and the corresponding regression curves.
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Remark 3. The constants in the first step of Algorithm 1 can be
changed to modify the precision of the estimates of (a1, a2).

4. Numeric Results

In this section, we use Monte Carlo simulation to study and
compare the finite-sample properties of the estimators of the
shape parameter α, in (12) and (17). For comparison pur-
poses, we also include the reciprocal of the Hill estimator,bαH = 1/HðkÞ, with HðkÞ in (10). All the computations were
done using R [37] software. We generated 5000 samples of
size n from the log-logistic model with the same set of

parameters considered in paper [11], that is,

α, μ, σð Þ = 0:5,1, 1ð Þ,
α, μ, σð Þ = 1:5,0, 1ð Þ,
α, μ, σð Þ = 2:5,2, 3ð Þ,
α, μ, σð Þ = 4, 2, 0:5ð Þ:

ð25Þ

For the sample size n, we considered values between 50
and 5000. Let bα · ðkÞ, with ·∈f1, 2, 3,Hg, denote any of the
aforementioned estimators under study. For each sample,
the estimates of α are first computed for every k. We then

Table 2: Simulated mean value and RMSE of the estimators bα∗
j , j = 1, 2, 3.

20 50 100 200 500 1000 2000 5000

α, μ, σð Þ = 0:5,1, 1ð Þ
E bα∗

0
� �

0.8577 0.5804 0.5199 0.4955 0.4815 0.4774 0.4760 0.4748

E bα∗
1

� �
0.3962 0.4250 0.4412 0.4526 0.4639 0.4704 0.4765 0.4826

E bα∗
2

� �
0.7148 0.5962 0.5584 0.5389 0.5240 0.5174 0.5139 0.5100

RMSE bα∗
0

� �
1.3470 0.3452 0.1803 0.1135 0.0698 0.0512 0.0408 0.0325

RMSE bα∗
1

� �
0.1677 0.1262 0.1002 0.0818 0.0621 0.0503 0.0408 0.0306

RMSE bα∗
2

� �
0.3650 0.1818 0.1207 0.0854 0.0560 0.0406 0.0303 0.0203

α, μ, σð Þ = 1:5,0, 1ð Þ
E bα∗

0
� �

2.5008 1.7205 1.5499 1.4807 1.4415 1.4304 1.4268 1.4237

E bα∗
1

� �
1.1078 1.2414 1.3065 1.3491 1.3879 1.4093 1.4282 1.4474

E bα∗
2

� �
2.1729 1.7834 1.6712 1.6139 1.5706 1.5513 1.5411 1.5298

RMSE bα∗
0

� �
3.8964 1.0149 0.5355 0.3391 0.2097 0.1541 0.1231 0.0980

RMSE bα∗
1

� �
0.5365 0.3924 0.3081 0.2493 0.1880 0.1520 0.1230 0.0922

RMSE bα∗
2

� �
1.1515 0.5347 0.3559 0.2531 0.1665 0.1210 0.0903 0.0607

α, μ, σð Þ = 2:5,2, 3ð Þ
E bα∗

0
� �

3.8239 2.7151 2.4844 2.3968 2.3540 2.3476 2.3501 2.3533

E bα∗
1

� �
1.6140 1.9042 2.0571 2.1622 2.2573 2.3097 2.3527 2.3950

E bα∗
2

� �
3.3060 2.7909 2.6644 2.6051 2.5627 2.5461 2.5393 2.5302

RMSE bα∗
0

� �
5.8773 1.5590 0.8494 0.5547 0.3584 0.2719 0.2217 0.1785

RMSE bα∗
1

� �
1.0385 0.7497 0.5832 0.4643 0.3451 0.2760 0.2211 0.1635

RMSE bα∗
2

� �
1.6688 0.7516 0.5123 0.3717 0.2496 0.1835 0.1373 0.0923

α, μ, σð Þ = 4, 2, 0:5ð Þ
E bα∗

0
� �

5.2055 3.8334 3.5848 3.5134 3.5073 3.5357 3.5697 3.6099

E bα∗
1

� �
2.0964 2.5999 2.8959 3.1196 3.3372 3.4675 3.5746 3.6860

E bα∗
2

� �
4.4281 3.8722 3.7920 3.7822 3.7981 3.8234 3.8520 3.8817

RMSE bα∗
0

� �
7.8812 2.1558 1.2880 0.9334 0.6941 0.5778 0.5004 0.4228

RMSE bα∗
1

� �
2.0392 1.5397 1.2340 0.9990 0.7595 0.6148 0.4974 0.3714

RMSE bα∗
2

� �
2.0809 0.9698 0.7181 0.5600 0.4120 0.3239 0.2544 0.1847

9Computational and Mathematical Methods



calculate the mean value (E), the median, the standard devia-
tion (SD), and the root mean squared error (RMSE) for each k.
We have further computed the simulated optimum level:

k̂
•ð Þ
0 = arg min

k
RMSE bα• kð Þ½ �, ð26Þ

and the simulated previous characteristics at the optimal level
in (26). Furthermore, since the exact minimizer of the RMSE is
not known, we also study the estimators with the level pro-
posed in Section 3.

4.1. Results for Every Value of k. In Figures 2–5, we present
the Monte Carlo estimates of the mean value (top left), the
median (top right), the SD (bottom left), and the RMSE,
with respect to k, for the four different estimators. The hor-
izontal solid line, at the top plots, indicates the true value of
the parameter α. A good performance is assessed by the flat-
ness of the curves of the mean value/median in a large con-
tinuous region of values of k, close to the true value of α and
by a small RMSE in such a region. A small RMSE without a
stability region, of the estimates of the mean value/median,
may not be useful in practical applications.

In all of the figures, estimator bα1ðkÞ shows a decreasing
negative bias and the smallest standard deviation, as a func-
tion of k. The performance of the location-variant estimatorbαHðkÞ is affected by the values of the location and shape
parameters. It can perform equally, worse, or better than
the location invariant estimator bα1ðkÞ. Also, in all of the fig-
ures, bα2ðkÞ and bα3ðkÞ provide a region with a stable sample
path of the mean value and median of the estimates, as
expected. However, the mean value plots suggest that bα3ðkÞ
does not provide good estimates if k is very small or very large.
This problem occurs only in a few generated samples. Based
on the simulation results, bα2ðkÞ provides globally a good bias
and RMSE patterns as a function of k. Therefore it constitutes
an important estimation procedure for the shape parameter α.

4.2. Results for the Optimal Level of k. We now compare the
performance of the estimators at their simulated optimal
level. The exact optimal value of k provides a benchmark
of the best possible performance obtainable with each
estimator of α. Notice that in practice, such an optimal level
may not be achieved. For the sake of simplicity, we excluded
the estimators bαHðkÞ and bα3ðkÞ, the first due to the mixed per-
formance, the second because it is less efficient than bα2ðkÞ.
Thus, we only provide results for the estimator bα1ðkÞ, sug-
gested in [11], and bα2ðkÞ, the estimator that provided a good
performance for the four sets of the model parameters. The
simulated values of the optimal sample fraction (the optimal
level divided by the sample size), mean value, and RMSE, both
computed at the simulated optimal threshold, are given in
Table 1. Values associated to a smaller absolute bias and
smaller RMSE are presented in bold.

Notice that the bα2ðkÞ has always an optimal level much
higher than bα1ðkÞ. At their corresponding optimal level,bα1 gives better results for small sample sizes (n < 500 if
α = 0:5or 1.5, n < 100 if α = 2:5, and n < 50 if α = 4). For large
values of n, bα1 is less biased and provides a smaller RMSE.

4.3. Results for the Proposed Level k. In this section, we study
the distributional properties of the estimators, based on the
tail data defined by the threshold proposed in (26). Again,
we restrict ourselves to the estimators bα1ðkÞ and bα2ðkÞ in
(12) and (17), respectively.We applied algorithm 3 to samples
of the log-logistic model with parameters ðα, μ, σÞ = ð0:5,1, 1Þ.
The algorithm provided the thresholds

k1 = 1:3n0:66
	 


for bα1 kð Þ and k2 = 1:1n0:922
	 


for bα2 kð Þ: ð27Þ

Figure 6 presents the empirical optimal sample fraction
and the corresponding regression curve for both estimators.
The overall agreement between empirical and fitted values is
quite good.

Next, we provide numerical results of the finite sample
performance of the estimators with the thresholds proposed
in [11] and (27). More precisely, the following estimators are
considered:

bα∗
0 = bα1 0:1nb cð Þ,bα∗
1 = bα1 1:3n0:66

� �� �
,

bα∗
2 = bα2 1:1n0:922

� �� �
:

ð28Þ

From the simulation results obtained in Section 4.1, for
every value of k, we obtained the mean value and the root
mean squared error of the estimators under study. Results
are presented in Table 2.

When looking at the empirical bias, bα∗
0 achieves the

smallest absolute bias if α < 4 and the sample size has a mod-
erate size (usually between 50 and 500). Otherwise, bα∗

0 has
usually the smallest absolute bias. In terms of RMSE, the
threshold approach in (27) compared favourably to the
threshold proposed in [11]. If the sample size is small, bα∗

1
provides the smallest RMSE. Otherwise, bα∗

2 has the smallest
RMSE. For all sets of parameters, the values of RMSE of α∗1
and α∗2 are very close to the corresponding optimal level in
Table 1.

5. Conclusion

It is known that the Hill estimator can be seriously biased.
To deal with this problem, we introduced two reduced bias
estimators for the shape parameter of the log-logistic model
and established its asymptotic normality. Additionally, we
improved earlier guidelines for the choice of the threshold.
Also, the presented simulation study shows improvements
in the estimation of the shape parameter when compared
to the classical estimation method in Ahsanullah and
Alzaatreh [11]. These improvements are more pronounced
if the sample size is large. We conclude by noting that the
approach taken in this paper could be applicable to other
bias-reduced estimators. Therefore, further research con-
cerning alternative estimators of the shape parameter will
be taken in the future.
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Appendix

A.1. Proofs

A.1. Preliminary Results. Here, we provide several lemmas
that are useful in the derivation of the asymptotic properties
of the estimators. Let E1:n, E2:n,⋯, En:n be the order statistics
from n mutually independent and identically distributed
exponential random variables Ei, 1 ≤ i ≤ n, with a common
distribution function FEðxÞ = 1 − e−x, x > 0.

lim
t⟶∞

Q 1 − 1/txð Þ/Q 1 − 1/tð Þ − xξ

A tð Þ = xξ
xρ − 1
ρ

, ðA:3Þ

for all x > 1, where ξ > 0 and ρ are, respectively, positive and
negative real numbers and the function AðtÞ satisfies for any
x > 0,

lim
t⟶∞

A txð Þ
A tð Þ = xρ: ðA:4Þ

Lemma 1 (see Balakrishnan and Basu [38]). Considering the
convention that E0:n ≡ 0, we have

Ej:n − Ei:n =
d Ej−i:n−i, 1 ≤ i ≤ j ≤ n: ðA:1Þ

Lemma 2 (see Girard [39]). Suppose k is an intermediate
sequence, i.e., (11) holds. Then,

En−i+1:n
ln n/ið Þ⟶

p
1,  i = 1,⋯, k: ðA:2Þ

Lemma 3 (see Santos et al. [19]). Assume that the quantile
function Q satisfies the following second order regular varia-
tion condition

Then, for any intermediate sequence k, such as
k = kðnÞ⟶∞ and k/n⟶ 0,

1
k
〠
k

i=1
ln

Xn−i+1:n − X np½ �+1:n
Xn−k:n − X np½ �+1:n

−
1
k
〠
k

i=1
ln

Xn−i+1:n − χp

Xn−k:n − χp

= op
1

Q 1 − k/nð Þ
� �

,

ðA:5Þ

where χp denotes the quantile of order pð0 ≤ p < 1Þ
for the random variable X.

A.2. Proof of Proposition 1. First notice that condition (A.3)
holds for the quantile function in (3) and X1:n ⟶

p χ0 =
QXð0 ∣ α, μ, σÞ = μ. Then, using Lemma 6,

H∗ kð Þ = 1
k
〠
k

i=1
ln Xn−i+1:n − X1:n

Xn−k:n − X1:n
=d 1
k
〠
k

i=1
ln Xn−i+1:n − μ

Xn−k:n − μ
:

ðA:6Þ

Let us now define the random variable X∗ = ðX − μÞ/σ,
i = 1,⋯, n. From the inverse probability integral transform,

we have that X∗ = d QX∗ð1 − e−EÞ = ðeEð1 − e−EÞÞ1/α ~ llogist
ðα, 0, 1Þ and X∗

i:n = d QX∗ð1 − e−Ei:nÞ, 1 ≤ i ≤ n. We then have

H∗ kð Þ=d 1
k
〠
k

i=1
ln X∗

n−i+1:n
X∗
n−k:n

=d 1
k
〠
k

i=1
ln QX∗ 1 − e−En−i+1:n

� �
QX∗ 1 − e−En−k:nð Þ

= 1
k α

〠
k

i=1
ln eEn−i+1:n 1 − e−En−i+1:n

� �
eEn−k:n 1 − e−En−k:nð Þ

= 1
α

1
k
〠
k

i=1
En−i+1:n − En−k:nð Þ + 1

k
〠
k

i=1
ln 1 − e−En−i+1:n

1 − e−En−k:n

 !
:

ðA:7Þ

Using Lemma 4 and the Taylor approximation ln
ð1 + xÞ ~ x, as x⟶ 0

H∗ kð Þ=d 1
α

1
k
〠
k

i=1
Ek−i+1:k +

1
k
〠
k

i=1
e−En−k:n − e−En−i+1:n
� � !

= 1
α

1
k
〠
k

i=1
Ei +

1
k
〠
k

i=1
e−En−k:n 1 − e−En−i+1:n+En−k:n

� � !

=d 1
α

1
k
〠
k

i=1
Ei + e−En−k:n

1
k
〠
k

i=1
1 − e−Ek−i+1:k
� � !

= 1
α

1
k
〠
k

i=1
Ei + e−En−k:n 1 − 1

k
〠
k

i=1
e−Ei

 ! !
:

ðA:8Þ

From the weak law of large numbers, ð1/kÞ∑k
i=1

e−Ei ⟶p 1/2. Also using Lemmas 4 and 5, we have

H∗ kð Þ=d 1
α

1 + Zkffiffiffi
k

p + 1
2 e

−ln n/kð Þ 1 + op 1ð Þ� �� �
, ðA:9Þ

where Zk =
ffiffiffi
k

p ð1/kÞ∑k
i=1 ðEi − 1Þ is an asymptotic standard

normal random variable by the central limit theorem. After
an application of the Taylor series, (13) and (14) follow
straightforwardly.
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