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The notion of a coherent system allows us to formalize how the random lifetime of the system is connected to the random
lifetimes of its components. These connections are also generators of new pliant distributions, being those of various mixes of
minimum and maximum of random variables. In this paper, a new four-parameter lifetime probability distribution is
introduced by using the notion of a coherent system. Its structural properties are assessed and evaluated, including the
analytical study of its main functions, stochastic dominance results, moments, and moment generating function. The proposed
distribution, in particular, is proving to be efficient at fitting data with slight negative skewness and platykurtic as well as
leptokurtic nature. This is illustrated by the analysis of three relevant real-life data sets, two in reliability and another in
production, exhibiting the significance of the introduced model in comparison to various well-known models in statistical
literature.

1. Introduction

Coherent systems are very important in reliability theory
and data analysis. A n-component system is said to be
coherent if its structure function is monotonic (that is, the
improvement of components cannot lead to a deterioration
in system performance), and it contains no irrelevant com-
ponents (that is, all components have an effect on system
performance). The detailed descriptions of various coherent
systems can be found in [1–3]. Many authors have studied
the reliability properties of coherent systems. Special atten-
tion has been paid to independent and identically distributed
coherent systems and, in particular, to k out-of-n (order sta-
tistics), parallel, and series systems. Recently, some authors
have started to study systems with dependence structures
(see, for example, [4–7]). In this study, the following coher-

ent system is considered. Consider a system having three
components, numbered by I, II, and III, the component II
I playing a central role. Assume that the components I, III
, and II are ordered in a straight line, and that the system
works if there are at least two consecutively working compo-
nents, i.e., IN ↦ðIÞ↦ ðIIIÞ⇌ðIIÞ↦ OUT, where for
instance, ðIÞ⇌ðIIÞ means that I and III are consecutive
and connected; if one of the two component falls, their con-
nection ends. This system is evoked in [8] as a consecutive 2
-out-of-3 system. Hence, the lifetimes of the components I,
II, and III can be modeled as three random variables, say
U1, U2, and U3, respectively. Here, we suppose that they
are independent and subjected to the following distribu-
tional assumptions: U1 follows the exponential distribution
with parameter λ1 > 0, U2 follows the exponential distribu-
tion with parameter λ2 > 0, and U3 follows the Weibull
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distribution with scale parameter β > 0 and shape parameter
θ > 0. That is, their respective cumulative distribution func-
tions (cdfs) are given as

FU1
xð Þ = 1 − e−λ1x, FU2

xð Þ = 1 − e−λ2x, FU3
xð Þ = 1 − e−βx

θ , x > 0,
ð1Þ

and all equals 0 otherwise. Note that the distribution of U3 is
supposed to bemore flexible to the other because of the pivotal
role of the component III in the system; if III falls first, the
lifetime of the system is U3. More generally, the lifetime of
the system can be modeled by a random variable T such that

T =max min U1,U3ð Þ, min U2,U3ð Þ½ �: ð2Þ

Here, the four-parameter distribution of T is called the
special coherent system (SCS) distribution. To our knowl-
edge, the SCS distribution is not listed in the literature,
despite its simple physical interpretation and the potential
for various statistical purposes. The objective of this study
is to explore the basics of the SCS distribution, beginning
with the study of its determinant functions, such as the
cumulative distribution function, probability density func-
tion (pdf) and hazard rate function (hrf). In particular,
we emphasize the fact that the SCS distribution is adapted
to fit data having various skewness and kurtosis natures.
Several results on stochastic ordering are discussed. Also,
the moments and moment generating functions are devel-
oped. Then, the inference for the SCS model is explored
through the use of the maximum likelihood method. We
show how the SCS model can be applied quite efficiently
to fit three important real-life data sets, being more relevant
in comparison to various well-known models in the statisti-
cal literature.

The paper is divided into the following sections. Section
2 describes the main interesting functions of the SCS distri-
bution along with a graphical analysis. Some of its properties
are discussed in Section 3. The parametric inference is stud-
ied in Section 4, with simulation studies to verify the perfor-
mance of the obtained estimates. Section 5 ends the practical
study of the SCS distribution by showing how it can be
applied to analyze three data sets. Section 6 ends the paper
with a conclusion.

2. Functions

In this section, the main functions of the SCS distribution
are presented. We recall that any random variable following
the SCS distribution can be expressed as (2). We thus logi-
cally denote such a random variable as T . The cdf of T is
expressed in the result below.

Proposition 1. The cdf of T can be expressed as

FT xð Þ = 1 − e−βx
θ

e−λ1x + e−λ2x − e− λ1+λ2ð Þx
� �

, x > 0, ð3Þ

and it equals to 0 if x ≤ 0.

Proof. Let SU1
ðxÞ = e−λ1x, SU2

ðxÞ = e−λ2x, SU3
ðxÞ = e−βx

θ
, x > 0,

and all equals to 1, otherwise, be the survival functions of U1
, U2, and U3, respectively. By using all the assumptions
made on U1, U2, and U3, by applying diverse standard prob-
abilistic results, for x > 0, we get
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Figure 2: Plots of the pdf for different combinations of the
distribution parameters.
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Figure 1: Plots of the cdf for different combinations of the
distribution parameters.
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FT xð Þ = P T ≤ xð Þ = P max min U1,U3ð Þ, min U2,U3ð Þ½ � ≤ xf g
= P min U1,U3ð Þ ≤ x and min U2,U3ð Þ ≤ x½ �
= 1 − P min U1,U3ð Þ > x or min U2,U3ð Þ > x½ �
= 1 − P U1 > x,U3 > xð Þ + P U2 > x,U3 > xð Þ − P U1 > x,U2 > x,U3 > xð Þ½ �
= 1 − SU3

xð Þ SU1
xð Þ + SU2

xð Þ − SU1
xð ÞSU2

xð Þ� �
= 1 − e−βx

θ

e−λ1x + e−λ2x − e− λ1+λ2ð Þx
� �

:

ð4Þ

This ends the proof of Proposition 1.

Figure 1 gives plots of FTðxÞ for different combinations
of the distribution parameters.

Figure 1 demonstrates that the cdf curve of the SCS dis-
tribution is pliant enough to present concave or convex
shapes.

As second important function, the pdf of the SCS distri-
bution is obtained as, for x > 0, f TðxÞ = FT′ ðxÞ, that is

f T xð Þ = e−βx
θ

βθxθ−1 + λ1
� �

e−λ1x + βθxθ−1 + λ2
� �

e−λ2x
h

− βθxθ−1 + λ1 + λ2
� �

e− λ1+λ2ð Þx
i
,

ð5Þ

and it equals to 0 otherwise. Thus, one can write f TðxÞ as
f TðxÞ =wðxÞf U3

ðxÞ, where

w xð Þ = 1 + λ1
βθ

x1−θ
� �

e−λ1x + 1 + λ2
βθ

x1−θ
� �

e−λ2x

− 1 + λ1 + λ2
βθ

x1−θ
� �

e− λ1+λ2ð Þx, x > 0,
ð6Þ

and it equals to 0 otherwise. Hence, f TðxÞ is a weighted ver-
sion of the Weibull distribution with parameters β and θ.

As immediate properties, for θ < 1, we have limx⟶0 f Tð
xÞ = +∞; for θ = 1, we have f Tð0Þ = β and, for θ > 1, we have
limx⟶0 f TðxÞ = 0. In all cases, we have limx⟶+∞ f TðxÞ = 0.

Figure 2 presents plots of f TðxÞ for different combina-
tions of the distribution parameters.

From Figure 2, we see that the pdf curve can be decreasing
or has right skewed as well as left skewed bell shapes. Also, var-
ious kurtosis properties are observed. These observations
make the relatedmodel ideal for the fit of various lifetime data.

Based on (3), the survivor function of the SCS distribu-
tion is obtained as STðxÞ = 1 − FTðxÞ; that is,

ST xð Þ = e−βx
θ

e−λ1x + e−λ2x − e− λ1+λ2ð Þx
� �

, x > 0, ð7Þ

and it equals to 1 otherwise. Also, based on (5) and (7), the
hrf of the SCS distribution can be expressed as hTðxÞ = f Tð
xÞ/STðxÞ, that is, after some developments,

hT xð Þ = βθxθ−1 + λ1e
−λ1x + λ2e

−λ2x − λ1 + λ2ð Þe− λ1+λ2ð Þx

e−λ1x + e−λ2x − e− λ1+λ2ð Þx , x > 0,

ð8Þ

and it equals to 0 otherwise. Therefore, we can write hTðxÞ
= βhU3

ðxÞ +w∗ðxÞ, where

w∗ xð Þ = λ1e
−λ1x + λ2e

−λ2x − λ1 + λ2ð Þe− λ1+λ2ð Þx

e−λ1x + e−λ2x − e− λ1+λ2ð Þx , x > 0, ð9Þ

and it equals to 0 otherwise, and hU3
ðxÞ denotes the hrf of

U3.
We can see how the new system can make the hrf of the

Weibull distribution more flexible because w∗ðxÞ is a non-
monotonic function that depends on λ1 and λ2. Figure 3
gives plots of the hrf for different combinations of the distri-
bution parameters.

In Figure 3, we observe that the hrf presents increasing,
decreasing, and J and shapes which are of interest for
modeling various lifetime data.

3. Properties

Here, some properties of the SCS distribution are investi-
gated. We recall that T denotes a random variable following
the SCS distribution, i.e., as defined in (2), and with the cdf
specified by (3).

3.1. Stochastic Dominance. Some stochastic dominance
properties of the SCS distribution are described in the prop-
osition below.
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Figure 3: Plots of the hrf for different combinations of the
distribution parameters.
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Proposition 2. Let FTðx ; β, λ1, λ2, θÞ = FTðxÞ be (3). Then,
the following stochastic dominances hold:

(i) For β∗ ≥ β, we have FTðx ; β, λ1, λ2, θÞ ≤ FTðx ; β∗,
λ1, λ2, θÞ

(ii) For λ∗1 ≥ λ1, we have FTðx ; β, λ1, λ2, θÞ ≤ FTðx ; β,
λ∗1 , λ2, θÞ

(iii) For λ∗2 ≥ λ2, we have FTðx ; β, λ1, λ2, θÞ ≤ FTðx ; β,
λ1, λ∗2 , θÞ

(iv) For θ∗ ≥ θ and x ≥ 1, we have FTðx ; β, λ1, λ2, θÞ ≤
FTðx ; β, λ1, λ2, θ∗Þ, and for x < 1, the reversed
inequality holds

Proof. Firstly, these inequalities are straightforward for x ≤ 0.
The first three inequalities are equivalent to say that FTðx ;
β, λ1, λ2Þ is an increasing function with respect to β, λ1,
and λ2, independently. For x > 0, the following results hold:

∂
∂β

FT x ; β, λ1, λ2ð Þ = xθ eλ1x + eλ2x − 1
� �

e− λ1+λ2ð Þxe−βx
θ > 0,

ð10Þ

implying that FTðx ; β, λ1, λ2Þ is an increasing function with
respect to β,

∂
∂λ1

FT x ; β, λ1, λ2ð Þ = x eλ2x − 1
� �

e− λ1+λ2ð Þxe−βx
θ > 0, ð11Þ

implying that FTðx ; β, λ1, λ2Þ is an increasing function with
respect to λ1, and

∂
∂λ2

FT x ; β, λ1, λ2ð Þ = x eλ1x − 1
� �

e− λ1+λ2ð Þxe−βx
θ > 0, ð12Þ

implying that FTðx ; β, λ1, λ2Þ is an increasing function with
respect to λ2.

For the last inequality, note that

∂
∂θ

FT x ; β, λ1, λ2ð Þ = βxθ log xð Þ eλ1x + eλ2x − 1
� �

e− λ1+λ2ð Þxe−βx
θ

:

ð13Þ

All the main multiplicative terms are positive, except
log ðxÞ. Therefore, the sign of this derivative function is the
one of log ðxÞ. Hence, FTðx ; β, λ1, λ2Þ is an increasing func-
tion with respect to θ for x ≥ 1 and a decreasing function
with respect to θ for x < 1. Proposition 2 is proved.

Another stochastic order result involving simple distri-
butions is presented below.

Table 1: Simulation study of MLEs for the proposed model.

Parameter n
λ1 = 0:1, λ2 = 0:2, β = 0:1, θ = 0:3 λ1 = 0:5, λ2 = 0:8, β = 0:6, θ = 0:9

Bias Var MSE CP Bias Var MSE CP

λ1

25

0.021114 0.002115 0.002561 0.889 0.205723 2.193071 2.235393 0.919

λ2 -0.03953 0.062169 0.063732 0.921 0.132916 0.690794 0.70846 0.911

β 0.042505 0.008775 0.010581 0.941 0.000567 0.123177 0.123178 0.951

θ 0.116879 0.222573 0.236234 0.917 0.017071 0.095244 0.095535 0.917

λ1

50

-0.008200 0.001106 0.001174 0.939 0.32076 0.617408 0.720295 0.929

λ2 0.036686 0.05765 0.058996 0.942 0.044022 0.232803 0.234741 0.922

β 0.015211 0.00755 0.007781 0.946 -0.1001 0.075348 0.085368 0.933

θ 0.122715 0.199639 0.214698 0.925 -0.12145 0.060964 0.075715 0.937

λ1

100

-0.00087 0.001028 0.001028 0.949 -0.00044 0.15383 0.153830 0.942

λ2 0.010637 0.01313 0.013243 0.952 0.12464 0.206504 0.222039 0.949

β -0.01046 0.001511 0.00162 0.948 -0.01268 0.075396 0.075557 0.967

θ 0.173295 0.114213 0.144244 0.955 -0.03226 0.054359 0.0554 0.951

λ1

300

0.013048 0.00065 0.00082 0.959 0.082777 0.04763 0.054482 0.956

λ2 0.010905 0.009139 0.009258 0.957 0.094535 0.114553 0.12349 0.955

β -0.00537 0.001055 0.001084 0.949 -0.06717 0.030705 0.035217 0.951

θ 0.151536 0.108245 0.131208 0.965 -0.04193 0.013846 0.015605 0.959

λ1

500

0.002621 0.000482 0.000489 0.967 0.008584 0.049028 0.049102 0.959

λ2 0.006849 0.001234 0.00128 0.977 -0.04306 0.063105 0.064959 0.966

β -0.00772 0.001023 0.001083 0.973 0.03503 0.020659 0.021886 0.972

θ 0.043243 0.083642 0.085512 0.962 0.004247 0.008681 0.008699 0.959
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Table 2: Simulation study of MLEs for the proposed model.

Parameter n
λ1 = 1:5, λ2 = 1:2, β = 0:9, θ = 0:6 λ1 = 1:6, λ2 = 1:8, β = 1:4, θ = 1:5

Bias Var MSE CP Bias Var MSE CP

λ1

25

0.258307 1.685182 1.751905 0.929 -0.67831 1.260407 1.720518 0.828

λ2 -0.105120 0.534711 0.545761 0.879 -0.0423 2.246578 2.248367 0.914

β 0.077258 0.262241 0.268210 0.944 0.568665 0.643097 0.966477 0.953

θ -0.008806 0.051804 0.051882 0.937 0.451302 1.185069 1.388742 0.913

λ1

50

0.244534 1.407408 1.467205 0.938 -0.50457 0.917448 1.172044 0.927

λ2 -0.101305 0.222697 0.232960 0.951 0.044837 1.742389 1.744399 0.942

β 0.056540 0.110326 0.113523 0.947 0.394625 0.52356 0.679289 0.939

θ 0.048513 0.018310 0.020664 0.948 0.207914 0.215991 0.259219 0.932

λ1

100

0.223024 1.346181 1.395921 0.956 -0.6562 0.544443 0.975047 0.949

λ2 0.026269 0.196364 0.197054 0.953 -0.04021 1.638775 1.640392 0.942

β -0.059397 0.100119 0.103647 0.958 0.385053 0.402029 0.550295 0.968

θ -0.012319 0.015320 0.015472 0.956 0.061853 0.037724 0.04155 0.953

λ1

300

0.226485 0.818427 0.869723 0.961 -0.17858 0.232734 0.264625 0.959

λ2 0.063117 0.082361 0.086345 0.958 -0.46086 1.023646 1.236038 0.959

β -0.002488 0.073408 0.073414 0.951 0.475944 0.226687 0.453209 0.962

θ 0.000355 0.012194 0.012194 0.963 -0.01319 0.00942 0.009594 0.965

λ1

500

0.186137 0.582542 0.617189 0.975 -0.13091 0.106946 0.124083 0.963

λ2 -0.088530 0.021287 0.029126 0.977 0.083023 0.818039 0.824932 0.961

β -0.064670 0.015944 0.020126 0.973 0.091008 0.13488 0.143163 0.971

θ -0.005711 0.001958 0.001991 0.971 0.033865 0.005222 0.006369 0.958

Table 3: Descriptive statistics of data set 1.

Mean Variance SD Minimum Maximum Skewness Kurtosis Index of dispersion

1.447 0.256 0.506 0.031 2.585 -0.164 3.236 0.177

Table 4: Descriptive statistics of data set 2.

Mean Variance SD Minimum Maximum Skewness Kurtosis Index of dispersion

0.469 0.037 0.192 0.017 0.878 -0.335 2.686 0.079

Table 5: Descriptive statistics of data set 3.

Mean Variance SD Minimum Maximum Skewness Kurtosis Index of dispersion

1.507 0.1051 0.324 0.550 2.240 -0.899 3.923 0.069
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Proposition 3. The following inequalities hold:

FU3
xð Þ ≤ FT xð Þ ≤G xð Þ, ð14Þ

where GðxÞ denotes the cdf of min ðU∗,U3Þ, where U∗ is a

random variable following the exponential distribution with
parameter λ∗ =min ðλ1, λ2Þ independent of U3.

Proof. The two inequalities are clear for x ≤ 0. For the left
inequality, by the definition of T in (2), we have min ð

Table 6: MLEs along with standard errors of the parameters in parentheses for the fitted models for data set 1.

Model MLEs

SCS λ1, λ2, β, αð Þ bλ1 = 0:05
0:041ð Þ

bλ2 = 64:07
3:812ð Þ

bβ = 0:15
0:048ð Þ

bα = 3:63
0:413ð Þ

Weibull β, λð Þ bβ = 3:03 0:029ð Þ bλ = 1:60 0:066ð Þ
Gamma s, rð Þ ŝ = 0:291 0:020ð Þ r̂ = 4:97 0:820ð Þ
EED α, λð Þ bα = 4:99 0:981ð Þ bλ = 1:52 0:156ð Þ
MWD α, β, λð Þ bα = 0:066 0:021ð Þ bβ = 1:182 0:702ð Þ bλ = 1:267 0:478ð Þ
GLindley λ, αð Þ bλ = 1:898 0:168ð Þ bα = 4:414 0:889ð Þ
MBLE λ, β, a, b, cð Þ bλ = 1:521 2:971ð Þ bβ = 2:241 2:562ð Þ â = 0:576 0:381ð Þ b̂ = 0:548 0:571ð Þ ĉ = 0:017 0:041ð Þ
TLED β, θ, λð Þ bβ=0.041 (0.076) bθ=1.166 (0.141) bλ=-0.891 (0.103)

Table 7: ML estimates along with standard errors of the parameters in parentheses for the fitted models for data set 2.

Model MLEs

SCS λ1, λ2, β, αð Þ bλ1 = 25:9
20:6ð Þ

bλ2 = 0:502
0:165ð Þ

bβ = 8:21
1:675ð Þ

bα = 4:06
0:471ð Þ

Weibull β, λð Þ bβ = 2:60 0:209ð Þ bλ = 0:52 0:021ð Þ
Gamma s, rð Þ ŝ = 0:127 0:017ð Þ r̂ = 3:68 0:483ð Þ
EED α, λð Þ bα = 3:71 0:565ð Þ bλ = 4:20 0:372ð Þ
MWD α, β, λð Þ bα = 0:199 0:145ð Þ bβ = 0:883 0:377ð Þ bλ = 3:89 0:876ð Þ
GLindley λ, αð Þ bλ = 4:81 0:382ð Þ bα = 3:58 0:549ð Þ
MBLE λ, β, a, b, cð Þ bλ = 3:39 3:87ð Þ bβ = 3:99 5:48ð Þ â = 1:037 0:405ð Þ b̂ = 4:92 11:12ð Þ ĉ = 0:021 0:033ð Þ
TLED β, θ, λð Þ bβ = 0:192 (0.299) bθ = 9:66 (1.175) bλ = −0:688 (0.154)

Table 8: ML estimates along with standard errors of the parameters in parentheses for the fitted models for data set 3.

Model MLEs

SCS λ1, λ2, β, αð Þ bλ1 = 0:265
0:835ð Þ

bλ2 = 0:270
0:854ð Þ

bβ = 0:025
0:016ð Þ

bα = 7:042
0:988ð Þ

Weibull β, λð Þ bβ = 5:780 0:576ð Þ bλ = 1:628 0:037ð Þ
Gamma s, rð Þ ŝ = 0:086 0:015ð Þ r̂ = 17:39 3:041ð Þ
EED α, λð Þ bα = 31:34 9:521ð Þ bλ = 2:611 0:238ð Þ
MWD α, β, λð Þ bα = 0:012 0:011ð Þ bβ = 2:884 1:780ð Þ bλ = 1:831 1:035ð Þ
GLindley λ, αð Þ bλ = 2:990 0:245ð Þ bα = 26:17 7:985ð Þ
MBLE λ, β, a, b, cð Þ bλ = 1:544 1:276ð Þ bβ = 1:876 1:592ð Þ â = 1:225 0:494ð Þ b̂ = 2:072 1:342ð Þ ĉ = 0:005 0:002ð Þ
TLED β, θ, λð Þ bβ = 0:001 (0.083) bθ = 1:230 (0.129) bλ = −1:00 (0.032)
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Table 9: AD, CVM, and p values for fitted models to data set 1.

Criterion SCS Weibull Gamma EED MWD GLindley MBLE TLED

K-S 0.0474 0.0661 0.1265 0.1443 0.0706 0.1347 0.0582 0.1001

p value (K-S) 0.9977 0.9240 0.2193 0.1130 0.8813 0.1637 0.9734 0.4940

AD statistic 0.1845 0.4522 1.9352 3.0047 0.4625 2.6199 0.3297 1.0221

p value (AD) 0.9941 0.7953 0.0999 0.0274 0.7847 0.0431 0.9140 0.3456

CVM statistic 0.0208 0.0567 0.3090 0.4875 0.0607 0.4167 0.0512 0.1708

p value (CVM) 0.9964 0.8363 0.1274 0.0425 0.8111 0.0650 0.8702 0.3326

Table 10: AD, CVM, and p values for fitted models to data set 2.

Criterion SCS Weibull Gamma EED MWD GLindley MBLE TLED

K-S 0.0458 0.0832 0.1364 0.1477 0.0474 0.1441 0.0479 0.0939

p value (K-S) 0.9783 0.4487 0.0374 0.0188 0.9699 0.0236 0.9668 0.3015

AD statistic 0.1525 1.4840 3.8036 4.6866 0.2199 4.4901 0.2097 1.5311

p value (AD) 0.9984 0.1804 0.0109 0.0041 0.9840 0.0051 0.9875 0.1693

CVM statistic 0.0228 0.1894 0.6398 0.8125 0.0302 0.7729 0.0298 0.2513

p value (CVM) 0.9938 0.2892 0.0177 0.0067 0.9761 0.0084 0.9773 0.1867

Table 11: AD, CVM, and p values for fitted models to data set 3.

Criterion SCS Weibull Gamma EED MWD GLindley MBLE TLED

K-S 0.1202 0.1522 0.2163 0.2290 0.1410 0.2264 0.2632 0.2625

p value (K-S) 0.3229 0.1078 0.0055 0.0027 0.1632 0.0031 0.0003 0.0003

AD statistic 0.7213 1.2407 3.0878 4.3368 0.9954 4.2049 5.1046 6.3461

p value (AD) 0.5407 0.2524 0.0248 0.0060 0.3594 0.0070 0.0026 0.0007

CVM statistic 0.1282 0.2151 0.5662 0.7983 0.1817 0.7720 1.0468 1.2558

p value (CVM) 0.4644 0.2403 0.0268 0.0072 0.3065 0.0083 0.0018 0.0006
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Figure 4: Plots of the fitted empirical pdf and empirical cdf versus estimated pdf and estimated cdf for data set 1.
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U1,U3Þ ≤U3 and min ðU2,U3Þ ≤U3, implying that T ≤
U3 and so FU3

ðxÞ ≤ FTðxÞ. For the right inequality, based
on the definition of T in (2), it is clear that T ≥min ðU1
,U3Þ and T ≥min ðU2,U3Þ. Therefore, for x > 0,

FT xð Þ ≤min P min U1,U3ð Þ ≤ xð Þ, P min U2,U3ð Þ ≤ xð Þ½ �
=min 1 − e−λ1xe−βx

θ , 1 − e−λ2xe−βx
θ

� �
= 1 − e−λ∗xe−βx

θ =G xð Þ:
ð15Þ

Proposition 3 is proved.

3.2. Generation of Numbers. Two different approaches are
possible to generate values from the SCS distribution.

(i) First approach: analytical point of view. One can
generate n values from the unit uniform distribution,
say x1,⋯, xn. Then, n values from the SCS distribu-
tion, say t1,⋯, tn, are obtained by solving numeri-
cally the following equation: xi = FTðtiÞ

(ii) Second approach: computational point of view.
Based on the definition of T in (2), one can generate
n values from U1, say u1,1,⋯, u1,n, n values from U2,
say u2,1,⋯, u2,n and n values from U3, say u3,1,⋯,
u3,n. Then, n values from the SCS distribution, say
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Figure 5: Plots of the fitted empirical pdf and empirical cdf versus estimated pdf and estimated cdf for data set 2.
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t1,⋯, tn, are obtained by taking: ti =max ½min ðu1,i
, u3,iÞ, min ðu2,i, u3,iÞ�

3.3. Moments. Diverse moments of the SCS distributions are
now discussed. For this purpose, let us introduce the follow-
ing special integral:

I β,θ a, b, tð Þ =
ðt
0
xae−bxe−βx

θdx: ð16Þ

Firstly, this integral is well defined for a > −1, b > 0, and
t ≥ 0 (other combinations of parameters are possible but out
of the scope of this study). Based on the series expansion of
the exponential functions, the following expansions hold,
depending on the possible values of θ.

(i) When θ ≥ 1, we can expand I β,θða, b, tÞ as

I β,θ a, b, tð Þ = 1
θ

1
β a+1ð Þ/θ 〠

+∞

k=0

−bð Þk
k!

1
βk/θ γ k + a + 1ð Þ/θ, βtθ

� �
,

ð17Þ

where γða, xÞ = Ð x
0y

a−1e−ydy, a, x > 0.

(ii) When θ ∈ ð0, 1Þ, we can expand I β,θða, b, tÞ as

I β,θ a, b, tð Þ = 1
ba+1

〠
+∞

k=0

−βð Þk
k!

1
bθk

γ a + θk + 1, btð Þ: ð18Þ

We can apply t⟶ +∞; by the ratio test, one can show
that these two series expansions converge. Every incomplete
moment of T can be expressed according to a finite combi-
nation of special integrals above, with specific parameters.
This is formulated in the proposition below.

Proposition 4. For t ≥ 0, the rth incomplete moment of T at
t ≥ 0 is given as

mr tð Þ = E TrI T ≤ tf gð Þð Þ = βθI β,θ r + θ − 1, λ1, tð Þ
+ λ1I β,θ r, λ1, tð Þ + βθI β,θ r + θ − 1, λ2, tð Þ
+ λ2I β,θ r, λ2, tð Þ − βθI β,θ r + θ − 1, λ1 + λ2, tð Þ
− λ1 + λ2ð ÞI β,θ r, λ1 + λ2, tð Þ,

ð19Þ

where IðAÞ denotes the indicator function over the event A.

Proof. The proof can be conducted by using the definition of
f TðxÞ specified in (5). Indeed, we have

mr tð Þ =
ðt
0
xr f T xð Þdx = βθ

ðt
0
xr+θ−1e−λ1xe−βx

θdx + λ1

ðt
0
xre−λ1xe−βx

θdx + βθðt
0
xr+θ−1e−λ2xe−βx

θdx + λ2

ðt
0
xre−λ2xe−βx

θdx − βθðt
0
xr+θ−1e− λ1+λ2ð Þxe−βx

θdx − λ1 + λ2ð Þ
ðt
0
xre− λ1+λ2ð Þxe−βx

θdx

= βθI β,θ r + θ − 1, λ1, tð Þ + λ1I β,θ r, λ1, tð Þ + βθI β,θ r + θ − 1, λ2, tð Þ
+ λ2I β,θ r, λ2, tð Þ − βθI β,θ r + θ − 1, λ1 + λ2, tð Þ
− λ1 + λ2ð ÞI β,θ r, λ1 + λ2, tð Þ:

ð20Þ

This ends the proof of Proposition 4.

From the incomplete moments of T , one can derive sev-
eral measures of T and functions of interest. For instance,
the rth moment of T also follows from the rth incomplete
moment of X by applying t⟶ +∞. Owing to (19), we
can write

mr = E Trð Þ = lim
t⟶+∞

mr tð Þ = βθI β,θ r + θ − 1, λ1,+∞ð Þ
+ λ1I β,θ r, λ1,+∞ð Þ + βθI β,θ r + θ − 1, λ2,+∞ð Þ
+ λ2I β,θ r, λ2,+∞ð Þ − βθI β,θ r + θ − 1, λ1 + λ2,+∞ð Þ
− λ1 + λ2ð ÞI β,θ r, λ1 + λ2,+∞ð Þ:

ð21Þ

Note that, since T ≤U3, the following inequality holds:
mr ≤ β−r/θΓðr/θ + 1Þ, where ΓðaÞ = limx⟶+∞γða, xÞ.

The mean and standard deviation of T are obtained as
μ =m1 and σ = ðm2 −m2

1Þ1/2. The skewness coefficient of T
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can be determined as

S = σ−3E T − μð Þ3� 	
= 6σ−3 〠

3

k=0

1
k! 3 − kð Þ! −1ð Þ3−kμ3−kmk,

ð22Þ

and the kurtosis coefficient of T is given as

K = σ−4E T − μð Þ4� 	
= 24σ−4 〠

4

k=0

1
k! 4 − kð Þ! −1ð Þ4−kμ4−kmk:

ð23Þ

Also, from (19), one can define conditional moments,
residual life, mean deviations, and several reliability curves
(see, for instance, [9]). For instance, the rth conditional
moment of T at t ≥ 0 is obtained as

m∗
r tð Þ = E Tr ∣ T > tð Þ = 1

ST tð Þ mr −mr tð Þ½ �, ð24Þ

which is fully expressible in terms of combinations of special
integrals.

3.4. Moment Generating Function. The moment generating
function of T can be expressed in terms of linear combina-
tions of special integral functions, as developed below.

Proposition 5. For s ≤min ðλ1, λ2Þ, the moment generating
function of T is given as

M sð Þ = E esT
� 	

= βθI β,θ θ − 1, λ1 − s,+∞ð Þ + λ1I β,θ 0, λ1 − s,+∞ð Þ
+ βθI β,θ θ − 1, λ2 − s,+∞ð Þ + λ2I β,θ 0, λ2 − s,+∞ð Þ
− βθI β,θ θ − 1, λ1 + λ2 − s,+∞ð Þ − λ1 + λ2ð ÞI β,θ 0, λ1 + λ2 − s,+∞ð Þ:

ð25Þ

Proof. The proof exploits the definition of f TðxÞ determined
in (5). We have

M sð Þ =
ð+∞
0

esx f T xð Þdx = βθ
ð+∞
0

xθ−1e− λ1−sð Þxe−βx
θdx+λ1ð+∞

0
e− λ1−sð Þxe−βx

θdx+βθ
ð+∞
0

xθ−1e− λ2−sð Þxe−βx
θdx+λ2ð+∞

0
e− λ2−sð Þxe−βx

θdx−βθ
ð+∞
0

xθ−1e− λ1+λ2−sð Þxe−βx
θdx − λ1+λ2ð Þð+∞

0
e− λ1+λ2−sð Þxe−βx

θdx

= βθI β,θ θ − 1, λ1 − s,+∞ð Þ + λ1I β,θ 0, λ1 − s,+∞ð Þ
+ βθI β,θ θ − 1, λ2 − s,+∞ð Þ + λ2I β,θ 0, λ2 − s,+∞ð Þ
− βθI β,θ θ − 1, λ1 + λ2 − s,+∞ð Þ
− λ1 + λ2ð ÞI β,θ 0, λ1 + λ2 − s,+∞ð Þ:

ð26Þ

This ends the proof of Proposition 5.

The characteristic function of T is given as φTðsÞ = Eð
eisTÞ =MðisÞ, where i2 = −1, with no particular restriction
on s. The moment generating and characteristic functions
can be used for distributional results on the SCS distribution.

4. Inference for the SCS Model with a
Simulation Study

The SCS model is defined by the cdf and pdf given as (3) and
(5), respectively, under the assumption that the parameters
λ1, λ2, β, and θ are unknown. Based on data, we aim to esti-
mate these parameters. In this regard, we employ the famous
maximum likelihood method (see, for instance, [10]). In the
context of the SCS model, the essential is described below.
Let t1,⋯, tn be n observations of T as defined by (2). Then,
the maximum likelihood estimators (MLEs) of λ1, λ2, β, and

θ, denoted by bλ1, bλ2, bβ , and bθ , are determined through the
following maximization procedure:

bλ1, bλ2, bβ , bθ� �
= argmax λ1,λ2,β,θð Þ∈ 0,+∞ð Þ4ℓ λ1, λ2, β, θð Þ,

ð27Þ

where ℓðλ1, λ2, β, θÞ refers to the log-likelihood function,
which can be expressed as
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Figure 12: Plots of the fitted cdfs versus empirical cdf of data set 3.
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ℓ λ1, λ2, β, θð Þ = 〠
n

i=1
log f T tið Þ½ �

= −β〠
n

i=1
tθi + 〠

n

i=1
log βθtθ−1i + λ1

� �
e−λ1ti

h
+ βθtθ−1i + λ2
� �

e−λ2ti

− βθtθ−1i + λ1 + λ2
� �

e− λ1+λ2ð Þti
i
:

ð28Þ

As usual, the MLEs can be determined numerically
through the use of any mathematical software. Here, the R
software is used (see [11]). Now, we perform simulation
studies to verify whether the maximum likelihood method
is appropriate for estimating the parameters of the proposed
model and also to illustrate the performance of the associ-
ated estimates. In this regard, random number generation
is carried out using the first approach described in Subsec-
tion 3.2. We consider sample sizes n = 25, 50, 100, 300, and
500 for the following four random parameter combinations:

λ1 = 0:1, λ2 = 0:2, β = 0:1, θ = 0:3ð Þ, λ1 = 0:5, λ2 = 0:8, β = 0:6, θ = 0:9ð Þ,
λ1 = 1:2, λ2 = 1:2, β = 0:9, θ = 0:6ð Þ, λ1 = 1:6, λ2 = 1:8, β = 1:4, θ = 1:5ð Þ:

ð29Þ

This procedure is repeated N = 1000 times for calcula-
tion of bias, variance (Var), mean squared error (MSE),
and coverage probability (CP). The generic formulas to esti-
mate bias, variance, and MSE are given by

Bias Θið Þ = 1
N
〠
N

J=1
bΘ i,j −Θi

� �
, MSE Θið Þ = 1

N
〠
N

J=1
Θ∧i,j −Θi

� 	2,
Var Θið Þ = 1

N
〠
N

J=1
Θ∧i,j − �Θi

� 	2, ð30Þ

where Θ1 = λ1, Θ2 = λ2, Θ3 = β, Θ4 = θ, i = 1, 2, 3, 4, and bΘ i,j
are the MLE of Θi at the j

th repetition, and �Θi is the average
MLEs value for the N repetitions,

CP Θið Þ = 1
N
〠
N

j=1
I bΘ i,j − Zα/2SE bΘ i,j

� �
, bΘ i,j + Zα/2SE bΘ i,j

� �� �
,

ð31Þ

where Iða, bÞ is the indicator function, defined as Iða, bÞ = 1
if Θi ∈ ½a, b�, and 0; otherwise, Zα/2 is the two tailed critical
value of standard normal distribution at αð0:05Þ level of sig-
nificance, i.e., Zα/2 = 1:9599 and SEð bΘ i,jÞ is the estimate of

the standard error related to bΘ i,j.
The numerical results of the simulation are given in

Tables 1 and 2.
It is clear from Tables 1 and 2 that the estimated biases,

variances, and MSEs decrease when the sample size n
increases. Thus, the simulation study shows that the maxi-
mum likelihood method is appropriate for estimating the

parameters of the proposed distribution. The MSEs of the
parameters tend to be closer to zero when n increases. Also,
this reveals the consistency property of the MLEs. Hence, it
is expected that the MLEs are going to work fine when the
model is applied to real life situations, as shown in the next
section. Moreover, the coverage probabilities (CPs) are near
to 0.95 and approach to the nominal value when the sample
size increases.

5. Application

In this section, we explore the application of the newly intro-
duced SCS model in comparison to Weibull, gamma, expo-
nentiated exponential, modified Weibull (see [12]),
generalized Lindley (see [13]), transmuted linear exponential
(see [14]), and modified beta linear exponential models (see
[15]).

We first analyze the data set representing the time to fail-
ure of turbocharger (see [16]) of a certain type of engine.
The data set, called data set 1, is given as follows: 0.0312,
0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958,
0.966, 0.977, 1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140,
1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274, 1.301, 1.301,
1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511,
1.514, 1.535, 1.554, 1.566, 1.570, 1.586, 1.629, 1.633, 1.642,
1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809, 1.818,
1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096,
2.128, 2.233, 2.433, 2.585, and 2.585.

Descriptive statistics of the data set 1 are given in Table 3
and are calculated using moments package in R software
(version 3.5.3).

The average time to failure of a turbocharger is 1.447
with a standard deviation of 0.506. The skewness and kurto-
sis coefficients for the given data are -0.164 and 3.236,
respectively, implying that data set 1 has slight negative
skewness and is leptokurtic. It is also clear that the data are
under dispersed, with an index of dispersion of 0.177.

The second data set to be analyzed represents the total
milk production in the first birth of 107 cows from the
SINDI race. These cows are property of the Carnaúba farm
which belongs to the Agropecuária Manoel Dantas Ltda
(AMDA), located in Taperoá City, Paraba (Brazil). This data
is presented by [17]. The data set, called data set 2, is given as
follows: 0.4365, 0.4260, 0.5140, 0.6907, 0.7471, 0.2605,
0.6196, 0.8781, 0.4990, 0.6058, 0.6891, 0.5770, 0.5394,
0.1479, 0.2356, 0.6012, 0.1525, 0.5483, 0.6927, 0.7261,
0.3323, 0.0671, 0.2361, 0.4800, 0.5707, 0.7131, 0.5853,
0.6768, 0.5350, 0.4151, 0.6789, 0.4576, 0.3259, 0.2303,
0.7687, 0.4371, 0.3383, 0.6114, 0.3480, 0.4564, 0.7804,
0.3406, 0.4823, 0.5912, 0.5744, 0.5481, 0.1131, 0.7290,
0.0168, 0.5529, 0.4530, 0.3891, 0.4752, 0.3134, 0.3175,
0.1167, 0.6750, 0.5113, 0.5447, 0.4143, 0.5627, 0.5150,
0.0776, 0.3945, 0.4553, 0.4470, 0.5285, 0.5232, 0.6465,
0.0650, 0.8492, 0.8147, 0.3627, 0.3906, 0.4438, 0.4612,
0.3188, 0.2160, 0.6707, 0.6220, 0.5629, 0.4675, 0.6844,
0.3413, 0.4332, 0.0854, 0.3821, 0.4694, 0.3635, 0.4111,
0.5349, 0.3751, 0.1546, 0.4517, 0.2681, 0.4049, 0.5553,
0.5878, 0.4741, 0.3598, 0.7629, 0.5941, 0.6174, 0.6860,
0.0609, 0.6488, and 0.2747.
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Descriptive statistics of the data set 2 are given in
Table 4.

The average milk production in the first birth of 107
cows from the SINDI race is 0.469, with a standard deviation
of 0.192. The skewness and kurtosis coefficients for the given
data are -0.335 and 2.686, respectively, implying that the
data set 2 has a slightly negative skewness with platykurtic
nature. It is also clear that the data are under dispersed, with
an index of dispersion of 0.079.

The third data set to be analyzed represents the strength
of 1.5 cm glass fibers, measured at the National physical lab-
oratory, England reported in [18]. The data was originally
used by [19]. The data are 0.55, 0.93, 1.25, 1.36, 1.49, 1.52,
1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39,
1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11,
1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24,
0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77,
1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70,
1.78, and 1.89. The summary statistics of the data set 3 is
given in Table 5.

The average strength of 1.5 cm glass fibers is 1.507, with
a standard deviation of 0.324. The skewness and kurtosis
coefficients for the given data are -0.899 and 3.923, respec-
tively, thus implying that the data set 3 has a slight negative
skewness with leptokurtic nature. Furthermore, we see that
the data are under dispersed, with an index of dispersion
of 0.069.

The MLEs are computed using the Nelder-Mead optimi-
zation method (see [20]), and the log-likelihood function is
evaluated. Nelder-Mead optimization for getting MLEs was
executed through R software version 3.5.3 using the MASS
package. The MLEs of the parameters along with standard
errors of parameters in parenthesis are reported in
Tables 6–8 for data sets 1, 2, and 3, respectively.

The goodness-of-fit measures, the value for the Kolmo-
gorov–Smirnov (K-S) statistic, Anderson–Darling (AD),
Cramér–von Mises (CVM), and their p values are reported.

Tables 9–11 exhibit the K-S with its p values, AD statistic
with its p values, and CVM statistic with its p values for the
models fitted to the data sets 1, 2, and 3, respectively.

On the basis of inferential statistical tests, the p values
associated to K-S, AD, and CVM are statistically supporting
the null hypothesis mainly for the proposed model as com-
pared to other competing models for all the fitted real-life
data sets (see Tables 9–11). We note that some comparative
models in Table 11 may not be fitted to the data set 3 (based
on their p values) but we use them only for comparison
purposes.

For graphical observation of the fitted SCS model to real-
life data sets, the plots of the fitted empirical pdf and empir-
ical cdf versus estimated pdf (plotted based on the density of
the distribution with replacing its parameters by their MLEs)
and estimated cdf for data sets 1, 2, and 3 are given in
Figures 4–6, respectively. Just like we create a histogram
from the data points, in a similar fashion, “empirical pdf”
is generated from the data points of the data set. For com-
parison purposes, just like we check, which model curve is
close to the histogram, in a similar way, we check which
model curve is close to the “empirical pdf” curve.

We observe very little deviance between empirical and
estimated curves in the three data sets.

Plots of the fitted pdfs of all the models with the empir-
ical pdfs and the histograms of data sets 1, 2, and 3 are given
in Figures 7–9, respectively.

From Figures 7–9, we note that the proposed model pdf
is closer to fit the data sets as compared to other competing
models.

Plot of fitted cdfs of all the models versus empirical cdf
for data sets 1, 2, and 3 is given in Figures 10–12,
respectively.

Based on Figures 10–12, we see that the fitted cdf curve
for the proposed model has least deviance with respect to
empirical cdf of the data sets as compared to other compet-
ing models.

6. Conclusion

In this paper, based on the notion of a coherent system, a
new four-parameter probability distribution was introduced,
called the SCS distribution. Several of its structural proper-
ties are studied based on its max-min definition, including
the analysis of its main functions, diverse stochastic orders,
moments, and moment generating functions. We discuss
the fact that the SCS distribution is sufficiently pliant for
diverse statistical purposes, including data fitting. In particu-
lar, it shows a significant role for fitting data sets having
slight negative skewness with platykurtic as well as leptokur-
tic nature. With the consideration of three real-life data sets,
two in reliability and another in production, this aspect is
emphasized, showing that the SCS model outperforms sev-
eral comparable models. Hence, we believe that the SCS
model has the qualities to join the arsenal of lifetime models
used for deep analysis of data.
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