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The main goal of this paper is to define a new one-parametric family of symmetric temporal transformations with respect to
the ellipse. This new family contains as a particular case the eccentric anomaly, the regularized length of arc, and the elliptic
anomaly. This family is a particular case of the biparametric family of anomalies introduced by the authors in 2016. The
biparametric family comprises the most common anomalies used in the study of the two-body problem. Two approaches
of this work have been taken. The first one involves the study of the analytical properties of the symmetric family of
anomalies. The second approach explores the improvement of the numerical integration methods when the natural time is
replaced by an anomaly of this family.

1. Introduction

The two-body problem is a classical example of the integra-
bility in celestial mechanics, which has already been studied
by many authors [1–4] entre otros. This problem can be
solved by means of a set of orbital elements σ

!
, known as

the set III of Brower and Clemence [1], ða, e, i,Ω, ω,MÞ,
where a is the major semiaxis of the ellipse, e is the eccenti-
city, i is the true orbit inclination, Ω is the argument of the
ascending node, ω is the argument of the periapsis, and M
is the mean anomaly for the epoch. Let r, f be the polar
coordinates of the secondary with respect to the primary in
the orbital coordinate system ðξ, ηÞ, where the origin is
placed in the primary, the ξ axis is running to the periapsis,
and the η axis is defined by the ellipse parameter position.

ξ = r cos f , η = r sin f : ð1Þ

The equation of the relative orbit is given by

r = a 1 − e2
� �

1 + e cos f : ð2Þ

The solution of the two-body problem can be reached
through the eccentric anomaly, g. The mean anomaly, M,
is connected with the eccentric anomaly, g, through the
Kepler equation

M = g − e sin g: ð3Þ

The orbital coordinates of the-two body problem can be
described through the eccentric anomaly as

ξ = a cos g − eð Þ, η = a
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin g, r = a 1 − e cos gð Þ: ð4Þ

The position of the secondary in the spatial system of
coordinates ðx, y, xÞ is given by

x

y

z

2664
3775 = R1 −Ωð ÞR3 −ið ÞR1 −ωð Þ

a cos g − eð Þ
a
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin g

0

2664
3775, ð5Þ

where RkðαÞ denotes the rotation matrix of angle α
around the k − axis.
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The perturbed motion can be solved by both analytical
or numerical methods. The analytical methods are based
on the perturbation method, where the zero-order solution
is given by the two-body solution. The solution to the per-
turbed problem is reached by replacing the constant orbital
elements by the osculator elements ðaðtÞ, eðtÞ, iðtÞ,ΩðtÞ, ω
ðtÞ, σðtÞÞ, σ =M −

Ð t
t0
n dt, where n is the mean motion

given by the third Kepler law a3n2 = μ.
These quantities satisfy the Lagrange planetary equations

[1, 3–5]

da
dt

= 2
na

∂R
∂σ

, ð6Þ

de
dt

= −
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂R
∂ω

+ 1 − e2

na2e
∂R
∂σ

, ð7Þ

di
dt

= −
1

na2
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin i

∂R
∂Ω

+ ctg i
na2

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p ∂R
∂ω

, ð8Þ

dΩ
dt

= 1
na2

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin i

∂R
∂i

, ð9Þ

dω
dt

=
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p

na2e
∂R
∂e

−
cos i

na2
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin i

∂R
∂i

, ð10Þ

dσ
dt

= −
2
na

∂R
∂a

−
1 − e2

na2e
∂R
∂e

, ð11Þ

where R is the perturbative potential. To integrate the
Lagrange planetary equations by analytical methods, it is
necessary to develop the second members of (6–11) as Fou-
rier series using as temporal variable some kind of anoma-
lies. The classical methods use the mean anomalies of the
secondary and the disturbing bodies as the argument of the
Fourier series. This technique is appropriate when the eccen-
tricity of the motion is small, which is the case of planetary
motion in the Solar System.

The numerical methods make a general study of the
problem in the form

€r! = −μ
r!

r3
+ F

!
, ð12Þ

where the first term represents the attraction of the pri-

mary and F
!

denotes the perturbative forces. In general, the
perturbative forces are small with respect to the attraction
of the primary.

One of the main problems in the numerical methods is
the nonuniform distribution of the points on the orbit when
the natural time (or the mean anomaly) is used as temporal
variable. In this case, the point distribution is concentrated
in the apoapsis region and reaches its minimum in the peri-
apsis region, which is contrary to the dynamics of the sys-
tem. To solve this problem, we can follow several procedures

(i) To use of a very small integration step size

(ii) To use a variable step-size integrator

(iii) To use an appropriate temporal transformation in
order to improve the point distribution on the orbit

The first procedure is not convenient. The second one
has been used profusely with very good results. The third
procedure has been introduced, among others, by Hansen,
Gilden [4], and improves integration results. This paper is
focused on the third procedure, and this method can be
combined with symplectic and variable step-size integrators.

The idea of a change in the temporal variable was intro-
duced by Hansen through the partial anomalies [6]. Hansen
defined two new variables to be used depending of the
orbital region occupied by the secondary. The use of these
anomalies improves the convergence of the analytical
developments.

Sundman (1912) [7], in order to regularize the origin in
the three-body problem, introduced a new temporal variable,
τ, connected with the time, t, through the transformation

dt = Crdτ: ð13Þ

Nacozy [7] introduced a new temporal variable called
intermediate anomaly as

dt = Cr3/2dτ: ð14Þ

Janin and Bond [8, 9] defined a new one-parametric family
of temporal variables called generalized Sundman anomalies

dt = Cαr
αdτα: ð15Þ

These transformations can be described as

dt =Q r, αð Þdτα, ð16Þ

where Qðr, αÞ is called as partition function. The meanM,
eccentric g, and true f anomalies are particular cases of the
generalized Sundman anomalies family for α = 0, α = 1, and
α = 2, respectively.

The regularized length of arc introduced by Brumberg
[10] is related to the mean anomaly by

Q rð Þ = 1ffiffiffiffiffi2μp
ffiffi
r

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r/2a

p : ð17Þ

Brumberg and Fukushima [11] introduced the elliptic
anomaly

ω = πu
2K eð Þ −

π

2 , am u = E + π

2 , ð18Þ

where am u is the elliptic amplitude of Jacobi and KðeÞ
the complete elliptic integral of the first kind. In this case,
the partition function is given by

Q rð Þ = 1
K eð Þa2 r

3/2 r′
� �1/2

, ð19Þ

where KðeÞ is the complete elliptic integral of the first
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kind and r′ = 2a − r. The regularized length of arc and the
elliptic anomalies cannot be included in the generalized
Sundman anomalies family. To solve this problem, López
[12] defined a biparametric family of anomalies as

Cα,βr
α r′
� �β

dΨα,β = dM, ð20Þ

where r is the radius of the secondary with respect to the
primary, and r′ represents the distance between the second-
ary and the secondary focus of the ellipse. The biparametric
family contains the regularized length of arc and the elliptic
anomaly. The partition function can be written in the case of
the regularized length of arc as

Q rð Þ =
ffiffiffiffiffi
2h

p
r1/2 r′
� �−1/2

, ð21Þ

where h is the integral of the energy.
The biparametric family contains these anomalies for α

= 1/2 and β = −1/2 in the case of regularized length of arc
and α = 3/2 and β = 1/2 for the elliptic anomaly.

The eccentric anomaly, the regularized length of arc, and
the elliptic anomalies have a symmetric point distribution on
the ellipse and satisfy the relation α − β = 1. In this paper, we
study the biparametric family for the particular case α − β
= 1. This case is a one-parametric family of symmetric
anomalies which contains the eccentric, the regularized
lenght of arc, and the elliptic anomalies as particular cases.

In this article, we will study the properties of the family
of anomalies and particularly a new anomaly introduced
by López et al. [13], Ψ. This new anomaly is called the semi-
focal anomaly and is defined as the arithmetic mean between
the angles comprised between the direction of the periapsis,
and the secondary measured from the primary and second-
ary focuses of the ellipse, respectively. Thus

Ψ = f + f ′
2 , ð22Þ

where f is the true anomaly, and f ′ is the antifocal
anomaly introduced by Fukushima [14]; later, we will see
that f ′ also belongs to the symmetric family of anomalies.
In the first section of this paper, the background and the
most common concepts have been introduced. Particularly,
it is shown that a wide set of anomalies are part of the
biparametric family introduced by the authors. It is also
shown that some anomalies, namely, the ones with a sym-
metric point distribution, satisfy the relation α − β = 1.

In section two, a new anomaly has been defined as the
mean between the true and the antifocal anomalies. We
show that the main quantities involved in the two-body
problem can be obtained in closed form when this anomaly
is used. Also, we evince the properties of this anomaly
revealing that it is included in the biparametric family,
showing that it is symmetric with respect to both axes of
the ellipse, and verifying the previous relation.

In section three, the most important developments for
the symmetric family of anomalies have been obtained. First,
the series are derived from the developments of Ψα as a
function of g when the relation α − β = 1 is satisfied in the
biparametric family; if this condition holds, the anolamy is
symmetric with respect of both axes of the ellipse. Second,
applying Deprit’s inversion algorithm on the development,
we obtain all the developments needed in celestial
mechanics.

In section four, a set of numerical examples are pre-
sented. We firstly observe that the point distribution along
the orbit depends greatly on the choice of the anomaly. Fol-
lowing, we analyze the error committed in the integrations
process; to that end, we use simple method applied to a high
eccentric orbiting satellite after one revolution. The optimal
value of the parameter α has been computed depending on
the eccentricity. Finally, the local truncation errors along
the orbit when natural time is used have been calculated.

In section five, the key conclusions and wider perspec-
tives are presented.

2. The Semifocal Anomaly

Let us consider a new temporal variable, Ψ, defined as Ψ =
ð f + f ′Þ/2; this is the semifocal anomaly.

From Figure 1, it is easy to show that

sin f = a
r

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin g, cos f = a

r
cos g − eð Þ, ð23Þ

sin f ′ = a

r′
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin g, cos f ′ = a

r′
cos g − eð Þ, ð24Þ

and from these equations, we have

sin 2Ψð Þ = sin f + f ′
� �

= a2

rr′
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin 2gð Þ, ð25Þ

cos 2Ψð Þ = cos f + f ′
� �

= a2

rr′
cos2g − 1 − e2

� �
sin2g

� �
,

ð26Þ

1 − cos 2Ψð Þ = 2 a2

rr′
sin2g: ð27Þ

To obtain the value of cos Ψ and sin Ψ, we proceed as
follows

1 + cos 2Ψð Þ = 2 a2

rr′
1 − e2
� �

cos2g, ð28Þ

and from (27) and (28), we obtain

cos Ψ =
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
cos gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2 cos2g
p , ð29Þ

sin Ψ = sin gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 cos2g

p , ð30Þ
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and so,

cos g = cos Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 sin2Ψ

p , ð31Þ

sin g =
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e2 sin2Ψ
p : ð32Þ

From these equations, ξ, η, and r can be related to Ψ in a
closed form.

Finally, for vector radius, we have

r = a 1 − e cos Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 sin2Ψ

p
� �

, r′ = a 1 + e cos Ψffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2 sin2Ψ

p
� �

:

ð33Þ

To obtain the partition function, we proceed as follows

dΨ = 1
2 df + df ′
� �

: ð34Þ

On the other hand, we have the well-known relation

df ′
df

= r

r′
, ð35Þ

and from them, we get

dΨ = 1
2 1 + r

r′

� �
df = r + r′

2r′
df = a

r′
df : ð36Þ

Finally, taking into account the equation

df = a2ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p r2dM, ð37Þ

we obtain

dM =Q r, r′
� �

dΨ, ð38Þ

where

Q r, r′
� �

= r2r′
a3

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p : ð39Þ

Thus, this anomaly can also be included in the bipara-
metric family of anomalies with α = 2 and β = 1. The semifo-
cal anomaly satisfies the relation α − β = 1 and for this
reason is considered a symmetric anomaly of the family
defined above.

3. Analytical Properties of the Symmetric
Family of Anomalies

In order to arrange the series development of the second
members of the Lagrange planetary equations, we study a
general method to obtain the Fourier series developments,
according to an anomaly Ψα, of the most common quantities
in the two-body problem.

To this purpose, we obtain, in the first place, the value of
the constant Cα that appears in (20) when α − β = 1. By dif-
ferentiation Kepler’s equation and taking into account the
relation α − β = 1, we obtain

CαdΨα = a−2α 1 − e cos gð Þ−α+1 1 + e cos gð Þ−α+1dg: ð40Þ

Integrating g and Ψα in ½0, 2π�, we get

Cα =
a−2α

2π

ð2π
0

1 − e2 cos2g
� �−α+1

dg, ð41Þ

and form this equation, we have

dΨα = 2πKα 1 − e2 cos2g
� �−α+1

dg, ð42Þ

where

Kα =
ð2π
0

1 − e2 cos2g
� �−α+1

dg
	 
−1

, ð43Þ

and Kα depends only of e, α. This quantity can be
expressed as a Taylor series with respect to the eccentricity.
Next, we show the series up to tenth order in e:

Kα eð Þ = 1 + 1
2 −

α

2

� �
e2 + 1

4 −
5α
16 + α2

16 + α3

96

� �
e4 + 1

8 −
13α
96 + α3

96

� �
e6

+ 1
32 −

α

1536 −
245α2
3072 + 39α3

1024 + 29α4
3072 + 5α5

3072

� �
e10:

ð44Þ

In order to allow the development of Ψα according to g,
we proceed as follows. First, let us define the new variable
z = exp ð ffiffiffiffiffiffiffiffiffið−1Þp

gÞ replacing cos Ψα in the equation (51).
We have

dΨα = 2πKαG e, zð Þdg, ð45Þ

P

QFOF’
f ’

f

rr′

𝜉

𝜂

Figure 1: True and antifocal anomalies.
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where the generating function Gðz, eÞ is given by

G e, zð Þ = −e2z4 + 4 − 2e2
� �

− e2

4z2
� �−α+1

, ð46Þ

and so

G e, zð Þ = −e2 z2 − z21
� �

z2 − z22
� �

4z2
� �−α+1

, ð47Þ

where z21z
2
2 = 1. The quantities z1 = 2 − e2 + 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
/e2

and z2 = 2 − e2 − 2
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
/e2 are the roots of the equation

Gðz, eÞ = 0.
We can see that jz22j ∈ �0, 1½, jz21j ∈ �1,∈∞½.

G e, zð Þ = e2 1−αð Þz2 1−αð Þ
1

42 1−αð Þ 1 − z2

z21

� �
1 − 1

z2z21

� �
: ð48Þ

Developing in series and after some algebraic manipula-
tion, we obtain

dΨα = 2πKα

e2 1−αð Þz2 1−αð Þ
1

42 1−αð Þ

� 〠
∞

k=0

1 − α

k

 !2
1
z2k1

+ 2〠
∞

n=1

1 − α

n + k

 !
cos 2n gð Þ

z2n1

24 35dg
ð49Þ

and integrating, we obtain a development in the form

Ψα = g + 〠
∞

k=1
Sk α, eð Þ sin k gð Þ, ð50Þ

where Skðα, eÞ are analytical functions of order k in e,
and thus (50) can be reordered by powers of e.

The explicit form of the expansion of Ψα can be derived
from (49) and (44). We obtain the development of Ψα
according to g and up to sixth order in e, we have

Ψα = g + −
1
128 α

3e6 + α2e6

32 + 5αe6
128 + αe4

8 + αe2

4 −
e6

16 −
e4

8 −
e2

4

� �
� sin 2gð Þ + α2e6

64 + α2e4

64 −
αe6

64 −
αe4

64

� �
sin 4gð Þ

+ α3e6

1152 −
αe6

1152

� �
sin 6gð Þ:

ð51Þ

From this main development, we can use Deprit algo-
rithm to achieve the most common quantities involved in
the two-body problem. From these developments, analytical
theories of the motion can be formulated.

In the first place, we show the development of Ψα
according g

g =Ψα +
3α3e6
256 −

3α2e6
64 −

5αe6
256 −

αe4

8 −
αe2

4 + 7e6
128 + e4

8 + e2

4

� �
� sin 2Ψαð Þ + 3α2e6

64 + 3α2e4
64 −

7αe6
64 −

7αe4
64 + e6

16 + e4

16

� �
� sin 4Ψαð Þ + −

29α3e6
2304 + 3α2e6

64 −
133αe6
2304 + 3e6

128

� �
sin 6Ψαð Þ:

ð52Þ

Notice that the developments (51) and (52) contain only
sinus of even arguments. Ψ point distribution symmetry is the
same as g. This fact induces the family simmetry on the ellipse.

To obtain the development of sin g and cos g according
to Ψα, we can use the Deprit inversion method [15], a Pois-
son series processor (PSP) [16], or a Mathematica package
both developed by the authors. The source of the kernel of
the PSP and the Mathematica package are available in the
following URL: http://mecanicaceleste.uji.es; the source code
of the PSP is free under General Public License v3.

The development of sin g is given by

sin g = α3e6

256 −
33α2e6
1024 −

α2e4

64 + 7αe6
512 −

αe4

32 −
αe2

8

�
+ 15e6
1024 + 3e4

64 + e2

8 + 1
�
sin Ψαð Þ

+ 5α3e6
512 −

21α2e6
1024 + α2e4

64 −
9αe6
256 −

13αe4
128 −

αe2

8

�
+ 47e6
1024 + 11e4

128 + e2

8

�
sin 3Ψαð Þ + −

17α3e6
4608 + 47α2e6

1024

�
+ α2e4

32 −
103αe6
1152 −

9αe4
128 + 145e6

3072 + 5e4
128

�
sin 5Ψαð Þ

+ −
11α3e6
1152 + 35α2e6

1024 −
187αe6
4608 + 49e6

3072

� �
sin 7Ψαð Þ:

ð53Þ

For cos g, we have

cos g = −
1
256 α

3e6 + α2e6

1024 −
α2e4

64 + 25αe6
512 + 3αe4

32 + αe2

8

�
−

47e6
1024 −

5e4
64 −

e2

8 + 1
�
cos Ψαð Þ

+ 5α3e6
512 −

53α2e6
1024 −

α2e4

64 + 11αe6
256 −

3αe4
128 −

αe2

8

�
−

e6
1024 + 5e4

128 + e2

8

�
cos 3Ψαð Þ

+ 17α3e6
4608 + 17α2e6

1024 + α2e4

32 −
59αe6
1152 −

9αe4
128

�
+ 95e6
3072 + 5e4

128

�
cos 5Ψαð Þ + −

11α3e6
1152 + 35α2e6

1024

�
−
187αe6
4608 + 49e6

3072

�
cos 7Ψαð Þ:

ð54Þ
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The Kepler equation for Ψα can be obtained from (52)
and (53)

M =Ψα +
α2e5

64 + αe5

32 + αe3

8 −
3e5
64 −

e3

8 − e
� �

sin Ψαð Þ

+ 3α3e6
256 −

3α2e6
64 −

5αe6
256 −

αe4

8 −
αe2

4 + 7e6
128 + e4

8 + e2

4

� �
� sin 2Ψαð Þ + −

1
64 α

2e5 + 13αe5
128 + αe3

8 −
11e5
128 −

e3

8

� �
� sin 3Ψαð Þ + 3α2e6

64 + 3Ψαα
2e4

64 −
7αe6
64 −

7αe4
64 + e6

16 + e4

16

� �
� sin 4Ψαð Þ + −

1
32 α

2e5 + 9αe5
128 −

5e5
128

� �
sin 5Ψαð Þ

+ −
29α3e6
2304 + 3α2e6

64 −
133αe6
2304 + 3e6

128

� �
sin 6Ψαð Þ:

ð55Þ

Finally, to develop the second members of the Lagrange
planetary equations, it is necessary to have the development
of r/a and a/r. The first quantity is given by

r
a
= 1 + α2e5

64 −
3αe5
32 −

αe3

8 + 5e5
64 + e3

8 − e
� �

� cos Ψαð Þ + α2e5

64 + 3αe5
128 + αe3

8 −
5e5
128 −

e3

8

� �
� cos 3Ψαð Þ + −

1
32 α

2e5 + 9αe5
128 −

5e5
128

� �
cos 5Ψαð Þ,

ð56Þ

and for a/r, we have

a
r
= 1 + 3αe6

16 + αe4

8 + e6

8 + e4

4 + e2

2

+ −
1
64 α

2e5 + 9αe5
32 + αe3

8 + 23e5
64 + 5e3

8 + e
� �

� cos Ψαð Þ + −
5
128 α

2e6 + 19αe6
128 + 23e6

64 + e4

2 + e2

2

� �
� cos 2Ψαð Þ + −

1
64 α

2e5 −
15αe5
128 −

αe3

8 + 57e5
128 + 3e3

8

� �
� cos 3Ψαð Þ + −

3αe6
16 −

αe4

8 + 3e6
8 + e4

4

� �
cos 4Fð Þ

+ α2e5

32 −
21αe5
128 + 25e5

128

� �
cos 5Ψαð Þ

+ 5α2e6
128 −

19αe6
128 + 9e6

64

� �
cos 6Ψαð Þ:

ð57Þ

4. Numerical Examples

In this section, we want to present a set of numerical exam-
ples in order to show the performance of the new symmetric
family of variables introduced previously, focusing on the
semifocal anomaly case. We desired the qualitative results
to be orbit size independent, and to that end, the orbit has
been parameterized with a specific anomaly. Thus, the tem-
poral variable in the elliptic movement in comprised within
the interval ½0, 2π�. Taking into account these consider-
ations, natural time must be replaced by the mean anomaly,
M.

(a) e = 0:8,M (b) e = 0:8, f

(c) e = 0:8,Ψ (d) e = 0:8, ω

Figure 2: Points distribution for e = 0:8, and anomalies M, f ,Ψ, ω.
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First, we will show the point distribution along the orbit
of the secondary with twenty points. These points are related
to regular intervals of the chosen anomaly assuming the
movement along a e = 0:8 eccentricity ellipse.

In Figure 2, it can be seen that in the mean anomaly case,
the points are gathered together around the apoapsis, leaving
the periapsis zone with a very low point density. This fact is
indeed a problem because in this zone the variation in the
oscillation and the velocity with respect of the time are
greater. Also in Figure 2, we can see that when the true
anomaly, f , is used as the temporal variable, the point distri-
bution is denser in the periapsis region and more scattered
in the apoapsis. In both cases, we can observe that the point
distribution geometry is symmetric with respect of the major
axis of the ellipse, but not with respect of the minor axis. In
the subfigures corresponding to the semifocal and elliptic
anomalies, Ψ and ω, respectively, we notice a symmetric
point distribution with respect of both axes of the ellipse;
the density of the points is greater in the periapsis region
and enormously enhances the concentration rate given by
the mean anomaly.

Next, in order to be able to compare the results of this
paper to those determined in previous publications, we are
going to use the artificial satellite Heos II as our test bench.
The orbital elements of this satellite, that was used before
by Brumberg, are a = 118363:47 km, e = 0:942572319, i = 2

8o:16096, Ω = 185o:07554, ω = 270o:07151, and M0 = 0o.
The period of the satellite is 4.69 days and the value of space-
flight constant for the Earth is GM = 3:986005 km3s−2.
Table 1 shows the error values of the position and velocity
committed in the integration process with a classical 4th-
order Runge-Kutta algorithm after one revolution and tak-
ing the semifocal anomaly as the temporal variable; the
mean anomaly, M, has been firstly used and then the semi-
focal anomaly taking some values of the parameter.

Next, we study the value of the parameter that minimizes
the error in the position after one revolution using several
values of the parameter α. Once again, a classical Runge-
Kutta method with constant step size, h = 2π/1000, has been
chosen to evaluate the error. Table 2 shows the results.

Finally, we study the local truncation error when the
mean and the semifocal anomalies are used as temporal var-
iables. To that extent, we take 10000 evenly spaced points in
M and in Ψ and we proceed by calculating the exact position
in the i node.

In the mean anomaly case, we solve the Kepler equation
to obtain g, and from (4), we can attain the exact position
ðξðiÞ, ηðiÞÞ. This data is taken as an initial condition for the
integration. We integrate with a classical fourth-order

Runge-Kutta algorithm to obtain the approximation ðbξði +
1Þ, bηði + 1ÞÞ. This value is compared to the exact one for
the i + 1 node following the method previously described.

Table 1: Integration errors in position (km) and velocity (km/s) for several values of α symmetric family for the satellite Heos II.

α Δ r!
��� ��� Δv!

��� ��� α Δ r!
��� ��� Δv!

��� ���
M 9:54e + 00 7:71e − 03 1.00 1:12e − 05 9:08e − 09
0.00 1:51e − 02 1:22e − 05 1.05 1:21e − 05 9:77e − 09
0.05 1:14e − 02 9:21e − 06 1.10 1:21e − 05 9:79e − 09
0.10 8:40e − 03 6:79e − 06 1.15 1:16e − 05 9:42e − 09
0.15 6:08e − 03 4:91e − 06 1.20 1:09e − 05 8:83e − 09
0.20 4:34e − 03 3:51e − 06 1.25 1:00e − 05 8:12e − 09
0.25 3:06e − 03 2:47e − 06 1.30 9:12e − 06 7:38e − 09
0.30 2:14e − 03 1:72e − 06 1.35 8:20e − 06 6:64e − 09
0.35 1:47e − 03 1:19e − 06 1.40 7:49e − 06 6:06e − 09
0.40 1:01e − 03 8:12e − 07 1.45 6:77e − 06 5:48e − 09
0.45 6:78e − 04 5:48e − 07 1.50 6:13e − 06 4:96e − 09
0.50 4:51e − 04 3:64e − 07 1.55 5:67e − 06 4:58e − 09
0.55 2:94e − 04 2:38e − 07 1.60 5:22e − 06 4:22e − 09
0.60 1:88e − 04 1:52e − 07 1.65 4:83e − 06 3:91e − 09
0.65 1:16e − 04 9:34e − 08 1.70 4:49e − 06 3:63e − 09
0.70 6:78e − 05 5:47e − 08 1.75 4:32e − 06 3:50e − 09
0.75 3:63e − 05 2:92e − 08 1.80 4:35e − 06 3:52e − 09
0.80 1:59e − 05 1:28e − 08 1.85 4:27e − 06 3:46e − 09
0.85 3:17e − 06 2:51e − 09 1.90 4:40e − 06 3:57e − 09
0.90 4:56e − 06 3:72e − 09 1.95 4:74e − 06 3:84e − 09
0.95 8:97e − 06 7:28e − 09 2.00 5:09e − 06 4:13e − 09

7Computational and Mathematical Methods



Table 2: Optimal values α for each value of e in the symmetric family and optimal values and errors in position and velocity.

e α Δ r!
��� ��� Δv!

��� ��� e α Δ r!
��� ���

S
Δv!
��� ���

0.000 — — — 0.500 0.130 1:0800e − 05 1:0031e − 09
0.025 0.000 4:3170e − 05 6:8668e − 10 0.525 0.150 1:1491e − 05 3:8381e − 10
0.050 0.000 4:7581e − 05 7:7763e − 10 0.550 0.220 1:1742e − 05 5:6823e − 10
0.075 0.000 5:2481e − 05 8:8259e − 10 0.575 0.310 1:2406e − 05 1:8567e − 09
0.100 0.000 5:7926e − 05 1:0040e − 09 0.600 0.360 1:4221e − 05 2:3466e − 09
0.125 0.000 6:3985e − 05 1:1450e − 09 0.625 0.410 2:2682e − 05 3:3040e − 09
0.150 0.000 6:7243e − 05 1:1718e − 09 0.650 0.450 2:1303e − 05 3:9426e − 09
0.175 0.000 6:8698e − 05 1:2378e − 09 0.675 0.490 2:4100e − 05 5:0445e − 09
0.200 0.000 6:9660e − 05 1:3030e − 09 0.700 0.530 3:5516e − 05 7:1049e − 09
0.225 0.000 7:0063e − 05 1:3663e − 09 0.725 0.550 6:2882e − 05 1:0223e − 09
0.250 0.000 6:9823e − 05 1:4258e − 09 0.750 0.600 3:3106e − 05 1:1200e − 08
0.275 0.000 6:8832e − 05 1:4790e − 09 0.775 0.630 3:0239e − 05 7:9479e − 09
0.300 0.000 6:6952e − 05 1:5221e − 09 0.800 0.670 6:9448e − 05 2:4680e − 08
0.325 0.000 6:3986e − 05 1:5494e − 09 0.825 0.700 5:0922e − 05 1:5274e − 08
0.350 0.000 5:9666e − 05 1:5520e − 09 0.850 0.740 2:9672e − 04 9:3371e − 08
0.375 0.000 5:3600e − 05 1:5165e − 09 0.875 0.770 1:9490e − 05 6:3435e − 08
0.400 0.000 4:5224e − 05 1:4218e − 09 0.900 0.800 1:3278e − 03 3:6475e − 07
0.425 0.000 3:3715e − 05 1:2346e − 09 0.925 0.840 5:7060e − 04 8:7792e − 08
0.450 0.000 1:7844e − 05 9:0182e − 10 0.950 0.880 2:1354e − 03 2:7340e − 06
0.475 0.060 1:2287e − 05 8:7805e − 10 0.975 0.920 6:1986e − 02 1:6956e − 04

200 400 600 800 1000

0.0002

0.0004

–0.0002

–0.0004

(a) errx in km

200 400 600 800 1000

–0.0010

–0.0008

–0.0006

–0.0004

–0.0002

(b) erry in km

200 400 600 800 1000

–5.×10–8

–1.×10–7

–1.5×10–7

–2.×10–7

(c) errvx in km/s

200 400 600 800 1000

1.×10–7

5.×10–8

–5.×10–8

–1.×10–7

(d) errvx in km/s

Figure 3: Local truncation errors for e = 0:8 and M:
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In the semifocal anomaly case, the exact value for the
node i can be obtained from the relations (31) and (32). This
result replaced in (4) provides the exact value. Analogously
proceeding as in M, we obtain the local truncation error dis-
tribution for the variable Ψ.

Figures 3 and 4 show the local truncation error con-
nected to the variables M and Ψ. We can see that the local
truncation errors are considerably smaller when the semifo-
cal anomaly is used instead of M.

5. Concluding Remarks

In this article, we first show that a set of variables—such as
the eccentric or the elliptic anomaly—are encompassed
within the biparametric family of anomalies defined by the
authors. These anomalies provide a symmetric point distri-
bution with respect of the major and minor semiaxes of
the ellipse where the movement occurs. In the case of these
anomalies, the relation α − β = 1 is always held.

Next, we introduce a new anomaly—the semifocal
anomaly—as the mean between the true and the antifocal
anomalies. This anomaly keeps a symmetric point distribu-
tion with respect of both axes and also presents interesting
properties, considering that the main quantities of the two-
body problem can be expressed in closed form; besides, the
Kepler equation can also be expressed in closed form. At this
point, we determine the partition function of this anomaly
and we establish it is included in the biparametric family
with the values α = 2, β = 1. We define a set of symmetric

anomalies within the biparametric family characterized by
the relation α − β = 1.

When the eccentricity of the bodies that get involved in the
movement around a given one with dominant mass is not
high, their movements can be studied with perturbative tech-
niques and analytical methods. To that extent, it is necessary
to obtain the development as Fourier series of the most impor-
tant magnitudes of the two-body problem as functions of the
anomaly that is going to be used as temporal variable. In that
sense, first, we obtain the development of the anomaly of the
symmetric family as a function of the eccentric anomaly.With
this, we have a development in which only even sines of the
eccentric anomaly appear. This fact proves the symmetry of
these anomalies with respect to both axes of the ellipse and jus-
tifies the symmetric anomalies’ qualifier.

After that, applying Deprit inversion algorithm, we obtain
the developments of g, sin g, cos g, r/a, and a/r as Fourier
series in the variable Ψα. Thus, it is possible to obtain the
developments of the second members of the Lagrange plane-
tary equations according to these new variables.

Finally, we show the distribution of 20 evenly distributed
points along the orbit using the mean anomaly, the true
anomaly, the semifocal anomaly, and the elliptic anomaly,
the last two as part of the symmetric family. Then, we pro-
vide some numerical examples to prove the efficiency of
the use of these anomalies in the integration with numerical
methods. This variable change is a new parametrization of
the orbit, which implies it can be combined with other inte-
gration methods, such as symplectic integrators, variable
step-size integrators, and extrapolation integrators. In this

200 400 600 800 1000

5.×10–7

–5.×10–7

(a) errx in km

200 400 600 800 1000

1.×10–7

5.×10–8

–5.×10–8

–1.×10–7

–1.5×10–7

(b) erry in km

200 400 600 800 1000

5.×10–12

–5.×10–12

–1.×10–11

(c) errvx in km/s

200 400 600 800 1000

1.×10–11

5.×10–12

–5.×10–12

–1.×10–11

(d) errvx in km/s

Figure 4: Local truncation errors for e = 0:8 and Ψ.
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paper, we have chosen a simple constant step-size integrator
since the objective of the previous section was to show the
integration errors committed in one revolution of the high
eccentric artificial satellite Heos II making use of several
anomalies of this family. After that, we take a fictitious satel-
lite and we show the same elements as in Eos II, but chang-
ing the eccentricity and looking for the value of the
parameter α that minimizes the integration error. Lastly,
we study the local truncation error of a fourth-order
Runge-Kutta integrator along one orbital revolution; this
study has been made for the mean anomaly and for the
semifocal anomaly and for the latter the local truncation
errors seam to be significantly enhanced.

In the future, we wish to extend this study to the hyper-
bolic case, where we hope to uncover interesting results.
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