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In this paper, we present a nonlinear deterministic mathematical model for malaria transmission dynamics incorporating climatic
variability as a factor. First, we showed the limited region and nonnegativity of the solution, which demonstrate that the model is
biologically relevant and mathematically well-posed. Furthermore, the fundamental reproduction number was determined using
the next-generation matrix approach, and the sensitivity of model parameters was investigated to determine the most affecting
parameter. The Jacobian matrix and the Lyapunov function are used to illustrate the local and global stability of the
equilibrium locations. If the fundamental reproduction number is smaller than one, a disease-free equilibrium point is both
locally and globally asymptotically stable, but endemic equilibrium occurs otherwise. The model exhibits forward and
backward bifurcation. Moreover, we applied the optimal control theory to describe the optimal control model that incorporates
three controls, namely, using treated bed net, treatment of infected with antimalaria drugs, and indoor residual spraying
strategy. The Pontryagin’s maximum principle is introduced to obtain the necessary condition for the optimal control problem.
Finally, the numerical simulation of optimality system and cost-effectiveness analysis reveals that the combination of treated
bed net and treatment is the most optimal and least-cost strategy to minimize the malaria.

1. Introduction

Malaria is a vector-borne disease caused by a parasite called
Plasmodium and transmitted between humans and mosqui-
tos via bites of infected female Anopheles mosquitoes. It is a
major public health problem, particularly on the African
continent [1]. This disease can also be transmitted by blood
transfusion or congenital. According to the world malaria
report published in December 2021, an estimated 241 mil-
lion cases and 627000 deaths occurred worldwide, with the
African Region accounting for 95 percent of all cases in
2020 [2]. Climate variability is recognized to have a signifi-
cant impact on the malaria vector’s life cycle, and the life
of the mosquito is governed by temperature and rainfall
[3]. The most effective way to avoid the malaria dynamics
are treated bed net, treatment with antimalaria drugs, and
indoor residual spraying [4].

The mathematical model for malaria dynamics is the
most useful in comprehending the disease’s presence in the
human population. Ross devised the first mathematical
model for malaria dynamics transmission [5]. Various
mathematical models based on Ross’s basic malaria model
were described by different scholars with different factors
such as including the exposed class in mosquitoes and
humans [6–8] and the impact of climate variations on
malaria epidemics in terms of death rate, birth rate, and
prevalence of mosquito population [9–11].

Many investigations of malaria dynamics models were
presented using optimum control problems employing opti-
mal control theory. For example, Agusto et al. [12] investi-
gated optimum solutions for decreasing the dynamics of
malaria using a malaria transmission model with an optimal
control problem. The authors proposed that the combination
of the treated bed net, therapy, and indoor residual spraying is
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the optimum technique for illness reduction. Okosun et al.
[13] created a malaria model that includes optimum control
techniques of malaria disease transmission with two measures
that regulate treatment infectious and immunization. The
authors determined that the combination of therapy and
immunization is the most effective and least expensive way
to control a malaria condition. Leiton et al. [14] presented an
SEIRS-SI optimal control model for malaria transmission in
Colombia considering three optimal control strategies. The
authors concluded that integrated of control measures treated
bed net, intermittent prophylactic treatment in pregnancy and
effective case management is the best strategy to prevent the
malaria dynamics. Olaniyi et al. [15] formulated a malaria
transmission dynamic model with an optimal control analysis
using four time dependent continuous controls. The authors
concluded that the combination of all these controls is the best
measure to minimize the spread of malaria. Keno et al. [16]
formulated an optimal control and cost effectiveness strategies
of malaria transmission with temperature variability factor by
considering three optimal control strategies. The model anal-
ysis provides that the combination of treatment and indoor
residual spraying is the most efficient and less costly strategy
to minimize the malaria. Olaniyi et al. [17] proposed SEIRS
for the human population and SEI malaria model with opti-
mal control and cost-effectiveness analysis in the presence of
reinfection and relapse in malaria dynamics. The authors sug-
gested that the strategy with a combination of treated bed net
and indoor residual spraying is the most effective and least
cost to eradicate the malaria.

To the best of our knowledge, the impact of climate var-
iability on malaria epidemics with optimal control and cost
effectiveness analysis with a logistic growth of climate varia-
tion with respect to mosquitoes breeding and malaria infec-
tion was not considered in their models. In the malaria
transmission model [11], we considered impact of tempera-
ture variability on malaria epidemics. In this paper, we
extended model [11] to the impact of climate variability
(temperature and rainfall) with respect to mosquitoes breed-
ing rate and malaria infection with optimal control and cost
effectiveness analysis.

The following is the format of this paper: in Section 2, we
develop a malaria transmission model that incorporates the
impact of climate variability on malaria epidemics. The
model’s qualitative analysis is described in Section 3. We per-
form sensitivity analysis in Section 4. The optimal control
analysis of the malaria transmission model is described in Sec-
tion 5. In Section 6, we compared numerical simulation results
to analytical results. The cost-effectiveness analysis is depicted
in Section 7. Finally, Section 8 discusses the study’s conclusion.

2. Model Description and Formulation

In this section, we proposed and developed a malaria trans-
mission model that takes into account the human and vector
populations, with the total human population denoted by Nh
ðtÞ and the vector population denoted by NmðtÞ. The SEIRS
model describes the human population and divides it at time
t into the following subpopulations: susceptible human ShðtÞ,

Table 1: Parameters description used for the model (1).

Parameters Parameter description

μh Human death rate due to natural cause

δ Induced death rate of human

γh Recover rate of infected humans

Ψ Human recruitment rate

Φ0 Mosquito recruitment rate

μm Mosquito natural death rate

ωh Human immune deficiency rate

β1m Mosquito contact rate (incremental)

β1h Human contact rate (incremental)

Φ1m Incremental birth rate of mosquito

β0h Contact rate of human with mosquito

β0m Contact rate of mosquito with human

αh Exposed human progression rate

αm Exposed mosquito progression rate

m Temperature dependent rate of precipitation

z∗ Percentage of an antibody produced by a human

m∗ Percentage of an antibody produced by a mosquito

r Temperature increase rate

T0 Minimum temperature for the mosquito to be less active

Tmax Maximum temperature for the mosquito to be most active
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exposed human EhðtÞ, infected human IhðtÞ, and recovered
human RhðtÞ. The SEI model describes the mosquito popula-
tion, and the total mosquito population at time t, denoted by
NmðtÞ, is subdivided into susceptible mosquito SmðtÞ, exposed
mosquito EmðtÞ, and infected mosquito ImðtÞ. The total
human and mosquito populations are then given by NhðtÞ =
ShðtÞ + EhðtÞ + IhðtÞ + RhðtÞ and NmðtÞ = SmðtÞ + EmðtÞ + Im
ðtÞ, respectively. Assume that all of the parameters in the
model are positive. The new recruits (assumed to be suscepti-
ble) enter the human population by birth (migration) at the
rate Ψ: An infectious mosquito transmits malaria to the sus-
ceptible human, and the susceptible human moves to the
exposed human at a climate dependent rate of βhðT , RÞ, β0h
is the contact rate of humans with mosquitos when there is
no variation in climate, and β1h is the incremental contact rate
of humans with mosquitos due to climate variation. The pro-
gression of exposed humans to infected humans is αh, the nat-
ural death rate of all humans is μh, and induced death is δ. The
infected human recovered due to the use of antimalarial drugs
through a treatment rate of γh. The recovered populations of
humans have short period immunity that can be lost and
become susceptible to reinfection rate of ωh. The recruitment
of mosquito populations at a rate of ΦðT , RÞ is climate-
dependent; Φ0 is the birth rate of mosquitos when there is
no variation in climate, and ϕ1m is the incremental birth rate
of mosquitos when there is variation in climate. Mosquito
population contact with an infected human with malaria and
moved to exposed class at a climate dependent rate of βmðT ,
RÞ, β0m is mosquito contact rate with human when there is
no variation in climate, and β1m is incremental mosquito con-
tact rate with a human due to climate variation. The exposed
mosquito moved at a rate of αm to an infectedmosquito. Every
mosquito dies at the same rate μm:Mosquitoes do not recover
from malaria because an infected mosquito is infectious until

it dies. The temperature growth rate r follows a logistic func-
tion, m is the temperature dependent rate of precipitation,
Tmax is the maximum temperature for the mosquito to be
most active, and T0 is the minimum temperature for the mos-
quito to be less active. All the description of parameters are
given in Table 1, and the diagram of malaria disease transmis-
sion is shown in Figure 1.

The transmission dynamics of malaria is described by
the following system of nonlinear differential equations,
based on the flow diagram depicted in Figure 1:

dSh
dt

=Ψ −
βh T , Rð ÞShIm
1 + z∗Im

− μhSh + ωhRh,

dEh

dt
= βh T , Rð ÞShIm

1 + z∗Im
− μh + αhð ÞEh,

dIh
dt

= αhEh − μh + δ + γhð ÞIh,
dRh

dt
= γhIh − μh + ωhð ÞRh,

dSm
dt

=Φ T , Rð Þ − βm T , Rð ÞSmIh
1 +m∗Ih

− μmSm,

dEm

dt
= βm T , Rð ÞSmIh

1 + m∗Ih
− μm + αmð ÞEm,

dIm
dt

= αmEm − μmIm,

dT
dt

= r 1 − T
Tmax

� �
T − T0ð Þ,

dR
dt

=m dT
dt

⇒ R tð Þ =m T tð Þ − T0ð Þ + ε,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð1Þ
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Figure 1: Flow diagram of malaria transmission.
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where βhðT , RÞ = β0h + β1hk, βmðT , RÞ = β0m + β1mk,ΦðT , R
Þ =Φ0 +Φ1mk and k = ðð1 +mÞðT − T0Þ/TmaxÞ.

With initial conditions Sh 0ð Þ = Sh0, Eh 0ð Þ = Eh0, Ih 0ð Þ
= Ih0, Rh 0ð Þ = Rh0, Sm 0ð Þ
= Sm0, Em 0ð Þ = Em0, Im 0ð Þ
= Im0, T 0ð Þ = Tm0, R 0ð Þ = Rm0:

ð2Þ

Base on the fact that as average temperatures at the
earth’s surface rise more, evaporation occurs, which in turn
increases overall precipitation (rainfall). Therefore, a warm-
ing climate is expected to increase precipitation (rainfall) in
many areas. This implies that rainfall pattern is an increas-
ing function of temperature. Note that m is the temperature
dependent rate of precipitation, and ε is the amount of pre-
cipitation at T = T0: In essence,

R0 = ε atT = T0 andRmax =m Tmax − T0ð Þ + R0: ð3Þ

3. Qualitative Analysis of the Model

3.1. Invariant Region. The invariant region is used to deter-
mine where the model’s solution is bounded. The model (1)
is divided into two parts: the host population and the vector
population. The total human population is represented by
NhðtÞ = ShðtÞ + EhðtÞ + IhðtÞ + RhðtÞ: Then, by differentiat-
ing NhðtÞ both sides with respect to time and combining
the first four equations from the model (1), we get

d
dt

Sh + Eh + Ih + Rhð Þ =Ψ − μhNh − δIh: ð4Þ

Then, equation (4) becomes

d
dt

Sh + Eh + Ih + Rhð Þ ≤Ψ − μhNh: ð5Þ

By solving the equation (5), we can see that 0 ≤Nh ≤Ψ
/μh: Thus, for the human population, the bounded region
of the system (1) is given by

Ωh = Sh, Eh, Ih, Rhð Þ ∈ℝ4
+ : 0 ≤ Sh + Eh + Ih + Rh ≤

Ψ

μh

� �
:

ð6Þ

Similarly, the equation gives the total mosquito popula-
tion in the system (1) is

Nm tð Þ = Sm tð Þ + Em tð Þ + Im tð Þ: ð7Þ

Obviously, the result we obtain after differentiating Nm

ðtÞ with respect to time ðtÞ is

d
dt

Sm + Em + Imð Þ =Φ T , Rð Þ − μmNm: ð8Þ

By solving the equation (8), we get 0 <Nm ≤ΦðT , RÞ/μm.
As just a result, for the mosquito population, the invariant
region of the system (1) is given by

Ωm = Sm, Em, Imð Þ ∈ℝ3
+ : 0 ≤ Sm + Em + Im ≤

Φ T , Rð Þ
μm

� �
,

ð9Þ

is a positive invariant. As a result, the system’s invariant
region (1) is given by

Ω =Ωh ×Ωm = Sh, Eh, Ih, Rh, Sm, Em, Imð Þ ∈ℝ7
+ : Nh ≤

Ψ

μh
,Nm ≤

Φ T , Rð Þ
μm

� �
,

ð10Þ

is a positive invariant set, and all of the solution set of system
(1) is bounded in Ω within the region.

3.2. Positivity of the Solution. The purpose of this subsection
is to demonstrate that all solutions of the model (1) will
remain nonnegative in the future if their initial data is
nonnegative.

Theorem 1. The model solution (1) given by ShðtÞ, EhðtÞ, Ih
ðtÞ, RhðtÞ, SmðtÞ, EmðtÞ and ImðtÞ with nonnegative initial
conditions Shð0Þ, Ehð0Þ, Ihð0Þ, Rhð0Þ, Smð0Þ, Emð0Þ and Imð0
Þ remain nonnegative for all time t ≥ 0.

Proof. First, take the begin equation from system (1) as given
by

dSh
dt

=Ψ −
βh T , Rð ÞShIm
1 + z∗Im

− μhSh + ωhRh: ð11Þ

Consequently, this indicates that

dSh
dt

≥ −
βh T , Rð ÞIm
1 + z∗Im

+ μh

� �
Sh: ð12Þ

We obtain by integrating equation (12) with respect to
time and solving it using the technique of variable separation
with initial condition.

Sh tð Þ ≥ Sh 0ð Þ exp − μht +
ðt
0

βh T , Rð ÞIm xð Þ
1 + z∗Im xð Þ

� �� �
dx

� �
≥ 0:

ð13Þ

The other state variables EhðtÞ, IhðtÞ, RhðtÞ, SmðtÞ, EmðtÞ
, and ImðtÞ are nonnegative for all time t ≥ 0 by the same
procedure. As a result, the malaria transmission model
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stated in system (1) is both epidemiologically significant and
mathematically well posed in Ω:

3.3. Basic Reproduction Number ðR0Þ. To find the steady-
state solution of the model (1), we equated the left-hand side
of the system (1) to zero with the value of Eh = 0, Ih = 0, Em
= 0, Im = 0, and obtained the disease free-equilibrium of sys-
tem (1) denoted by E1 or E2, where

E1 =
Ψ

μh
, 0, 0, 0, Φ T0ð Þ

μm
, 0, 0, T0, R0

� �
or E2

= Ψ

μh
, 0, 0, 0, Φ Tmaxð Þ

μm
, 0, 0, Tmax, Rmax

� �
:

ð14Þ

The basic reproduction number is defined as the average
amount of secondary infectious caused by a primary infec-
tious over a given time period [18], and it has been calcu-
lated using the next-generation matrix method [19]. Then,
to get R01 and R02, at E1 and E2, respectively, we rewrite
the model (1) beginning with newly infective classes of
human and mosquito population as

dEh

dt
= βh T , Rð ÞShIm

1 + z∗Im
− μh + αhð ÞEh,

dIh
dt

= αhEh − μh + δ + γhð ÞIh,
dEm

dt
= βm T , Rð ÞSmIh

1 +m∗Ih
− μm + αmð ÞEm,

dIm
dt

= αmEm − μmIm:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð15Þ

The right hand side of system (15) can then be written as

f − v, where

f =

βh T , Rð ÞShIm
1 +m∗Im

0
βm T , Rð ÞSmIh
1 +m∗Ih

0

0
BBBBBBBB@

1
CCCCCCCCA

and v =

μh + αhð ÞEh

μh + δ + γhð ÞIh − αhEh

μm + αmð ÞEm

μmIm − αmEm

0
BBBBB@

1
CCCCCA:

ð16Þ

The Jacobian matrices of f and v at the disease-free equi-
librium points give F and V , respectively, where

F =

0 0 0 βh T∗, R∗ð Þ Ψ
μh

0 0 0 0

0 βm T∗, R∗ð ÞΦ T∗, R∗ð Þ
μm

0 0

0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

andV

=

αh + μh 0 0 0

−αh μh + δ + γh 0 0

0 0 αm + μm 0

0 0 −αm μm

0
BBBBBB@

1
CCCCCCA:

ð17Þ

The next-generation matrix from the product of equa-
tion (17) calculated by FV−1 is obtained as

Thus, the fundamental reproduction number R0 = ρðF
V−1Þ where ρ is the dominant eigenvalue of the product F
V−1 and the R01 and R02 at disease free equilibrium E1
and E2 are obtained, respectively, in equations (19) and
(20) as given by

R01 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β0hΨβ0mΦ0αhαm
μhμ

2
m μh + δ + γhð Þ αh + μhð Þ αm + μmð Þ

s
, ð19Þ

R02 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0h + β2hð ÞΨ β0m + β2mð Þ Φ0 +Φ2mð Þαhαm
μhμ

2
m μh + δ + γhð Þ αh + μhð Þ αm + μmð Þ

s
,

ð20Þ

where β2h = β1hk, β2m = β1mk,Φ2m =Φ1mk, and k = ðð1 +mÞ
ðTmax − T0Þ/TmaxÞ:

FV−1 =

0 0 βh T∗, R∗ð ÞΨαm
μhμm αm + μmð Þ

βh T∗, R∗ð ÞΨ
μhμm

0 0 0 0
βm T∗, R∗ð ÞΦ T∗, R∗ð Þαh
μm αh + μhð Þ αh + γh + μhð Þ

βm T∗, R∗ð ÞΦ T∗, R∗ð Þ
μm μh + δ + γhð Þ 0 0

0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: ð18Þ
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As a result, the basic reproduction number (R02) at
maximum temperature can be written in terms of R01 in
the equation (21), as described below:

where R01 denotes the basic reproduction number at T0 for
the mosquito to be less active in breeding.

3.4. Local Stability of Disease-Free Equilibrium

Theorem 2. If R01 <R02 < 1; then, the disease free equilib-
rium point(s) of the system (1) is locally asymptotically stable
in Ω:

Proof. The Jacobian matrix of equation (1) at the disease-free
equilibrium point is given as

z E∗ð Þ =

z11 0 0 ωh 0 0 −βh T∗, R∗ð Þ Ψ
μh

0 z22 0 0 0 0 βh T∗, R∗ð Þ Ψ
μh

0 αh z33 0 0 0 0
0 0 γh z44 0 0 0

0 0 −βm T∗, R∗ð ÞΦ T∗, R∗ð Þ
μm

0 z55 0 0

0 0 βm T∗, R∗ð ÞΦ T∗, R∗ð Þ
μm

0 0 z66 0

0 0 0 0 0 αm z77

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

,

ð22Þ

where z11 = −μh, z22 = −ðαh + μhÞ, z33 = −ðμh + δ + γhÞ, z44 =
−ðμh + ωhÞ, z55 = −μm, z66 = −ðαm + μmÞ, z77 = −μm:

Setting c1 = αh + μh, c2 = μh + δ + γh, c3 = αm + μm, c4 =
μm and from the equation (22) the Jacobian matrix obtained
as the polynomial function given by

−λ − μhð Þ −λ − μmð Þ −λ − ωh + μhð Þð Þ λ4 + b1λ
3 + b2λ

2 + b3λ + b4
À Á

= 0,
ð23Þ

where

b1 = c1 + c2 + c3 + c4, ð24Þ

b2 = c1c2 + c2c3 + 2c1c4 + c3c4 + c2c4, ð25Þ

b3 = 2c1c2c3 + c1c2c4 + c2c3c4, ð26Þ

b4 = c1c2c3c4 −
βh T∗, R∗ð ÞΨβm T∗, R∗ð ÞΦ T∗, R∗ð Þαhαm

μmμh
:

ð27Þ

From equation (23), we obtain

λ1 = −μh < 0, λ2 = −μm < 0, λ3 = − ωh + μhð Þ < 0, ð28Þ

and we get from the final polynomial equation,

λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0: ð29Þ

Using the Routh-Hurwitz criteria [20, 21], we can see
that all of the equation’s eigenvalues (29) have negative roots
or imaginary roots with a negative real part if

b1 > 0, b2 > 0, b3 > 0, b4 > 0, b1b2 − b3 > 0, b1b2b3 − b23
> 0, b1b2b3 − b23 − b4b

2
1 > 0:

ð30Þ

Clearly, we have seen that b1 > 0, b2 > 0, and b3 > 0,
because they are a sum of positive parameters and at T∗ =
Tmax the value of b4 is described by

b4 = μm γh + δ + μhð Þ αh + μhð Þ αm + μmð Þ
−

β0h + β2hð ÞΨ β0m + β2mð Þ Φ0 +Φ2mð Þαhαm
μmμh

= 1 −R2
02:

ð31Þ

However, for b4 to be positive, 1 −R2
02 must also be pos-

itive, resulting in R02 < 1: Furthermore, when R02 > 1, then,
b4 < 0, implying that disease-free equilibrium (DFE) is
unstable. As a result, since R01 <R02, the DFE is locally
asymptotically stable in Ω if R01 <R02 < 1:

3.5. Global Stability of Disease-Free Equilibrium

Theorem 3. If R01 <R02 < 1; then, the disease free-
equilibrium point(s) of the system (1) is globally asymptoti-
cally stable in Ω:

Proof. We used the technique implemented by Lyapunov
theorem [19]; first, we developed the following Lyapunov
function defined as

M = αh
αh + μhð Þ μh + δ + γhð Þ

� �
Eh +

Ih
μh + δ + γh

� �

+ μmR02
β3mΦ3m

� �
Em + μm αm + μmð ÞR02

β3mΦ3mαm

� �
Im:

ð32Þ

Then differentiating the Lyapunov function with respect

R02 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

01 +
Φ0β0mβ2mΨαhαm +Ψ β0m + β2mð Þ β2h Φ0 +Φ2mð Þ +Φ2mβ0h½ �αhαm

μhμ
2
m μh + δ + γhð Þ αh + μhð Þ αm + μmð Þ

s
, ð21Þ
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to time t, the obtained result is given by

dM
dt

= αh
αh + μhð Þ μh + δ + γhð Þ

� �
dEh

dt
+ 1

μh + δ + γh

� �
dIh
dt

+ μmR02
β3mΦ3m

� �
dEm

dt
+ μm αm + μmð ÞR02

β3mΦ3mαm

� �
dIm
dt

,

= αh
αh + μhð Þ μh + δ + γhð Þ

� �
β3hShIm − μh + αhð ÞEhð Þ

+ 1
μh + δ + γh

� �
αhEh − μh + δ + γhð ÞIhð Þ

+ μmR02
β3mΦ3m

� �
β3mSmIh − μm + αmð ÞEmð Þ

+ μm αm + μmð ÞR02
β3mΦ3mαm

� �
αmEm − μmð ÞIm,

= β3hαhShIm
αh + μhð Þ μh + δ + γhð Þ − Ih +

μmSmIhR02
Φ3m

−
μ2m αm + μmð ÞR02Im

β3mαmΦ3m

� �
,

≤
β3hαhΨ

αh + μhð Þ μh + δ + γhð Þμh
−
μ2m αm + μmð ÞR02

β3mαmΦ3m

� �
Im + R02 − 1ð ÞIh,

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β3hαhΨð Þμ2m αm + μmð Þ
αh + μhð Þ μh + δ + γhð Þμh β3mαmΦ3mð Þ

s !
Im + Ih

" #
R02 − 1ð Þ,

ð33Þ

where β3h = β0h + β2h, β3m = β0m + β2m, and Φ3m =Φ0 +
Φ2m:

Obviously, dM/dt < 0 if R02 < 1 and dM/dt = 0 iff Eh =
0, Ih = 0, Em = 0, Im = 0: This demonstrates that the domi-
nant compact invariant set in fðSh, Eh, Ih, Rh, Sm, Em, ImÞ ∈
Ω : dM/dt = 0g represents the singleton set DFE in Ω: As
a result of LaSalle’s invariant principle [22], every solution
which begins in the region approaches DFE as t (time) tends
to infinity. Since R01 <R02, the DFE is globally asymptoti-
cally stable in Ω if R01 <R02 < 1:

3.6. Malaria Present Equilibrium. The endemic equilibrium
point E∗ = ðS∗h , E∗

h , I∗h , R∗
h , S∗m, E∗

m, I∗m, T∗, R∗Þ is the condition
in which malaria is found in the human population, which
can be obtained by equating all the model equations of sys-
tem (1) to zero. At this point, let λ∗h = βhðT∗, R∗ÞI∗m and
λ∗m = βmðT∗, R∗ÞI∗h be force of infection of human and mos-
quito, respectively, and from the system (1), the endemic
equilibrium point at ðT∗, R∗Þ = ðT0, R0Þ is provided by

S∗h =
Ψ αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð34Þ

E∗
h =

Ψ μh + δ + γhð Þ μh + ωhð Þλ∗h
αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ

∗
hð Þ ,

ð35Þ

I∗h =
Ψαh μh + ωhð Þλ∗h

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð36Þ

R∗
h =

Ψαhγhλ
∗
h

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð37Þ

S∗m = Φ0
λ∗m + μm

, ð38Þ

E∗
m = λ∗mΦ0

λ∗m + μmð Þ αm + μmð Þ , ð39Þ

I∗m = λ∗mαmΦ0
λ∗m + μmð Þ αm + μmð Þμm

: ð40Þ

By substituting I∗h and I∗m from equation (34) into λ∗m
and λ∗h , respectively, and λ∗h is obtained by solving the equa-
tion

A1 λ∗hð Þ2 + B1 λ∗hð Þ = 0, ð41Þ

where

A1 = μm αm + μmð Þ β0mαhΨ μh + ωhð Þ½
+ μm μh + δ + γhð Þ αh + μhð Þ μh + ωhð Þð Þ − μm ωhγhαhð Þ�,

ð42Þ

B1 = ωh + μhð Þ μhμ
2
m αh + μhð Þ αm + μmð Þ μh + δ + γhð Þ 1 −R2

01
À ÁÂ Ã

:

ð43Þ
Therefore, A1 > 0 and B1 > 0 whenever R01 < 1, so that

λ∗h = −B1/A1 < 0:As a result, positive endemic equilibrium does
not occur whenR01 < 1: This shows that endemic equilibrium
is found if B is less than zero which means that there is endemic
equilibrium for the model. Similarly, applying the same proce-
dure, the endemic equilibrium point the model (1) with ðT∗,
R∗Þ = ðTmax, RmaxÞ is described in the following as obtain:

S∗h =
Ψ αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð44Þ

E∗
h =

Ψ μh + δ + γhð Þ μh + ωhð Þλ∗h
αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ

∗
hð Þ ,

ð45Þ

I∗h =
Ψαh μh + ωhð Þλ∗h

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð46Þ

R∗
h =

Ψαhγhλ
∗
h

αh + μhð Þ μh + δ + γhð Þ μh + ωhð Þ λ∗h + μhð Þ − ωhαhγhλ
∗
hð Þ ,

ð47Þ

S∗m = Φ0 +Φ2mð Þ
λ∗m + μm

, ð48Þ

E∗
m = λ∗m Φ0 +Φ2mð Þ

λ∗m + μmð Þ αm + μmð Þ , ð49Þ
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I∗m = λ∗mαm Φ0 +Φ2mð Þ
λ∗m + μmð Þ αm + μmð Þμm

: ð50Þ

Similarly, substituting I∗h and I
∗
m from equation (44) into λ∗m

and λ∗h , respectively, and λ
∗
h is obtained by solving the equation

C λ∗hð Þ2 +D λ∗hð Þ = 0, ð51Þ

where

C = μm αm + μmð Þ β0m + β2mð ÞαhΨ μh + ωhð Þ½
+ μm μh + δ + γhð Þ αh + μhð Þ μh + ωhð Þð Þ − μm ωhγhαhð Þ�,

ð52Þ

D = ωh + μhð Þ μhμ
2
m αh + μhð Þ αm + μmð Þ μh + δ + γhð Þ 1 −R2

02
À ÁÂ Ã

:

ð53Þ
As a result of equation (21), if R02 < 1, it follows that R01

< 1 exists, and DFE exists for both R01 and R02. However,
R01 < 1 does not automatically imply R02 < 1, because the
value ofR02 can be greater than 1, implying thatR02 may pres-
ent backward bifurcation while R01 can only present forward
bifurcation.

4. Model Parameter Sensitivity Analysis

Malaria eradication strategies should focus on key parameters
that have a significant impact on the basic reproduction num-
ber. The parameters found in the model (1) influence the basic
reproduction number. Because those parameters can increase
or decrease a basic reproduction number ðR0Þ as their values
change, and vice versa. The sensitivity analysis is used to iden-
tify the parameters that have a large influence on the basic
reproduction number ðR0Þ. To perform the sensitivity analy-
sis, the method described in [23–25] is used.

Definition 4 (see [23, 24]). The normalized forward sensitiv-
ity index of R0 that differentiable with respect to a given
parameter Q is defined as

τ
R0
Q = ∂R0

∂Q
× Q
R0

, ð54Þ

for Q describes the basic parameters.

For example, the sensitivity index of R01 with respect to
basic parameter β0m is obtained as

τ
R01
β0m

= ∂R01
∂β0m

× β0m
R01

,

= 1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β0hΨβ0mΦ0αhαm/μhμ2m μh + δ + γhð Þ αh + μhð Þ αm + μmð Þ

p
× β0hΦ0Ψαhαm
μhμ

2
m μh + δ + γhð Þ αh + μhð Þ αm + μmð Þ × β0m

R01
= 1
2 > 0:

ð55Þ

Using a similar procedure for the remaining parameters,

τ
R01
β0m

, τR01
Ψ , τR01

Φ0
, τR01

μh , τR01
μm , τR01

δ , τR01
γh τ

R01
αh , τR01

αm are obtained,

and their sensitivity indices are shown in Table 2 as follows.
The sensitivity index ofR02 with respect to parameters is

obtained using a similar method, and their sensitivity indices
are written in Table 3.

4.1. Expression of the Sensitivity Indices. The sensitivity anal-
ysis description of a basic reproductive number R01 with
respect to ten basic parameters was stated in the Table 2.
We can conclude that the parameters αm, αh,Ψ,Φ0, β0h,
and β0m with positive sensitivity indices will increase the
value of R01 if their values increase while the other parame-
ters remain constant. This demonstrates that the popula-
tion’s infection rate is increasing as a result of secondary
cases. In contrast, the basic parameters μm, μh, δ, and γh with
negative indices decrease the value of R01 if their value
increases while retaining the constant of rest parameters.

For example, τR01
β0m

== 0:5 shows that decreasing (increasing)

the mosquito contact rate by 10% reduces (increases) the

R01 by 5%: Similarly, τR01
μm = −0:023650 and indicates that

decreasing (increasing) the mosquito death rate by 10%
increases (decreases) the basic reproduction number R01
by 0:23650%: Also, the sensitivity analysis expression of
the basic reproductive number R02 with respect to thirteen
basic parameters was shown in Table 3. As a result, the
parameters αm, αh,Ψ,Φ0,Φ1m, β0hβ1h, β0m, and β1m have
positive sensitivity indices. They will have a large influence
on the spread of the malaria disease in the population.
Because the transmission of malaria disease increases as
their value increases, so does the number of infections as sec-
ondary cases in the population. The sensitivity indices for
the parameters μm, μh, δ, and γh are all negative. As their
values increase, those parameters have the potential to
reduce malaria disease transmission while remaining con-

stant. For example, τR02
β0m

= 0:385 indicates that decreasing

(increasing) the mosquito contact rate by 10% decreases

(increases) the R02 by 3:85%: In contrast, τR02
μm = −0:023650

demonstrates that decreasing (increasing) the mosquito
death rate by 10% increases (decreases) the basic reproduc-
tion number R02 by 0:23650%:

Table 2: Sensitivity indices of parameters.

Parameter symbol Sensitivity index

αh 0.002346

αm 0.248098

Ψ 0.5

Φ0 0.5

β0h 0.5

β0m 0.5

μm -0.023650

μh -0.540314

δ -0.485258

γh -0.026464
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5. Optimal Control Model

In this section, we provide a thorough qualitative examina-
tion of the time-dependent malaria dynamic model (1).
The Pontryagin’s maximum principle [28] is used to
describe this analysis, with the goal of lowering the exposed
human EhðtÞ, infected human IhðtÞ, infected mosquito ImðtÞ
, and control costs uiðtÞ. In the case of time-dependent con-
trol, we employ Pontryagin’s maximum principle to derive
the necessary conditions for disease control. After incorpo-
rating the controls into the malaria transmission model
(1), the optimal control problem is as follows:

dSh
dt

=Ψ − 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

ShIm − μhSh + ωhRh,

dEh

dt
= 1 − u1ð Þβh T , Rð Þ

1 + z∗Im
ShIm − μh + αhð ÞEh,

dIh
dt

= αhEh − μh + δ + γh + u2ð ÞIh,
dRh

dt
= γh + u2ð ÞIh − μh + ωhð ÞRh,

dSm
dt

=Φ T , Rð Þ − 1 − u1ð Þβm T , Rð Þ
1 +m∗Ih

SmIh − μm + u3ð ÞSm,

dEm

dt
= 1 − u1ð Þβm T , Rð Þ

1 +m∗Ih
SmIh − μm + αm + u3ð ÞEm,

dIm
dt

= αmEm − μm + u3ð ÞIm,
dT
dt

= r 1 − T
Tmax

� �
T − T0ð Þ,

dR
dt

=m dT
dt

⇒ R tð Þ =m T tð Þ − T0ð Þ + ε,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð56Þ

where u1ðtÞ represents protective control using treated bed
net, u2ðtÞ represents antimalaria drug treatment control,
and u3ðtÞ denotes mosquito control via indoor residual
spraying. The objective functional (57) of the optimal con-
trol problem (56) is given by

J u1, u2, u3ð Þ = min|{z}
u1,u2,u3

ðt f
0

Á D1Eh +D2Ih +D3Im + 1
2 B1u

2
1 + B2u

2
2 + B3u

2
3

À Á� �
dt,

ð57Þ

where t f represents the final time of control implementation,
and quantities D1,D2, and D3 are weights constants of the
exposed human population, infected human population, and
infected mosquito population, respectively, while B1, B2, and
B3 are weight constants used for treated bed net, treatment
control using antimalaria drugs, and indoor residual spraying.
In this paper, we make the expression 1/2Biu

2
i for the cost-

control functions to be quadratic in order to obtain a unique
optimal expression for each of the control variables from the
optimality condition as in other studies [29–34]. The main
goal is to achieve the best control triple u∗1 , u∗2 , and u∗3 so that

J u∗1 , u∗2 , u∗3ð Þ =min J u1, u2, u3ð Þ: u1, u2, u3 ∈Uf g, ð58Þ

where U = ðu1, u2, u3Þ: uiðtÞ such that u1, u2, and u3 are
Lebesgue measurable on t ∈ ½0, t f � with 0 ≤ uiðtÞ ≤ 1, for i = 1
, 2, 3 is the control set.We express the Hamiltonian (H), which
consists of the state equations (56) and integrand of the objec-
tive functional (57), by using the Pontryagin’s maximum prin-
ciple [28] to obtain the necessary condition.

H = D1Eh +D2Ih +D3Im + 1
2〠

3

i=1
Biu

2
i

" #

+ λi
dSh
dt

+ dEh

dt
+ dIh

dt
+ dRh

dt
+ dSm

dt

�

+ dEm

dt
+ dIm

dt
+ dT

dt
+ dR

dt

�
, i = 1,⋯, 9:

ð59Þ

By plugging the given equations (56) and (57) into a min-
imizing problem of a Hamiltonian function (H) with respect
to controls. The Hamiltonian (59) becomes

H = B1Eh + B2Ih + B3Im + 1
2 D1u

2
1 +D2u

2
2 +D3u

2
3

À Á� �

+ λ1 Ψ − 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

ShIm − μhSh + ωhRh

� �

+ λ2 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

ShIm − μh + αhð ÞEh

� �

Table 3: Sensitivity indices of parameters.

Parameter symbol Sensitivity index

αh 0.020346

αm 0.238096

Ψ 0.5

Φ0 0.082438

β0h 0.321659

β0m 0.385000

Φ1m 0.068169

β1h 0.208341

β1m 0.214286

μm -0.013650

μh -0.500314

δ -0.476258

γh -0.026464
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+ λ3 αhEh − μh + δ + γh + u2ð ÞIh½ �
+ λ4 γh + u2ð ÞIh − μh + ωhð ÞRh½ �
+ λ5 Φ T , Rð Þ − 1 − u1ð Þβm T , Rð Þ

1 +m∗Ih
SmIh − μm + u3ð ÞSm

� �

+ λ6 1 − u1ð Þβm T , Rð Þ
1 +m∗Ih

SmIh − μm + αm + u3ð ÞEm

� �

+ λ7 αmEm − μm + u3ð Þ + λ8½ r 1 − T
Tmax

� �
T − T0ð Þ

� �

+ λ9 mr 1 − T
Tmax

� �
T − T0ð Þ

� �
,

ð60Þ

where λi for i = 1,⋯, 9 is adjoint variables. Next, we present
the adjoint system and control characterizations using Pon-
tryagin’s maximum principle [30], in conjunction with the
existence of the optimal control problem [35], the following
result can be obtained.

Theorem 5. Suppose we have an optimal control set u∗ = ð
u∗1 , u∗2 , u∗3 Þ and ðS∗h , E∗

h , I∗h , R∗
h , S∗m, E∗

m, I∗m, T∗, R∗Þ solutions
of the respective state system (56) that minimize Jðu1, u2, u3
Þ over U ; then, there exist costate variables λ1, λ2, λ3, λ4, λ5,
λ6 , λ7 , λ8, and λ9 such that

dλ1
dt

= − 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

Im λ2 − λ1ð Þ
� �

+ μhλ1,

dλ2
dt

= −D1 + λ2 μh + αhð Þ − αhλ3,

dλ3
dt

= −D2 − 1 − u1ð Þβm T , Rð Þ
1 +m∗Ih

Sm λ6 − λ5ð Þ
� �

+ λ3 μh + δ + γh + u2ð Þ − λ4 u2 + γhð Þ,

dλ4
dt

= −ωhλ1 + λ4 μh + ωhð Þ,
dλ5
dt

= − 1 − u1ð Þβm T , Rð Þ
1 +m∗Ih

Ih λ6 − λ5ð Þ
� �

+ λ5 u3 + μmð Þ,

dλ6
dt

= λ6 u3 + μm + αmð Þ − λ7αm,

dλ7
dt

= −D3 − 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

Sh λ2 − λ1ð Þ
� �

+ λ7 u3 + μmð Þ,

dλ8
dt

= −rλ8 − rλ8
T0

Tmax
−

2T
Tmax

� �
,

dλ9
dt

= −mrλ9 −mrλ9
T0

Tmax
−

2T
Tmax

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð61Þ

with full time (transversality) conditions

λ1 t f
À Á

= λ2 t f
À Á

= λ3 t f
À Á

= λ4 t f
À Á

= λ5 t f
À Á

= λ6 t f
À Á

= λ7 t f
À Á

= λ8 t f
À Á

= λ9 t f
À Á

= 0:
ð62Þ

Moreover, the optimal controls u∗1 , u∗2 , u∗3 with the opti-
mality condition are represented by

u∗1 =max 0, min
�

Á 1, λ2 − λ1ð Þ βh T , Rð Þ/1 + z∗Imð ÞS∗hI∗m + λ6 − λ5ð Þ βm T , Rð Þ/1 +m∗Ihð ÞS∗mI∗h
B1

� ��
,

ð63Þ

u∗2 =max 0, min 1, λ3 − λ4ð ÞI∗h
B2

� �� �
, ð64Þ

u∗3 =max 0, min 1, λ5S
∗
m + λ6E

∗
m + λ7I

∗
mð Þ

B3

� �� �
: ð65Þ

Proof. Differentiate the Hamiltonian function H (??) with
respect to the state variables Sh, Eh, Ih, Rh, Sm, Em, Im, T ,
and R, respectively, the adjoint equations stated at the sys-
tem (61) are obtained. Thus, the adjoint equations are given
by

dλ1
dt

= −
∂H
∂Sh

= − 1 − u1ð Þβh T , Rð Þ
1 + z∗Im

Im λ2 − λ1ð Þ
� �

+ μhλ1,

dλ2
dt

= −
∂H
∂Eh

= −D1 + λ2 μh + αhð Þ − αhλ3,

dλ3
dt

= −
∂H
∂Ih

= −D2 − 1 − u1ð Þ βm T , Rð Þ
1 +m∗Ih

Sm λ6 − λ5ð Þ
� �

+ λ3 μh + δ + γh + u2ð Þ − λ4 u2 + γhð Þ,

dλ4
dt

= −
∂H
∂Rh

= −ωhλ1 + λ4 μh + ωhð Þ,

dλ5
dt

= −
∂H
∂Sm

= − 1 − u1ð Þβm T , Rð Þ
1 +m∗Ih

Ih λ6 − λ5ð Þ
� �

+ λ5 u3 + μmð Þ,

dλ6
dt

= −
∂H
∂Em

= λ6 u3 + μm + αmð Þ − λ7αm,

dλ7
dt

= −
∂H
∂Im

= −D3 − 1 − u1ð Þ βh T , Rð Þ
1 + z∗Im

Sh λ2 − λ1ð Þ
� �

+ λ7 u3 + μmð Þ,

dλ8
dt

= −
∂H
∂T

= −rλ8 − rλ8
T0
Tmax

−
2T
Tmax

� �
,

dλ9
dt

= −
∂H
∂R

= −mrλ9 −mrλ9
T0
Tmax

−
2T
Tmax

� �
,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð66Þ

with transversality conditions

λ1 t f
À Á

= λ2 t f
À Á

= λ3 t f
À Á

= λ4 t f
À Á

= λ5 t f
À Á

= λ6 t f
À Á

= λ7 t f
À Á

= λ8 t f
À Á

= λ9 t f
À Á

= 0:
ð67Þ

Further, the optimality conditions with respect to the
controls are given by

∂H
∂ui

= 0, for i = 1, 2, 3: ð68Þ

Using optimality condition (68), the control variables are
obtained as

u∗1 =
λ2 − λ1ð Þ βh T , Rð Þ/1 + z∗Imð ÞS∗h I∗m + λ6 − λ5ð Þ βm T , Rð Þ/1 +m∗Ihð ÞS∗mI∗h

B1
,

u∗2 =
λ3 − λ4ð ÞI∗h

B2
,

u∗3 =
λ5S

∗
m + λ6E

∗
m + λ7I

∗
mð Þ

B3
:

8>>>>>>>><
>>>>>>>>:

ð69Þ

Finally, the compact form with boundary condition, the
controls in equation (69), becomes
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In the next part, we will see the numerical simulation of
optimality system to identify an optimum and least cost
strategy for controlling the transmission dynamics of
malaria.

6. Numerical Simulation

A numerical result is required in this section to validate the
model’s analytical result. We use a numerical method to
confirm the theoretical results obtained in our model’s opti-
mal control model analysis. The optimality system is com-
posed of two systems, the state system (56) and the adjoint
system (61), each with its own initial and final-time condi-
tions, with the control value state in equation (62). The iter-
ative method known as the fourth forward-backward Runge-
Kutta sweep is used to solve this optimality system. The state
equation (56) is solved with the initial values of state vari-
ables using the fourth-order forward Runge-Kutta method.
We used backward fourth order Runge Kutta to solve the
adjoint equations once we had the solution of the state func-
tions and the value of optimal controls. The controls are
then updated by a convex combination of the previous con-
trols and the value from the optimality condition (62). This
process is repeated, and iterations are completed if the values
from previous iterations are close to the values from current
iterations [36]. The optimal control problem is simulated
with the parameter values given in Table 4 when the basic
reproduction numbers are R01 = 24:8 and R02 = 56:28:
The initial conditions that we used for simulation of the
optimal control are Shð0Þ = 120, Ehð0Þ = 20, Ihð0Þ = 10, Rhð0
Þ = 5, Smð0Þ = 400, Emð0Þ = 60, Imð0Þ = 30, Tð0Þ = 16:1oC,
and Rð0Þ = 11mm. The weight value constants of the state
and controls that we used are given as D1 = 80,D2 = 60,D3
= 100, B1 = 60, B2 = 100, and B3 = 80: To determine the
impact of each controls on the reduction of malaria, we used
the following four strategies with different combination of
two controls at a time and three controls at a time.

6.1. Strategy A. Applying the treated bed net ðu1Þ and treat-
ment of infected with drugs ðu2Þ.

In this strategy, we used a combination of two controls:
protective by treated bed net u1 and treatment for infected
humans with antimalaria drugs u2 to minimize the objective
functional (57), while the control indoor residual spraying
u3 is set to zero. According to Figures 2(a) and 2(b), if there
are controls, the total population of exposed and infected

humans is lower than if there are no controls, and it tends
to be at its lowest value at the end of the intervention. Then,
as shown in Figure 2(c), the number of infected mosquitos in
the presence of controls is decreasing. In contrast, in the
absence of controls, the number of infected mosquitos
increases. In order to reduce the number of exposed
humans, infected humans, infected mosquito populations,
and the associated costs, corresponding with the controls
u1 and u2, the control profiles shown in Figure 2(d) indicate
that use of the treated bed net u1 maintained its maximum
level bound 100 percent for 180 days entire time of strategy
and treatment; the infected with antimalaria drugs u2 is
intended upper bound 100 percent for 6 days before gradu-
ally declining to zero at the end time.

6.2. Strategy B. Applying the treated bed net ðu1Þ and indoor
residual spraying ðu3Þ.

To reduce the objective functional (57), a combination of
two controls protective using treated bed net u1 and an
indoor residual spraying u3 is implemented, while the con-
trol treatment for the infected with antimalaria drugs u2 is
set to zero. Figures 3(a)–3(c) show that using controls
reduces the total population of exposed humans, infected
humans, and infected mosquitos faster than not using con-
trols. At the end of the intervention, the total number of
exposed humans Eh and infected mosquitoes Im is at its low-
est. The profile of the control in Figure 3(d) indicates that
the treated bed net u1 is maintained, it is upper bound at
100% for 178 days before gradually declining to its lower
bound and an indoor residual spraying, and u3 maintains
its high level at 100% until 18 days and gradually decreases
to its lower bound in the final time.

6.3. Strategy C. Applying the treatment of infected ðu2Þ and
indoor spraying ðu3Þ.

The objective functional (57) is optimized in this strategy
by combining two controls treatment of infected with anti-
malaria drugs u2 and an indoor residual spraying u3,
whereas the control treated bed net u1 is set to zero.
Figures 4(a) and 4(b) show that in the absence of controls,
the significant number of humans exposed and infected is
higher than in the presence of controls. At the end of the
intervention, the total population of exposed humans Eh
and infected humans Ih has reached its lowest point.
Figure 4(c) shows that infected mosquitos in the presence
of controls are smaller than those in the absence of controls

u∗1 = max 0, min 1, λ2 − λ1ð Þ βh T , Rð Þ/1 + z∗Imð ÞS∗hI∗m + λ6 − λ5ð Þ βm T , Rð Þ/1 +m∗Ihð ÞS∗mI∗h
B1

� �� �
, ð70Þ

u∗2 = max 0, min 1, λ3 − λ4ð ÞI∗h
B2

� �� �
, ð71Þ

u∗3 = max 0, min 1, λ5S
∗
m + λ6E

∗
m + λ7I

∗
mð Þ

B3

� �� �
: ð72Þ
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and fall to the minimum value at the end of the intervention.
Similarly, in Figure 4(d), the control profiles show that both
antimalaria drug treatment u2 and indoor residual spraying
u3 maintained their upper bounds of 99 percent for 30 days
and 60 days, respectively, before gradually decreasing to
their minimum at the end of the intervention.

6.4. Strategy D. Using the treated bed net ðu1Þ, treatment ð
u2Þ and indoor spraying ðu3Þ.

To minimize the objective functional (57), we used all
controls protective using treated bed net u1, treatment for
the infected human with antimalaria drugs u2 and indoor
residual spraying u3: It can be seen in Figures 5(a)–5(c)
that the controls indicate that the total population of
exposed human, infected human, and infected mosquito
populations are increasing in the absence of controls while
decreasing in the presence of controls. The total number
of exposed humans Eh, infected humans Ih, and infected
mosquitos Im is reduced to their lowest at times t = 100,
t = 46, and t = 10, respectively. The control profiles in
Figure 5(d) show that with this strategy, the use of the
treated bed net u1 nearly maintained its maximum level
100, and the treatment of an infected human with antima-
laria drugs u2 maintains 100% coverage for 6 days before
gradually decreasing to zero, whereas the control, an
indoor residual spraying u3, maintains 100% coverage for

16 days before gradually decreasing to zero at the end of
the final time.

Figure 6 illustrates the diagram of bifurcation for the
case when T = T0 and T = Tmax for the malaria model
problem. From this figure, we have seen that the model
exhibits forward and backward bifurcation, respectively.
The biological meaning of this indicates that in equation
(21) if R02 < 1 then automatically implies that R01 < 1
and DFE exist for both R01 and R02. However, R01 < 1
does not automatically imply R02 < 1, since the value of
R02 may be greater than 1, which implies that R02 may
present backward bifurcation while R01 only present for-
ward bifurcation.

7. Cost Effectiveness Analysis

It is critical to identify the most optimal and least expensive
strategy, along with a cost-effectiveness analysis, in order to
design a method of eradicating malaria transmission. A
method known as the incremental cost-effectiveness ratio
(ICER) is used to develop such a strategy. Basically, for
two strategies say 1 and 2, the ICER will be computed as [37]

Difference in averted costs between two strategies 1 and 2
Difference in infections averted bewteen two strategies 1 and 2 :

ð73Þ

Table 4: Parameter values from literature used for the model (1).

Parameters Parameter description Estimated value Reference

μh Human death rate due to natural cause 0.00004 [23]

δ Induced death rate of human 0.068 [23]

γh Recover rate of infected humans 0.0035 [20]

Ψ Human recruitment rate 0.071 [20]

Φ0 Mosquito recruitment rate 0.041 [24]

μm Mosquito natural death rate 0.05 [20]

ωh Human immune deficiency rate 0.09 [16]

β1m Mosquito contact rate (incremental) 0.07 [17]

β1h Human contact rate (incremental) 0.05 [16]

Φ1m Incremental birth rate of mosquito 0.09 [17]

β0h Contact rate of human with mosquito 0.03 [23]

β0m Contact rate of mosquito with human 0.04 [14]

αh Exposed human progression rate 0.058 [24]

αm Exposed mosquito progression rate 0.055 [24]

m Temperature dependent rate of precipitation 0.08 [26]

z∗ Percentage of an antibody produced by a human 0.06 [26]

m∗ Percentage of an antibody produced by a mosquito 0.04 [26]

r Temperature increase rate 0.007 [11]

T0 The minimum temperature 16°C [27]

Tmax The maximum temperature 28°C [6]
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In this section, the cost-effectiveness of two control strat-
egies, including treated bed nets, antimalaria drug treatment
of infected people, and indoor residual spraying, has been
calculated. The total number of people averted is calculated
by subtracting the total number of new cases of malaria
infection with control from the total number of new cases
of malaria without control, and the total cost of each strategy
is calculated using their respective cost functions ð1/2ÞB1u

2
1

, ð1/2ÞB2u
2
2, and ð1/2ÞB3u

2
3, to calculate over the time of

intervention [38]. We use the outcome of a numerical simu-
lation from the malaria dynamics model (56) to compute the
ICER. However, using only one strategy to prevent the
spread of malaria disease in a community may not be effec-
tive. Then also from the numerical simulations of the model
(56) with the parameters in Table 4, the computed total

number of people saved and the total cost in increasing
order were shown in Table 5.

After obtaining the total amount of people averted and
total cost of each strategy as given in Table 5 to compare
two intervention strategies, the incremental cost effective-
ness ratio (ICER) for the each competing strategies is esti-
mated as

ICER Bð Þ = 7012:84
3754:40 = 1:86, ð74Þ

ICER Cð Þ = 9098:19 − 7012:84
4536:24 − 3754:40 = 266:72, ð75Þ
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Figure 2: Simulations of model with strategy of treated bed net ðu1Þ and treatment ðu2Þ.
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ICER Að Þ = 8306:89 − 99098:19
4673:34 − 4536:24 = −5:77, ð76Þ

ICER Dð Þ = 9154:62 − 8306:89
4676:62 − 4673:34 = 258:45: ð77Þ

The number of people averted in strategy B, C, A, and D
in an increasing rank is given in Table 6.

We can see that the ICER(B) is less than the ICER(C)
from the strategies B and C in Table 6. This implies that
strategy B dominates strategy C. This implies that strategy
C is more expensive than strategy C. As a result, we
removed C from the strategies. Then, as shown in
Table 7, recalculate the ICER for the remaining competing
strategies B, A, and D.

The competition between the interventions B and A
was depicted in Table 7. As can be seen, ICER(A) is
less than ICER(B). This demonstrates that strategy B
was dominated by strategy A. As a result, strategy A
is more efficient and less expensive than strategy B.
As a result, we removed strategy B from the list of
competing strategies and recalculated the ICER, as
shown in Table 8.

Table 8 compares strategies A and D. This predicts
that ICER(D) is greater than ICER(A). This implies that
strategy D is dominated by strategy A. As a result, strat-
egy A is the least expensive and most optimal. As a
result, we conclude that strategy A, which consists of a
combination of treated bed nets and antimalarial drug
treatment of infected humans, is the most optimal and
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Figure 3: Simulations with strategy of treated bed net ðu1Þ and indoor spraying ðu3Þ.
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least expensive strategy for preventing the spread of
malaria transmission.

8. Conclusion

We proposed and developed a deterministic malaria trans-
mission dynamic model with climate variability and nonlin-
ear incidence in this paper. Malaria spread is influenced by
climate change. The model analysis reveals that it is
bounded, epidemiologically meaningful, and mathematically
well-posed in a specific domain. Using the next-generation
matrix method, we determined the basic reproduction num-
ber in relation to the disease-free equilibrium. The Routh-
Hurwitz criterion is used to determine local stability of equi-
libria points, while the Lyapunov function is used to deter-
mine global stability. According to the model analysis, if

the basic reproduction number is less than one, the
disease-free equilibrium is locally and globally asymptoti-
cally stable, whereas if the basic reproduction number is
greater than one, the unique endemic equilibrium exists. In
addition, the sensitivity analysis of the basic reproduction
number with respect to all parameters was obtained. The
model has a forward and backward bifurcation. Based on
the findings, we concluded that reducing human-mosquito
contact, increasing mosquito mortality, and increasing the
treated rate of infected humans can all help to reduce the
malaria burden in the community. Furthermore, the malaria
transmission model is extended to an optimal control prob-
lem by incorporating three continuous controls, namely,
personal protection with treated bed nets, treatment of
infected with antimalaria drugs, and indoor residual spray-
ing for vector killing strategy. The maximum principle of
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Figure 4: Simulations model with strategy of treatment ðu2Þ and indoor spraying ðu3Þ.
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Figure 5: Simulations with strategy of treated bed net ðu1Þ, treatment ðu2Þ, and indoor spraying ðu3Þ.
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Figure 6: Bifurcation diagrams when T = T0 and T = Tmax for the
malaria model problem.

Table 5: Total amount of infection averted and total cost for all
strategies.

Strategies Total infections averted Total cost ($)

Strategy B 3754.40 7012.84

Strategy C 4536.24 9098.19

Strategy A 4673.34 8306.89

Strategy D 4676.62 9154.62

Table 6: Total amount of the infection averted and total cost with
their ICER.

Strategies Total infections averted Total cost ($) ICER

Strategy B 3754.40 7012.84 1.86

Strategy C 4536.24 9098.19 266.72

Strategy A 4673.34 8306.89 -5.77

Strategy D 4676.62 9154.62 258.45
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Pontryagin is used to obtain the necessary condition of the
optimal control problem. The cost-effectiveness of each con-
trol combination is then investigated. As a result, based on
the optimality system simulation results and cost-
effectiveness analysis, we proposed that the combination of
treated bed nets, and treatment is the most optimal and least
expensive strategy to reduce malaria transmission.
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