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A directed Toeplitz graph Tnhs1,⋯, sk ; t1,⋯, tli with vertices 1, 2, ⋯, n is a directed graph whose adjacency matrix is a Toeplitz
matrix. In this paper, we investigate the Hamiltonicity in directed Toeplitz graphs Tnhs1,⋯, sk ; t1,⋯, tli with s1 = 1 and s3 = 4.

1. Introduction

Let G be a finite vertex-labeled graph with vertex set VðGÞ
and edge set EðGÞ. A graph H is called a subgraph of G if
the vertex set and edge set of H is a subset of the vertex set
and edge set of G, respectively. If EðGÞ = fða1, a2Þ, ða2, a3Þ,
⋯, ðan−1, anÞ, ðan, a1Þg, where ai ≠ aj, then G is called a
cycle. A cycle minus one edge is called a path. A subpath is
a path making up part of a larger path. A cycle that visits
each vertex of a graph H is called Hamiltonian, and H is
then called a Hamiltonian graph. We consider here simple
graphs as multiple edges and loops play no role in Hamilto-
nicity. The adjacency matrix A = ðbijÞn×n of G is the matrix
in which bij = 1 if the vertex ai is adjacent to the vertex aj
in G, and bij = 0 otherwise. The main diagonal is zero, i.e.,
bii = 0 as G has no loop.

A square matrix having constant values along all diagonals
parallel to the main diagonal is called a Toeplitz matrix. A
graph whose adjacency matrix is a Toeplitz matrix of order
n is called a Toeplitz graph and is denoted by Tnhs1, s2,⋯, sk
; t1, t2,⋯, tli, where sp ≥ 1ð1 ≤ p ≤ kÞ and tq ≥ 1ð1 ≤ q ≤ lÞ
are the label of the diagonal, above and below the main diago-
nal, respectively, containing ones such that s1 < s2 <⋯ < n
and t1 < t2 <⋯ < n, see Figure 1. We can calculate the length
of an edge ðai, ajÞ by jai − ajj. An edge ðai, ajÞ is called an
increasing (decreasing) edge if ai < aj (aj < ai). We have both
increasing and decreasing edges in Tnhs1, s2,⋯, sk ; t1, t2,⋯,
tli of length sp and tq, respectively, for some p and q. Note that
if we reverse the direction of all edges of the graph Tnhs1,⋯
, sk ; t1,⋯, tli, then the graph Tnht1,⋯, tl ; s1,⋯, ski is

obtained. If the Toeplitz matrix is symmetric, then the corre-
sponding Toeplitz graph is undirected and can be denoted as
Tnhs1,⋯, ski. Hamiltonicity results obtained in the undirected
case for a Toeplitz graph have a direct impact on the directed
case. Hamiltonicity of Tnhs1, s2,⋯, ski means Hamiltonicity
of Tnhs1,⋯, sk ; t1,⋯, tli.

Different properties of Toeplitz graphs have been studied
in the literature, for example, colourability, bipartiteness,
planarity, cycle discrepancy, metric dimension, decomposi-
tion, edge irregularity strength, and labeling. Hamiltonian
properties of undirected Toeplitz graphs were first investi-
gated by van Dal et al. in [1], and then these studies have
been extended in [2–5]. The Hamiltonicity in directed Toe-
plitz graphs has also been studied in the literature.

The Hamiltonicity of the directed Toeplitz graphs Tnh1
, 2 ; ti and Tnh1, 2, 3 ; ti were investigated in the literature,
which completes the Hamiltonicity investigation in the
directed Toeplitz graphs with s3 = 3. In the literature, the
Hamiltonicity of the directed Toeplitz graphs Tnh1, 3, 4 ; ti
was also investigated. In this paper, we first prove a conjec-
ture regarding Tnh1, 3, 4 ; 3i stated in [6]. Then, we investi-
gate the Hamiltonicity of the directed Toeplitz graphs with
s3 = 4, s2 = 3, s1 = 1, and l = 2. We also investigate the Hamil-
tonicity of the directed Toeplitz graphs with s3 = 4, s2 = 2,
and l = 2, i.e., Tnh1, 2, 4 ; t1, t2i. Thus, in this paper, we com-
plete the Hamiltonicity investigation of the directed Toeplitz
graphs with s3 = 4 and s1 = 1.

Suppose that H is a Hamiltonian cycle in Tnhs1, s2,⋯,
sk ; t1, t2,⋯, tli. The Hamiltonian cycle H is determined by
two paths H1⟶n (from 1 to n) and Hn⟶1 (from n to 1),
i.e., H =H1⟶n ∪Hn⟶1. Since the path H1⟶n is
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Hamiltonian in the subgraph of Tnhs1, s2,⋯, sk ; t1, t2,⋯, tli
induced by VðHn⟶1 \ f1, ngÞ, the vertices which are not
covered by H1⟶n would be covered by Hn⟶1.

We denote a path PnðaÞ of length n, from vertex a, as
PnðaÞ = ða, a + 1,⋯, a + ðn − 1ÞÞ. By path Pa⟶b, we mean
a path from vertex a to vertex b.

2. Toeplitz Graphs Tnh1, 3, 4 ; t1, t2i
In this section, we first prove a conjecture regarding Tnh1,
3, 4 ; 3i stated in [6]. Then, we investigate the Hamiltonicity
of the directed Toeplitz graphs with s3 = 4, s2 = 3, s1 = 1, and
l = 2.

Theorem 1 (see [7]). Tnh1, 3, 4 ; 3i is Hamiltonian for n ∈ f
5, 6, 7, 9g.

In Theorem 1, it was proved that Tnh1, 3, 4 ; 3i is Ham-
iltonian for n ∈ f5, 6, 7, 9g, and in [6], it was stated as conjec-
ture that Tnh1, 3, 4 ; 3i is non-Hamiltonian for
n ∉ f5, 6, 7, 9g. Here, we prove this conjecture which allows
us to restate Theorem 1 as follows:

Theorem 2. Tnh1, 3, 4 ; 3i is Hamiltonian if and only if n ∈
f5, 6, 7, 9g.

Proof. If n ∈ f5, 6, 7, 9g, then Theorem 1 asserts that Tnh1,
3, 4 ; 3i is Hamiltonian.

Conversely, we show that Tnh1, 3, 4 ; 3i is non-
Hamiltonian for n ∉ f5, 6, 7, 9g. Assume to the contrary, that
Tnh1, 3, 4 ; 3i is Hamiltonian for n ∉ f5, 6, 7, 9g. Let H =
H1⟶n ∪Hn⟶1 be a Hamiltonian cycle in Tnh1, 3, 4 ; 3i.
Since the path H1⟶n is Hamiltonian in the subgraph of
Tnh1, 3, 4 ; 3i induced by VðHn⟶1 \ f1, ngÞ, the vertices
which are not covered by H1⟶n would be covered by
Hn⟶1. Let VðHn⟶1 \ f1, ngÞ = V1 ∪V2 ∪⋯∪ Vk, where
each Vi∈f1,2,⋯,kg is a disjoint set of successive vertices. Since
H1⟶n has increasing edges of length 1, 3, and 4 only, for
each Vi, we have either jVij = 2 or jVij = 3. But since we have
decreasing edges of length 3 only, ðn, n − 3Þ ∈ EðHn⟶1Þ, and
one can observe that there is no Vi such that jVij = 3, so j
Vij = 2 for all i. Since ðn, n − 3Þ ∈ EðHn⟶1Þ, then we have
either ðn − 3, n − 2Þ ∈ EðHn⟶1Þ or ðn − 3, n − 6Þ ∈ EðHn⟶1
Þ. If ðn − 3, n − 2Þ ∈ EðHn⟶1Þ, then clearly, by keeping in
mind that jVij = 2 for all i, and that the decreasing edges
are of length 3 only, the only possible subpath of Hn⟶1 is
ðn, n − 3, n − 2, n − 5, n − 8, n − 11, n − 10, n − 6Þ, but then it
would be stuck at vertex n − 6, see Figure 2, this is a contra-
diction. If ðn − 3, n − 6Þ ∈ EðHn⟶1Þ, then as in the previous
case, the possible subpath of Hn⟶1 is ðn, n − 3, n − 6, n − 2
, n − 5, n − 8, n − 11, n − 14, n − 13, n − 9Þ but then it would
be stuck at vertex n − 9, see Figure 3. This is a contradiction.

This completes the proof.

Theorem 3 (see [6]). Tnh1, 3, 4 ; 2i is Hamiltonian if and
only if n ≇ 2 mod 6.

Theorem 4 (see [6]). Tnh1, 3, 4 ; 4i is Hamiltonian if and
only if n ∉ f6; 10; 12g.

Theorem 5 (see [7]). Tnh1, 3, 4 ; 5i is Hamiltonian if and
only if n ≠ 7.

Theorem 6 (see [6]). Tnh1, 3, 4 ; 8i is Hamiltonian if and
only if n ≠ 14.

Note that the Hamiltonicity in Tnh1, 3, 4 ; t1i or Tnh1, 3
, 4 ; t2i implies the Hamiltonicity in Tnh1, 3, 4 ; t1, t2i. Theo-
rems 2 and 3 show that Tnh1, 3, 4 ; 3i and Tnh1, 3, 4 ; 2i are
non-Hamiltonian for infinitely many n, respectively. Theo-
rems 4, 5, and 6 show that Tnh1, 3, 4 ; 4i, Tnh1, 3, 4 ; 5i, and
Tnh1, 3, 4 ; 8i are non-Hamiltonian for only a finite number
of n, respectively. Here, we study the Hamiltonicity of these
cases by adding one more diagonal (containing one) below
the main diagonal, say t2, i.e., Tnh1, 3, 4 ; t1, t2i. Then, we
will see in Theorem 11, Tnh1, 3, 4 ; t1, t2i is Hamiltonian
for all t1, t2, and n. We use the following some existing
results in the proof of Theorem 11.

Theorem 7 (see [7]). For t ∈ f6, 7g, Tnh1, 3, 4 ; ti is Hamilto-
nian for all n.

Theorem 8 (see [6, 7]). For t ≥ 9, Tnh1, 3, 4 ; ti is Hamilto-
nian for all n.

We have the following theorems in the literature.

Theorem 9. For t ∈ f2, 4g, Tnh1, 3 ; 1, ti is Hamiltonian for
all n.

Theorem 10. For even t ≥ 8, Tnh1, 3 ; 1, ti is Hamiltonian if
n ≅ 0, 2, 4, 6, 5, 7,⋯, t − 3 mod ðt − 1Þ.

Theorem 11. Tnh1, 3, 4 ; t1, t2i is Hamiltonian for all t1, t2,
and n.
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Figure 1: Toeplitz matrix and its associated Toeplitz graph T6h2,
4, 5 ; 1, 2, 5i.
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Proof. Case 1. Let t1 ∈ f6, 7g or t2 ∈ f6, 7g or t1 ≥ 9 or t2 ≥ 9.
For t1 ∈ f6, 7g or t2 ∈ f6, 7g, by Theorem 7, Tnh1, 3, 4 ;

t1, t2i is Hamiltonian for all n. And for t1 ≥ 9 or t2 ≥ 9, by
Theorem 8, Tnh1, 3, 4 ; t1, t2i is Hamiltonian for all n.

Case 2. Let t1, t2 < 9 and t1, t2 ∉ f6, 7g.
If t1 = 1, then t2 ≥ 2. For t2 ∈ f2, 3, 4g, by using Theorem

9, Tnh1, 3, 4 ; 1, t2i is Hamiltonian for all n, because the
Hamiltonicity in Tnh1, 3 ; 1, 4i means the Hamiltonicity in
Tnh1, 4 ; 1, 3i. By using Theorem 5, Tnh1, 3, 4 ; 1, 5i is Ham-
iltonian for all n different from 7. A Hamiltonian cycle in
T7h1, 3, 4 ; 1, 5i is ð1, 5, 4, 3, 6, 7, 2, 1Þ. Thus Tnh1, 3, 4 ; 2, 5i
is Hamiltonian for all n. By using Theorems 6 and 10, Tnh
1, 3, 4 ; 1, 8i is Hamiltonian for all n.

If t1 = 2, then t2 ≥ 3. For t2 = 3, by using Theorem 3, Tn
h1, 3, 4 ; 2, 3i is Hamiltonian if n ≇ 2 mod 6. Let n ≅ 2 mod
6, then the smallest such n is 8. A Hamiltonian cycle in T8
h1, 3, 4 ; 2, 3i is ð1, 4, 7, 8, 5, 2, 6, 3, 1Þ which contains the
edge ð7, 8Þ, see Figure 4.

Let Tn=8+6rh1, 3, 4 ; 2, 3i has a Hamiltonian cycle con-
taining the edge ðn − 1, nÞ, for some nonnegative integer r.
We transform this Hamiltonian cycle in Tnh1, 3, 4 ; 2, 3i to
a Hamiltonian cycle in Tn+6h1, 3, 4 ; 2, 3i by replacing the
edge ðn − 1, nÞ with the path ðn − 1, n + 3, n + 1, n + 5, n + 6
, n + 4, n + 2, nÞ. This shows that Tn+6h1, 3, 4 ; 2, 3i enjoys
the same property, thus Tnh1, 3, 4 ; 2, 3i is Hamiltonian for
all n. By using Theorems 3 and 4, Tnh1, 3, 4 ; 2, 4i is Hamil-
tonian for all n. By using Theorems 3 and 5, Tnh1, 3, 4 ; 2, 5i
is Hamiltonian for all n. By using Theorem 6, Tnh1, 3, 4 ; 2,
8i is Hamiltonian for all n different from 14. A Hamiltonian
cycle in T14h1, 3, 4 ; 2, 8i is ð1, 4, 2, 6, 7,11,14,12,10,8, 9,13,5,
3, 1Þ, see Figure 5.

Thus, Tnh1, 3, 4 ; 2, 8i is Hamiltonian for all n.
If t1 = 3, then t2 ≥ 4. For t2 = 4, by using Theorems 2 and

4, Tnh1, 3, 4 ; 3, 4i is Hamiltonian for all n ∉ f10, 12g. Ham-
iltonian cycles in T10h1, 3, 4 ; 3, 4i and T12h1, 3, 4 ; 3, 4i are
ð1, 2, 3, 6, 9,10,7, 8, 4, 5, 1Þ and ð1, 2, 5, 8, 11,12,9, 6,10,7, 3, 4
, 1Þ, respectively, see Figure 6.

Thus, Tnh1, 3, 4 ; 3, 4i is Hamiltonian for all n. By using
Theorems 2 and 4, Tnh1, 3, 4 ; 3, 5i is Hamiltonian for all n
. By using Theorem 6, Tnh1, 3, 4 ; 3, 8i is Hamiltonian for
all n ≠ 14. A Hamiltonian cycle in T14h1, 3, 4 ; 3, 8i is ð1, 2,
5, 8, 9, 12, 13, 14, 6, 7, 10, 11, 3, 4, 1Þ, see Figure 7. Thus, Tnh
1, 3, 4 ; 3, 8i is Hamiltonian for all n.

If t1 = 4, then t2 ≥ 5. By using Theorems 4 and 5, Tnh1,
3, 4 ; 4, 5i is Hamiltonian for all n. By using Theorems 4
and 6, Tnh1, 3, 4 ; 4, 8i is Hamiltonian for all n.

If t1 = 5, then t2 ≥ 6. By using Theorems 4 and 6, Tnh1,
3, 4 ; 5, 8i is Hamiltonian for all n. This completes the proof.

3. Toeplitz Graphs Tnh1, 2, 4 ; ti
In this section, we discuss the Hamiltonicity of Toeplitz
graphs still with s3 = 4 but s2 = 2 and l = 1.

We need the following lemma in the proof of Theorem
14.

Lemma 12. For even t, Tt+2h1, 2, 4 ; ti is non-Hamiltonian.

Proof. Assume, to the contrary, that Tt+2h1, 2, 4 ; ti has a
Hamiltonian cycle H =H1⟶t+2 ∪Ht+2⟶1. Let VðHt+2⟶1
\ f1, t + 2gÞ =V1 ∪ V2 ∪⋯ ∪Vk, where each Vi∈f1,2,⋯,kg is
a disjoint set of successive vertices. Since H1⟶t+2 has no
increasing edge of length 3 or of length greater than 4, for
each Vi, we have either jVij = 1 or jVij = 3.

Since d−ðt + 2Þ = 1 = d+ð1Þ in Tt+2h1, 2, 4 ; ti, so ðt + 2, 2
Þ, ð1 + t, 1Þ ∈ EðHt+2⟶1Þ. Then, Ht+2⟶1 = ðt + 2, 2Þ ∪
P2⟶1+t ∪ ð1 + t, 1Þ. But there is no path P2⟶1+t because
starting from vertex 2, it can only use increasing edges of
length 2 or 4 (otherwise jVij = 2 for some Vi), but then this
will never end up to odd 1 + t. This is a contradiction.

Now we will discuss the Hamiltonicity of Tnh1, 2, 4 ; ti
for both even and odd t. In Theorem 13, we discuss it for
even t.

Theorem 13. For even t, Tnh1, 2, 4 ; ti is Hamiltonian if and
only if n ≠ t + 4 for t ∈ f4, 8g, and n ≠ t + 2.

Proof. For even t, by using a result in the literature, Tnh1, 2
, 4 ; ti is Hamiltonian for all odd n. Now for even n, such that
n ≠ t + 4 for t ∈ f4, 8g, and n ≠ t + 2, we prove that Tnh1, 2,
4 ; ti is Hamiltonian.

Case 1. If t ≅ 0 mod 4.

(i) Let n ≅ 0 mod 4.

Assume t ∉ f4, 8g. The smallest n is t + 4. A Hamiltonian
cycle in Tn=t+4h1, 2, 4 ; ti is ð1, 5, 6, 10,⋯, t − 2, t − 1, t + 3, t
+ 4, 4, 8,⋯, t, t + 2, 2, 3, 7, 9,⋯, t − 3, t + 1, 1Þ, which con-
tains the edge ðn − 1 = t + 3, n = t + 4Þ, see Figure 8.

Let Tn=ðt+4Þ+4rh1, 2, 4 ; ti has a Hamiltonian cycle con-
taining the edge ðn − 1, nÞ for some nonnegative integer r.
We transform this Hamiltonian cycle in Tnh1, 2, 4 ; ti to a
Hamiltonian cycle in Tn+4h1, 2, 4 ; ti by replacing the edge
ðn − 1, nÞ with the path ðn − 1, n + 1, n + 2, n + 3, n + 4, nÞ.
This shows that Tn+4h1, 2, 4 ; ti enjoys the same property.
Thus, for t ≅ 0 mod 4 and t ∉ f4, 8g, Tnh1, 2, 4 ; ti is Hamil-
tonian for all n ≅ 0 mod 4.

n-11 nn-3n-5n-8 n-2
n-10 n-6. . .

Figure 2: A subpath of Hn⟶1 in Tnh1, 3, 4 ; 3i.

n-11 nn-3n-5n-8 n-2
n-9

n-6n-14
n-13. . .

Figure 3: A subpath of Hn⟶1 in Tnh1, 3, 4 ; 3i.
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Figure 4: A Hamiltonian cycle in T8h1, 3, 4 ; 2, 3i.
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Assume t ∈ f4, 8g and n ≠ t + 4. The smallest n, different
from t + 4, is t + 8. Hamiltonian cycles in Tn=12h1, 2, 4 ; 4i
and Tn=16h1, 2, 4 ; 8i are ð1, 3, 7, 9, 11,12,8, 10, 6, 2, 4, 5, 1Þ
and ð1, 3, 7,11,13,15,16,8, 12,14,6, 10, 2, 4, 5, 9, 1Þ, respec-
tively, where both cycles contain the edge ðn − 1, nÞ, see
Figure 9.

Let Tn=ðt+8Þ+4rh1, 2, 4 ; ti has a Hamiltonian cycle con-
taining the edge ðn − 1, nÞ for some nonnegative integer r.
We transform this Hamiltonian cycle in Tnh1, 2, 4 ; ti to a
Hamiltonian cycle in Tn+4h1, 2, 4 ; ti by replacing the edge
ðn − 1, nÞ with the path ðn − 1, n + 1, n + 2, n + 3, n + 4, nÞ.
This shows that Tn+4h1, 2, 4 ; ti enjoys the same property.
Thus, for t ∈ f4, 8g and n ≠ t + 4, Tnh1, 2, 4 ; ti is Hamilto-
nian for all n ≅ 0 mod 4.

(ii) Let n ≅ 2 mod 4 and n ≠ t + 2.

The smallest n, different from t + 2, is t + 6. A Hamilto-
nian cycle in Tn=t+6h1, 2, 4 ; ti is ð1, 2, 3, 5,⋯, t − 1, t + 3, t
+ 5, t + 6, 6, 10,⋯, t + 2, t + 4, 4, 8,⋯, t, t + 1, 1Þ, which
contains the edge ðt + 5, t + 6Þ, see Figure 10.

By using the same technique as in the previous subcase,
for t ≅ 0 mod 4, Tnh1, 2, 4 ; ti is Hamiltonian for all n ≅ 2
mod 4 such that n ≠ t + 2.

Case 2. If t ≅ 2 mod 4.

(i) Let n ≅ 0 mod 4 and n ≠ t + 2.

The smallest n, different from t + 2, is t + 6. A Hamilto-
nian cycle in Tn=t+6h1, 2, 4 ; ti is ð1, 5, 9,⋯, t + 3, t + 5, t + 6
, 6, 10,⋯, t + 4, 4, 8,⋯, t + 2, 2, 3, 7, 11,⋯, t + 1, 1Þ, which
contains the edge ðt + 5, t + 6Þ, see Figure 11.

By using the same technique as in Case 1(i), for t ≅ 2
mod 4, Tnh1, 2, 4 ; ti is Hamiltonian for all n ≅ 0 mod 4
such that n ≠ t + 2.

(ii) Let n ≅ 2 mod 4.

The smallest n, is t + 4. A Hamiltonian cycle in Tn=t+4h
1, 2, 4 ; ti is ð1, 3, 5,⋯, t − 1, t + 3, t + 4, 4, 8,⋯, t + 2, 2, 6,
⋯, t, t + 1, 1Þ, which contains the edge ðt + 3, t + 4Þ, see
Figure 12.

By using the same technique as in Case 1(i), for t ≅ 2
mod 4, Tnh1, 2, 4 ; ti is Hamiltonian for all n ≅ 2 mod 4.

Conversely, we show that if n = t + 4 for t ∈ f4, 8g and if
n = t + 2, then Tnh1, 2, 4 ; ti is not Hamiltonian, i.e., T8h1, 2,
4 ; 4i, T12h1, 2, 4 ; 8i, andTt+2h1, 2, 4 ; ti are non-Hamiltonian.

Claim 1. T8h1, 2, 4 ; 4i is non-Hamiltonian.
Assume, to the contrary, that T8h1, 2, 4 ; 4i is Hamilto-

nian, and let H =H1⟶8 ∪H8⟶1 be a Hamiltonian cycle in
T8h1, 2, 4 ; 4i. Since d−ðvÞ = 1 = d+ðvÞ for every vertex v in
H, so ð8, 4Þ, ð5, 1Þ ∈ EðH8⟶1Þ. Then H8⟶1 = ð8, 4, 5, 1Þ.
Clearly, ð1, 2Þ or ð1, 3Þ ∈ EðH1⟶8Þ. If ð1, 3Þ ∈ EðH1⟶8Þ,
then ð3, 7Þ ∈ EðH1⟶8Þ, but then H1⟶8 terminates at vertex
7, for otherwise vertices 2 and 6 would be missed. If ð1, 2Þ
∈ EðH1⟶8Þ, then either ð2, 6Þ, ð6, 7Þ, ð7, 3Þ ∈ EðH1⟶8Þ or
ð2, 3Þ, ð3, 7Þ ∈ EðH1⟶8Þ, but then H1⟶8 terminates at verti-
ces 3 and 7, respectively. This is a contradiction.

Claim 2. T12h1, 2, 4 ; 8i is non-Hamiltonian.
Assume, to the contrary, that T12h1, 2, 4 ; 8i is Hamilto-

nian, and let H =H1⟶12 ∪H12⟶1 be a Hamiltonian cycle
in T12h1, 2, 4 ; 8i. Let VðH12⟶1 \ f1, 12gÞ = V1 ∪V2 ∪⋯∪
Vk, where each Vi∈f1,2,⋯,kg is a disjoint set of successive ver-
tices. Since H1⟶12 has no increasing edge of length 3 or of
length greater than 4. Clearly, for each Vi, we have either j
Vij = 1 or jVij = 3.

Let A be the set of all decreasing edges in T12h1, 2, 4 ; 8i,
i.e., A = fð12, 4Þ, ð11, 3Þ, ð10, 2Þ, ð9, 1Þg, so jAj = 4. Let B be
the set of all decreasing edges in H12⟶1, then clearly B ⊆ A.
Since d−ð1Þ = 1 = d+ð12Þ in T12h1, 2, 4 ; 8i, so ð12, 4Þ, ð9, 1Þ
∈ B. But H12⟶1 cannot have only these two edges as its
decreasing edges, because otherwise there must be a path
P4⟶9 in H12⟶1, but this is not possible as otherwise, for
some Vi, we have either jVij = 2 or jVij > 3. Thus 3 ≤ jBj ≤ 4.

Case 1. If jBj = 3. Since ð12, 4Þ, ð9, 1Þ ∈ B, then two sub-
cases arise.

(i) ð11, 3Þ ∈ B. Then H12⟶1 = ð12, 4Þ ∪ P4⟶11 ∪ ð11, 3Þ
∪ P3⟶9 ∪ ð9, 1Þ. Here, P4⟶11 ∈ fð4, 5, 7, 11Þ, ð4, 6, 10, 11Þg
. If P4⟶11 = ð4, 5, 7, 11Þ, but then P3⟶9 terminates at vertex
3. If P4⟶11 = ð4, 6, 10, 11Þ, then P3⟶9 = ð3, 7, 9Þ, but then
jVij = 2, for some i, in H12⟶1, which is not possible.

(ii) ð10, 2Þ ∈ B. Then H12⟶1 = ð12, 4Þ ∪ P4⟶10 ∪ ð10, 2Þ
∪ P2⟶9 ∪ ð9, 1Þ. Here, P4⟶10 ∈ fð4, 5, 6, 10Þ, ð4, 6, 10Þ, ð4, 8
, 10Þg. If P4⟶11 = ð4, 5, 6, 10Þ, but then P2⟶9 terminates at
vertex 2. If P4⟶10 = ð4, 6, 10Þ, then P2⟶9 = ð2, 3, 7, 9Þ, but
then Vi = 2, for some i, in H12⟶1. If P4⟶11 = ð4, 8, 10Þ, but
then P2⟶9 terminates at vertex 3 or 6, this is a contradiction.

Case 2. If jBj = 4, then A = B, but then we have only two
possible paths for H12⟶1.

(i) H12⟶1 = ð12, 4Þ ∪ P4⟶11 ∪ ð11, 3Þ ∪ P3⟶10 ∪ ð10, 2Þ
∪ P2⟶9 ∪ ð9, 1Þ, then the only possible path for P4⟶11 is
ð4, 6, 11Þ but then there is no path P3⟶10 as otherwise jVij
> 3 for some i.

43 61 5 7 82 12119
13

10 14

Figure 5: A Hamiltonian cycle in T14h1, 3, 4 ; 2, 8i.
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Figure 6: Hamiltonian cycles in T10h1, 3, 4 ; 3, 4i and T12h1, 3, 4 ;
3, 4i.

43 61 5 7 882 12119 1310 14

Figure 7: A Hamiltonian cycle in T14h1, 3, 4 ; 3, 8i.
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(ii) H12⟶1 = ð12, 4Þ ∪ P4⟶10 ∪ ð10, 2Þ ∪ P2⟶11 ∪ ð11, 3
Þ ∪ P3⟶9 ∪ ð9, 1Þ, then the only possible path for P4⟶10 is
ð4, 6, 10Þ but then there is no path P2⟶11 as otherwise jVij
> 3 for some i. So this is a contradiction.

By Lemma 12, Tt+2h1, 2, 4 ; ti is non-Hamiltonian. This
together with Claim 1 and Claim 2 shows that Tnh1, 2, 4 ; t
i is non-Hamiltonian if n = t + 4 for t ∈ f4, 8g, and if n = t
+ 2.

This finishes the proof.

Now, in Theorem 17, we will discuss the Hamiltonicity
of Tnh1, 2, 4 ; ti for odd t and we will be using the following
known results of the literature in the proof of Theorem 17.

Theorem 14. Tnh1, 2 ; 3i is Hamiltonian if and only if n = 5
or n ≅ 1 mod 3.

Theorem 15. Tnh1, 2 ; 5i is Hamiltonian if and only if n ∉ f
8; 10; 12; 13; 15; 18; 20; 23; 28g.

Theorem 16. For odd t ≥ 7, Tnh1, 2 ; ti is Hamiltonian if and
only if n ∉ ft + 3, t + 5,⋯, 2t, 2t + 2, 2t + 3, 2t + 5, 3t + 5g.

Theorem 17.

(1) Tnh1, 2, 4 ; 3i is Hamiltonian if and only if n ≅ 1
mod 4 or n ≅ 1 mod 3.

(2) Tnh1, 2, 4 ; 5i is Hamiltonian if and only if n ∉ f8, 12g
.

(3) For odd t ≥ 7, Tnh1, 2, 4 ; ti is Hamiltonian if n ∉ ft
+ 3, t + 5,⋯, 2t − 2, 2t + 2g.

Proof.

(1) If n ≅ 1 mod 3, then by using Theorem 14, Tnh1, 2,
4 ; 3i is Hamiltonian. If n ≅ 1 mod 4, then a Hamilto-
nian cycle in Tnh1, 2, 4 ; 3i is ð1, 3, 7,⋯, n − 2, n, n
− 3, n − 1,⋯, n − 4q, n − 4q − 3, n − 4q − 1,⋯, 5, 2, 4
, 1Þ, where q ∈ℤ+, see an example in Figure 13

Conversely, suppose H =H1⟶n ∪Hn⟶1 is a Hamilto-
nian cycle in Tnh1, 2, 4 ; 3i. Since H1⟶n has edges of length
1, 2, and 4, only, Hn⟶1 uses either all decreasing edges of
length 3, i.e., Hn⟶1 = ðn, n − 3, n − 6,⋯4, 1Þ, or decreasing
edges of length 3 along with increasing edges of length 2 (a
decreasing edge of length 3, then an increasing edge of
length 2, and then again an increasing edge of length 3),

i.e., Hn⟶1 = ðn, n − 3, n − 1, n − 4,⋯, n − 4q, n − 4q − 3, n −
4q − 1,⋯, 5, 2, 4, 1Þ, where q ∈ℤ+, see Figure 14. This
implies that n − 1 is either a multiple of 3 or a multiple of
4. Thus n ≅ 1 mod 4 or n ≅ 1 mod 3.

(2) First, we show that Tnh1, 2, 4 ; 5i is Hamiltonian if
n ∉ f8, 12g. By using Theorem 15, Tnh1, 2, 4 ; 5i is
Hamiltonian if n ∉ f8,10,12,13,15,18,20,23,28g.
Now we show that Tnh1, 2, 4 ; 5i is Hamiltonian for
n ∈ f10,13,15,18,20,23,28g. Let Hn be a Hamiltonian
cycle in Tnh1, 2, 4 ; 5i, then we have

H10 = ð1, 2, 3, 7, 8,10,5, 9, 4, 6, 1Þ,
H13 = ð1, 3, 5, 9, 10,11,13,8, 12, 7, 2, 4, 6, 1Þ,
H15 = ð1, 2, 3, 4, 5, 7, 8,12,13,15,10,14,9, 11, 6, 1Þ,
H18 = ð1, 2, 3, 5, 7, 8, 10,11,15,16,18,13,17,12,14,9, 4, 6, 1Þ

,

H20 = 1, 2, 3, 4, 5, 7, 8, 9, 10,12,13,17,18,20,15,19,14,16,11,6, 1ð Þ

,

H23 = 1, 2, 3, 5, 7, 8, 10,11,12,13,15,16,20,21,23,18,22,17,19,14,9, 4, 6, 1ð Þ

, and

H28 = 1, 2, 3, 5, 7, 8, 10,11,12,13,15,16,17,18,20,21,25,26,28,23,27,22,24,19,14,9, 4, 6, 1ð Þ

, see Figure 15.
Conversely, we show that Tnh1, 2, 4 ; 5i is non-

Hamiltonian for n ∈ f8, 12g.
Claim 1. T8h1, 2, 4 ; 5i is non-Hamiltonian.
Assume, to the contrary, that T8h1, 2, 4 ; 5i is Hamilto-

nian and let H =H1⟶8 ∪H8⟶1 be a Hamiltonian cycle in
T8h1, 2, 4 ; 4i. Since d−ðvÞ = 1 = d+ðvÞ for every vertex v in
H, so ð8, 3Þ, ð6, 1Þ ∈ EðH8⟶1Þ. Then H8⟶1 is either ð8, 3,
7, 2Þ or ð8, 3, 5, 7, 2Þ, but in both cases, the path would be
stuck at vertex 2. This is a contradiction.

Claim 2. T12h1, 2, 4 ; 5i is non-Hamiltonian.

43 61 5 7 82 1211

9 1310 14
t-3t-4

t-2 t-1
16

t+3
t+2t t+4t+1. . .

. . .

Figure 8: A Hamiltonian cycle in Tt+4h1, 2, 4 ; ti, t ≅ 0 mod 4.

43 61 5 7 82 12119 10

43 61 5 7 82
1211

9 10 1615
13

14

Figure 9: Hamiltonian cycles in T12h1, 2, 4 ; 4i and T16h1, 2, 4 ; 8i.
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Assume, to the contrary, that T12h1, 2, 4 ; 5i has a Ham-
iltonian cycle H =H1⟶12 ∪H12⟶1. Let VðH12⟶1 \ f1, 12
gÞ =V1 ∪V2 ∪⋯∪ Vk, where each Vi∈f1,2,⋯,kg is a disjoint
set of successive vertices. Clearly, for each Vi, we have either
jVij = 1 or jVij = 3, because H1⟶12 has no increasing edge
of length 3 or of length greater than 4.

Let A be the set of all decreasing edges in T12h1, 2, 4 ; 5i,
i.e., A = fð12, 7Þ, ð11, 6Þ, ð10, 5Þ, ð9, 4Þ, ð8, 3Þ, ð7, 2Þ, ð6, 1Þg,
so jAj = 7. Let B be the set of all decreasing edges in
H12⟶1, then clearly B ⊆ A. Since d−ð1Þ = 1 = d+ð12Þ in T12
h1, 2, 4 ; 5i, so ð12, 7Þ, ð6, 1Þ ∈ B. But H12⟶1 cannot have
only these two edges as its decreasing edges, because other-

wise, there must be a subpath P6⟶7 in H12⟶1, but this is
not possible here, so jBj ≥ 3. We also observe that jBj ∉ f6,
7g, as otherwise, jVij > 3 for some Vi. Thus 3 ≤ jBj ≤ 5.

Case 1. If jBj = 3. Since ð12, 7Þ, ð6, 1Þ ∈ B, then C5
2 = 5

subcases arise.
(i) ð11, 6Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶11 ∪ ð11, 6,

1Þ. By keeping in mind that there is no Vi in H12⟶1 such
that jVij > 3, so here, P7⟶11 ∈ fð7, 11Þ, ð7, 9, 11Þ, ð7, 8, 10,
11Þg. But in all of these subpaths, we have jVij = 2, for some
i, in H12⟶1, which is not possible.

(ii) ð10, 5Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶10 ∪ ð10, 5
Þ ∪ P5⟶6 ∪ ð6, 1Þ. Here, P7⟶10 = ð7, 9, 10Þ and P5⟶6 = ð5,
6Þ. But then, for some i, jVij = 2 (say Vi = f9, 10g) in
H12⟶1, which is a contradiction.

(iii) ð9, 4Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶9 ∪ ð9, 4Þ
∪ P4⟶6 ∪ ð6, 1Þ. Here, P7⟶9 = ð7, 9Þ and P4⟶6 = ð4, 6Þ.
But then, for some i, jVij = 2 (say Vi = f6, 7g) in H12⟶1,
which is a contradiction.

(iv) ð8, 3Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶8 ∪ ð8, 3Þ ∪
P3⟶6 ∪ ð6, 1Þ. Here P7⟶8 = ð7, 8Þ and P3⟶6 = ð3, 4, 6Þ.
But then, for some i, jVij = 2 (say Vi = f3, 4g) in H12⟶1,
which is a contradiction.

(v) ð7, 2Þ ∈ B. Then H12⟶1 = ð12, 7, 2Þ ∪ P2⟶6 ∪ ð6, 1Þ.
Here, P2⟶6 ∈ fð2, 6Þ, ð2, 4, 6Þ, ð2, 3, 5, 6Þg. But then, for
some i, jVij = 2 (say Vi = f3, 4g or Vi = f6, 7g) in H12⟶1,
which is a contradiction.

Case 2. If jBj = 4. Since ð12, 7Þ, ð6, 1Þ ∈ B, then C5
2 = 10

subcases arise.

43 61 5 7 82 12119

1310

t-1t-2 t t+1
t+5

t+4t+2 t+6
t+3

. . .

. . .

Figure 10: Hamiltonian cycles in Tt+6h1, 2, 4 ; ti, t ≅ 0 mod 4:
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. . .

. . . t-2

Figure 11: Hamiltonian cycles in Tt+6h1, 2, 4 ; ti; t ≅ 2 mod 4.

43 61 5 7
82 1211

9 10 t-3
t-4 t-2

t-1 t+3
t+2t t+4t+1

. . .

. . .

Figure 12: Hamiltonian cycles in Tt+4h1, 2, 4 ; ti, t ≅ 2 mod 4.

43 61 5 72 8 109 11 12 1413 15 16 17

Figure 13: A Hamiltonian cycle in T17h1, 2, 4 ; 3i.

21 3 54 n-4 n-3 nn-1n-8 n-5n-7

21 3 4 n-3 nn-6n-9

. . .

. . .

. . .

. . .

Figure 14: Possible paths Hn⟶1 in Tnh1, 2, 4 ; 3i
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(i) ð11, 6Þ, ð10, 5Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶10
∪ ð10, 5Þ ∪ P5⟶11 ∪ ð11, 6, 1Þ. By keeping in mind that there
is no Vi in H12⟶1 such that jVij > 3, so P7⟶10 = ð7, 10Þ, but
then the path H5⟶11 would be stuck at vertex 5.

(ii) ð11, 6Þ, ð9, 4Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶9 ∪
ð9, 4Þ ∪ P4⟶11 ∪ ð11, 6, 1Þ. Due to the same reason, here
P7⟶9 = ð7, 9Þ but then P4⟶11 would be stuck at vertex 4.

(iii) ð11, 6Þ, ð8, 3Þ ∈ B. Then, H12⟶1 = ð12, 7Þ ∪ P7⟶8 ∪
ð8, 3Þ ∪ P3⟶11 ∪ ð11, 6, 1Þ. Here, P7⟶8 = ð7, 8Þ, but then
P3⟶11 terminates at vertex 4.

(iv) ð11, 6Þ, ð7, 2Þ ∈ B. Then, H12⟶1 = ð12, 7, 2Þ ∪
P2⟶11 ∪ ð11, 6, 1Þ. Here, P2⟶11 ∈

fð2, 4, 8, 10, 11Þ, ð2, 3, 4, 8, 10, 11Þ, ð2, 3, 5, 9, 10, 11Þ, ð2, 3, 5,
9, 11Þg, but in all of these subpaths, for some i, jVij = 2 (say
Vi = f10, 11g or Vi = f2, 3g) in H12⟶1.
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Figure 15: Hamiltonian cycles in Tnh1, 2, 4 ; 5i, n ∈ f10,13,15,18,20,23,28g.
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Figure 16: A Hamiltonian cycle in T2th1, 2, 4 ; ti.
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(v) ð10, 5Þ, ð7, 2Þ ∈ B. Then, H12⟶1 = ð12, 7, 2Þ ∪ P2⟶10
∪ ð10, 5Þ ∪ P5⟶6 ∪ ð6, 1Þ. Here, P5⟶6 = ð5, 6Þ, but P2⟶5
terminates at vertex 3.

(vi) ð9, 4Þ, ð7, 2Þ ∈ B. Then, H12⟶1 = ð12, 7, 2Þ ∪ P2⟶9
∪ ð9, 4Þ ∪ P4⟶6 ∪ ð6, 1Þ. Here, P4⟶6 = ð4, 6Þ, but P2⟶9 ter-
minates at vertex 3.

t+31 t+2 t+4
t+5

2
2t+2

2t+3
t+6 t+8. . .

. . .

Figure 17: A Hamiltonian cycle in T2t+3h1, 2, 4 ; ti.
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543

Figure 18: A Hamiltonian cycle in T2t+5h1, 2, 4 ; ti.
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Figure 19: A Hamiltonian cycle in T3t+5h1, 2, 4 ; ti.
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464529 33 35 37 41. . .

Figure 20: A Hamiltonian cycle in T46h1, 2, 4 ; 25i:

1 21 502 4923 27 2925
46
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Figure 21: A Hamiltonian cycle in T50h1, 2, 4 ; 27i.
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Figure 22: A Hamiltonian cycle in Tt+3h1, 2, 4 ; ti; t ≅ 3 mod 4.
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(vii) ð9, 4Þ, ð7, 2Þ ∈ B. Then, H12⟶1 = ð12, 7, 2Þ ∪ P2⟶8
∪ ð8, 3Þ ∪ P3⟶6 ∪ ð6, 1Þ. Here, P3⟶6 = ð3, 4, 6Þ, but then
P2⟶8 would be stuck at vertex 2.

(viii)–(x) If ð10, 5Þ, ð9, 4Þ ∈ B or ð10, 5Þ, ð8, 3Þ ∈ B or ð9,
4Þ, ð8, 3Þ ∈ B, then clearly jVij > 3 for some i, say Vi = f4, 5
, 6, 7g, or Vi = f5, 6, 7, 8g, or Vi = f6, 7, 8, 9g, respectively.
This is a contradiction.

Case 3. If jBj = 5. Since ð12, 4Þ, ð9, 1Þ ∈ B, then C5
3 = 10

subcases arise.
(i) ð11, 6Þ, ð10, 5Þ, ð7, 2Þ ∈ B. By keeping in mind that

there is no Vi in H12⟶1 such that jVij > 3, so H12⟶1 = ð
12, 7, 2Þ, P2⟶10 ∪ ð10, 5Þ ∪ P5⟶11 ∪ ð11, 6, 1Þ. But the sub-
path P2⟶10 would be stuck at vertex 2 or 3.

(ii) ð11, 6Þ, ð9, 4Þ, ð7, 2Þ ∈ B. Here, H12⟶1 = ð12, 7, 2Þ,
P2⟶9 ∪ ð9, 4Þ ∪ P4⟶11 ∪ ð11, 6, 1Þ, but P2⟶9 terminates at
vertex 3.

(iii) ð11, 6Þ, ð8, 3Þ, ð7, 2Þ ∈ B. Here, H12⟶1 = ð12, 7, 2Þ,
P2⟶8 ∪ ð8, 3Þ ∪ P3⟶11 ∪ ð11, 6, 1Þ, but P2⟶8 terminates at
vertex 4.

(iv) ð10, 5Þ, ð8, 3Þ, ð7, 2Þ ∈ B. Here, H12⟶1 = ð12, 7, 2Þ,
P2⟶8 ∪ ð8, 3Þ ∪ P3⟶10 ∪ ð10, 5, 6, 1Þ, but P2⟶8 would be
stuck at vertex 2.

(v)–(x) If ð11, 6Þ, ð10, 5Þ, ð9, 4Þ ∈ B or ð11, 6Þ, ð10, 5Þ, ð8
, 3Þ ∈ B or ð11, 6Þ, ð9, 4Þ, ð8, 3Þ ∈ B or ð10, 5Þ, ð9, 4Þ, ð8, 3Þ ∈
B or ð10, 5Þ, ð9, 4Þ, ð7, 2Þ ∈ B, or ð9, 4Þ, ð8, 3Þ, ð7, 2Þ ∈ B, then
clearly jVij > 3, for some i, this is a contradiction.

(3) If t ≥ 7. By using Theorem 16, for odd t ≥ 7, Tnh1, 2
, 4 ; ti is Hamiltonian if n ∉ ft + 3, t + 5,⋯, 2t, 2t +
2, 2t + 3, 2t + 5, 3t + 5g. Now we show that Tnh1, 2,
4 ; ti is Hamiltonian for n ∈ f2t, 2t + 3, 2t + 5, 3t + 5
g. A Hamiltonian cycle in T2th1, 2, 4 ; ti is ð1, 2,⋯,
t − 2, t + 2, t + 3, t + 5,⋯, 2t, t, t + 4, t + 6, t + 8, 2t −
1, t − 1, t + 1, 1Þ, see Figure 16.

A Hamiltonian cycle in T2t+3h1, 2, 4 ; ti is ð1, 3,⋯, t, t
+ 4, t + 5, t + 6, t + 8, 2t + 3, t + 3, t + 7, t + 9,⋯, 2t + 2, t + 2
, 2, 4,⋯, t + 1, 1Þ, see Figure 17.

A Hamiltonian cycle in T2t+5h1, 2, 4 ; ti is ð1, 2, 3, 4, 5, 7
,⋯, t + 2, t + 3, t + 7, t + 8, t + 10, 2t + 5, t + 5, t + 9, t + 11,
⋯, 2t + 4, t + 4, t + 6, 6, 8,⋯, t + 1, 1Þ, see Figure 18. And a
Hamiltonian cycle in T3t+5h1, 2, 4 ; ti is ð1, 2, 3, 4, 5, 7,⋯, t
+ 2, t + 3, t + 4, t + 5,⋯, t + 7, t + 8,⋯, 2t + 3, 2t + 7, 2t + 8,
2t + 10,⋯, 3t + 5, 2t + 5, 2t + 9, 2t + 11,⋯, 3t + 4, 2t + 4, 2t
+ 6, t + 6, 6, 8,⋯, t + 1, 1Þ, see Figure 19.

This finished the proof.

In Theorem 17, we saw that for odd t ≥ 7, Tnh1, 2, 4 ; ti is
Hamiltonian if n ∉ ft + 3, t + 5,⋯, 2t − 2, 2t + 2g. In the fol-
lowing theorem, we study the Hamiltonicity of Tnh1, 2, 4 ; ti
for n ∈ ft + 3, t + 5,⋯, 2t − 2, 2t + 2g and odd t ≥ 7, with
some restriction on n.

Theorem 18. For odd t ≥ 7, Tnh1, 2, 4 ; ti is Hamiltonian if
n ∈ ft + 3, t + 5,⋯, 2t − 2, 2t + 2g and n ≅ 2 mod 4.

Proof. For odd t ≥ 7, let n ∈ ft + 3, t + 5,⋯, 2t − 2, 2t + 2g
and n ≅ 2 mod 4. We show that Tnh1, 2, 4 ; ti is
Hamiltonian.

Case 1. If t ≅ 1 mod 4, then a Hamiltonian cycle in Tnh
1, 2, 4 ; ti is ð1, 2,⋯, n − t − 2, n − t + 2,⋯, t + 2, t + 3, P3ðt
+ 5Þ, P3ðt + 9Þ,⋯, P3ðn − 4Þ, n, n − t, n − t + 4,⋯, n − 1, n −
1 − t, n − t + 1,⋯, t + 1, 1Þ, see an example in Figure 20.

Case 2. If t ≅ 3 mod 4. For n ≠ t + 3, a Hamiltonian cycle
in Tnh1, 2, 4 ; ti is ð1, 2,⋯, n − t − 2, n − t + 2,⋯, t + 2, t + 3
, P3ðt + 5Þ, P3ðt + 9Þ,⋯, P3ðn − 6Þ, n − 2, n, n − t, n − t + 4,
⋯, n − 3, n − 1, n − 1 − t, n − t + 1,⋯, t + 1, 1Þ, see an exam-
ple in Figure 21.

A Hamiltonian cycle in Tt+3h1, 2, 4 ; ti is ð1, 5,⋯, t − 2,
t − 1, t + 3, 3, 7,⋯, t, t + 2, 2, 4,⋯, t − 3, t + 1, 1Þ, see
Figure 22.

This completes the proof.

4. Toeplitz Graphs Tnh1, 2, 4 ; t1, t2i
Theorem 19 (see [8]). Let G = Tnh1, 2 ; t1, t2i.

(1) If t1 and t2 are both even, then G is Hamiltonian if
and only if n is odd.

(2) If t1 and t2 are of opposite parity, then G is Hamilto-
nian for all n.

(3) If t1 and t2 are both odd, and

(a) if t2 ≥ 2t1 + 1, then G is Hamiltonian for all n.

(b) if t2 < 2t1 + 1, then G is Hamiltonian if n ∉ ft2 + 3,
t2 + 5,⋯, 2t1 + 2g.

In Theorem 19, the Hamiltonicity of Tnh1, 2 ; t1, t2i have
been studied. Now we will see, what happens, if we add one
more diagonal (containing one) above the main diagonal,
say s3 = 4. So here we discuss the Hamiltonicity of Tnh1, 2, 4
; t1, t2i.

Theorem 20. For even t1 and even t2, Tnh1, 2, 4 ; t1, t2i is
Hamiltonian if and only if n is odd. Otherwise it is Hamilto-
nian for all n.

1 2 3 764 8 9 10 115 12

1 2 3 764 8 9 10 115 12

Figure 24: Hamiltonian cycles in T12h1, 2, 4 ; 5, 7i and T12h1, 2, 4
; 5, 9i.

43 61 2 5 7 8

Figure 23: A Hamiltonian cycle in T8h1, 2, 4 ; 4, 5i.
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Proof. Case 1. If t1 and t2 are both even, then by using The-
orem 19, Tnh1, 2, 4 ; t1, t2i is Hamiltonian for all odd n. Con-
versely, suppose that Tnh1, 2 ; t1, t2i has a Hamiltonian cycle
H =H1⟶n ∪Hn⟶1. Now, we show that n is odd. Assume,
to the contrary, that n is even. Since H1⟶n cannot use an
increasing edge of length 3 or of length greater than 4,
Hn⟶1 cannot use any increasing edges of the types ðv, v +
1Þ or ðv, v + 1, v + 2, v + 3Þ. Hence, Hn⟶1 uses only edges
of even length, and therefore vertices of the same parity,
and this implies that n is odd, because otherwise Hn⟶1
would never end up to vertex 1. This is a contradiction; thus,
n is odd.

Case 2. If t1 and t2 are of opposite parity, then by using
Theorem 19, Tnh1, 2, 4 ; t1, t2i is Hamiltonian for all n.

Case 3. If t1 and t2 are both odd and t2 ≥ 2t1 + 1, then by
using Theorem 19, Tnh1, 2, 4 ; t1, t2i is Hamiltonian for all n.
Now assume t2 < 2t1 + 1, where both t1 and t2 are odd, then
by using Theorem 19, Tnh1, 2, 4 ; t1, t2i is Hamiltonian for
n ∉ ft2 + 3, t2 + 5,⋯, 2t1 + 2g.

Now we prove that, for both odd t1 and t2 < 2t1 + 1, Tn
h1, 2, 4 ; t1, t2i is Hamiltonian for n ∈ ft2 + 3, t2 + 5,⋯, 2t1
+ 2g. Clearly, here, n is an even integer such that t2 + 3 ≤ n
≤ 2t1 + 2 and t1 ≥ 3 (as if t1 = 1, then t2 ≮ 2t1 + 1). If t1 = 3,
then t2 = 5, and therefore n = 8 (because t2 < 2t1 + 1 and n
∈ ft2 + 3, t2 + 5,⋯, 2t1 + 2g). A Hamiltonian cycle in T8h1
, 2, 4 ; 4, 5i is ð1, 2, 6, 8, 3, 5, 7, 4, 1Þ, see Figure 23.

If t1 = 5, then t2 ∈ f7, 9g and then n ∈ ft2 + 3, t2 + 5,⋯,
12g. By using Theorem 17, Tnh1, 2, 4 ; 5, t2i is Hamiltonian
for n ∉ f8, 12g. Since here n ≥ 10 (because n ≥ t2 + 3 ≥ 10,
as t2 ≥ 7), we need to consider only n = 12. The Hamiltonian
cycles in T12h1, 2, 4 ; 5, 7i and T12h1, 2, 4 ; 5, 9i are ð1, 2, 3, 7
, 8,10,11,12,5, 9, 4, 6, 1Þ and ð1, 3, 5, 9, 11,12,7, 2, 4, 6, 8, 10, 1
Þ, respectively, see Figure 24.

If t1 ≥ 7, then by using Theorem 17, Tnh1, 2, 4 ; t1, t2i is
Hamiltonian for n = 2t1, and by using Theorem 18, Tnh1, 2
, 4 ; t1, t2i is Hamiltonian for n ∈ ft2 + 3, t2 + 5,⋯, 2t1 − 2, 2
t1 + 2g and n ≅ 2 mod 4. Now, we need to show that Tnh1,
2, 4 ; t1, t2i is Hamiltonian for n ∈ ft2 + 3, t2 + 5,⋯, 2t1 − 2,
2t1 + 2g and n ≅ 0 mod 4. Let n ∈ ft2 + 3, t2 + 5,⋯, 2t1 − 2,

2t1 + 2g and n ≅ 0 mod 4. For t2 = t1 + 2, a Hamiltonian
cycle in Tnh1, 2, 4 ; t1, t2i is ð1, 2,⋯, n − t2 − 1, n − t2 + 3,⋯
; ;t1 + 3, t1 + 5,⋯, n, n − t2, n − t2 + 2,⋯, n − 1, n − 1 − t1, n
− t1 + 3,⋯, t1 + 1, 1Þ, see Figure 25. And for t2 ≠ t1 + 2, a
Hamiltonian cycle in Tnh1, 2, 4 ; t1, t2i is ð1, 2,⋯, n − t2 − 1
, n − t2 + 1,⋯, n − t1 − 3, n − t1 + 1,⋯, t1 + 3, t1 + 5,⋯, n, n
− t2, n − t2 + 2,⋯, n − 1, n − 1 − t1, n − t1 + 3,⋯, t1 + 1, 1Þ,
see Figure 26. Thus, if t1 and t2 are both odd, Tnh1, 2, 4 ; t1
, t2i is Hamiltonian for all n.

This completes the proof.

Conjecture: for odd t ≥ 7, Tnh1, 2, 4 ; ti is non-Hamiltonian
if n ∈ ft + 3, t + 5,⋯, 2t − 2, 2t + 2g and n ≅ 0 mod 4.

5. Concluding Remark

An affirmative resolution of the conjectures for Tnh1, 2, 4 ; ti
will complete the study of the Hamiltonicity of the Toeplitz
graph with s1 = 1 and s3 = 4. The next task in our opinion is
to investigate the Hamiltonicity of the Toeplitz graph with
s1 = 2 and s3 = 4, which will then complete the Hamiltonicity
investigation in the Toeplitz graph with s3 = 4. To make this
paper not very long, we have not discussed that case here.
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