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Physical laws provide a mathematical description of a physical phenomenon. The mathematical description is generally in the
form of differential equations with appropriate initial and boundary conditions, called initial boundary value problems. The
dimensionless form of an initial boundary value problem is the first step for the solution to a class of problems. The approach
is generally applied for closed-form (or analytical) solutions, whereas practical engineering problems can only be solved
numerically. Commercial finite element packages are commonly used for the numerical solution of engineering problems with
complexities caused by geometry, loading, and material properties. A numerical solution does not produce a formula;
therefore, a completely new solution must be obtained even for minor changes in the data set. A single-dimensionless finite
element analysis would solve a class of problems. Literature shows that user-developed finite element codes, not accessible for
general use, are generally used for dimensionless finite element solutions. The availability of dimensionless analysis in a
commercial finite element package would be very convenient. Commercial packages do not have built-in dimensionless
formulations. However, all mainstream packages allow user-implemented formulation through different coding requirements.
At least one researcher has used a commercial package for dimensionless analyses without coding. The work presents a guide
on alternate implementation methods of dimensionless formulations in commercial packages. A sample case demonstrates the
stepwise implementation of a dimensionless formulation without writing a customized finite element code.

1. Introduction

Dimensional analysis and dimensionless parameters are typ-
ical for solving thermofluid problems. Dimensional analysis
reduces the number of variables of a physical phenomenon
by grouping them into dimensionless parameters. The
groups are the ratios between the governing variables of
the problem; therefore, they provide an intuition of the cor-
responding physical interpretation of the mathematical solu-
tion. In short, it offers a compact presentation, enhanced
understanding, and solutions to a class of problems.

Finite element analysis helps solve engineering problems
because of the convenience of dealing with complicated geom-
etry, ease in prescribing the loading and boundary conditions,
and consideration of anisotropic and nonhomogeneous mate-
rials [1–3]. Therefore, commercial finite element packages are
prevalent for engineering analyses because the user does not

have to derive and implement the mathematical formulation
to analyze the engineering problems. Nevertheless, finite ele-
ment analysis provides the numerical solution of a problem
and does not provide a closed-form solution or solve a class
of problems. Therefore, a new numerical solution is required
for any changes in problem input data. The dimensional
finite element analysis of a complex problem would be valid
for all similar systems having the same set of dimensionless
parameter values. It can be achieved by deriving (i.e., mathe-
matical description) and implementing (through program-
ming code) the dimensionless formulation in a general-
purpose software package.

Literature shows that nondimensional finite element
analyses are generally implemented through user-
developed finite element codes, which are not accessible for
general use. In contrast, dimensionless analysis in a com-
mercial finite element package would be accessible to any
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user. The present work is aimed at evaluating the possibili-
ties and limitations related to a dimensionless solution using
a general-purpose commercial software package. A literature
review on the state of the art is first presented, followed by
deriving and implementing a dimensionless finite element
formulation. The present work would serve as a reference
and guide to the researchers and engineers on the alternate
implementation methods of dimensionless formulations in
commercial packages.

2. Literature Review

The methodology used for the literature review is as follows.
Google Scholar searches were conducted with the keywords
“dimensionless finite element” and “nondimensional finite
element.” The accessible results were reviewed to evaluate
their relevance to the scope of the study. The relevant refer-
ences of the reviewed papers were the additional source for
the literature review. The literature review shows that the
application of dimensionless finite element formulation can
be categorized as follows:

(1) Fluid dynamics

(2) Dynamic stability of columns

(3) Fracture mechanics of cracked structures

(4) Thermal analysis of extended surfaces

(5) Some discrete applications

2.1. Fluid Dynamics. Although dimensionless parameters are
commonly used for analytical solutions, applications of
dimensionless finite element analysis are somewhat limited.
Apparently, Baker [4] was the first to use the dimensionless
finite element formulation in fluid dynamics. He mentioned
that “the finite element concept of solid mechanics is derived
for the transient laminar two-dimensional flow of incom-
pressible viscous fluid.” Considering that all commercial
finite element packages work with dimensioned quantities,
it is interesting that the first fluid dynamics application of
the finite element formulation was derived in dimensionless
form. The governing dimensionless differential equations for
the velocity and pressure distributions were obtained by nor-
malizing them with respect to the characteristic length and
velocity parameters. The initial boundary value problem
was solved using the Galerkin method of weighted residuals
to get the finite element formulation for a triangular element
with an nth-order polynomial interpolation function. The
formulation was coded into a general-purpose computer
program for studying isothermal duct flow in a domain
bounded by a nonplanar surface. Winterscheidt and Surana
[5, 6], Bell and Surana [7], Edgar and Surana [8], Ling and
Surana [9], Musson and Surana [10], Feng and Surana
[11], Dalimunthe and Surana [12], and Vijayaraghavan
and Surana [13] presented p-version least squares dimen-
sionless finite element formulations for various fluid dynam-
ics problems. The formulations covered the convection-
diffusion equation and Newtonian and non-Newtonian iso-
thermal and nonisothermal fluid flow. Bell and Surana also

presented a space-time-coupled p-version least square
dimensionless formulation for transient, convection-diffu-
sion, and Navier–Stokes equations [14, 15].

The other group of problems is the convection flow in
enclosed cavities. Natural convection due to differentially
heated side walls in rectangular enclosures corresponds to
the cooling of a nuclear reactor, the design of solar collec-
tors, and the simulation of fire spread in buildings [16].
The determination of convection flow in a square cavity
can be used to test and validate numerical methods and
computer programs to solve viscous flow problems. There-
fore, De Vahl Davis et al. [17] proposed the problem of a
square cavity as a standard for comparing different numeri-
cal methods for fluid flow and convection. The cavity has
horizontal adiabatic walls and different-temperature isother-
mal vertical walls. Taylor and Ijam [18] studied the steady-
state free convective flow caused by a temperature gradient
within a rectangular enclosed cavity. Their objective was to
solve the coupled natural convection problem at high values
of Rayleigh numbers using the dimensionless finite element
method. Reddy and Satake [19] presented a comparative
study of natural convection in enclosures. They used the
dimensionless penalty finite element analysis with the
stream function vorticity model. Stevens [20] used the
Galerkin finite element method with the stream function
vorticity formulation to model the steady laminar natural
convection for the standard square cavity. Using dimension-
less finite element formulation, Misra and Sarkar [16] ana-
lyzed the conjugate natural convection in a square
enclosure. Oosthuizen [21] presented the dimensionless
finite element analysis for convective motion caused by the
bottom heating of ice and water in a square enclosure. Bar-
letta et al. [22] used the dimensionless finite element method
for studying the combined forced and free flow due to the
prescribed heat flux at the walls of a vertical rectangular
duct. Basak et al. [23–25] solved the governing mass,
momentum, and energy equations. They presented the anal-
yses of natural convection flows in square, trapezoidal, and
triangular cavities due to different thermal boundary condi-
tions. They further extended their studies for the cavities
filled with a porous medium [26–28]. Rahman et al. [29]
derived a dimensionless finite element formulation for the
mixed convection due to a heat-conducting horizontal circu-
lar cylinder in a rectangular cavity. Mehryan et al. [30] stud-
ied free convection in a trapezoidal enclosure divided by a
flexible partition using a dimensionless finite element
formulation.

Many researchers have studied the convection flow in
porous media due to embedded hot plates using the
dimensionless finite element method. The engineering
applications include geothermal energy technology, petro-
leum recovery, filtration processes, packed bed reactors,
and underground chemical and nuclear waste disposal.
Abbas et al. [31] analyzed the effects of thermal dispersion
over a flat vertical plate in a porous medium. The govern-
ing dimensionless equations were solved using the
Galerkin-based FEM method. Palani and Abbas [32] stud-
ied the combined effects of radiation and magnetohydro-
dynamics on the free convection flow of an electric-
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conductive viscous compressible flow past a vertical plate
using dimensionless finite element analysis. Rao et al. [33]
studied the effects of chemical reactions on the magnetohy-
drodynamic fluid flow over a flat vertical plate in a porous
medium with heat absorption. Sheri et al. [34] presented the
heat andmass transfer analysis due to the ramped temperature
of an impulsively moving vertical plate using the dimension-
less finite element method. Shamshuddin et al. [35] proposed
a dimensionless finite element solution of the multiphysical
micropolar transport phenomena from an inclined moving
plate in a porous media.

Heat transfer and fluid flow studies for flow around
cylinders are essential for various engineering applications
like heat exchangers and nuclear reactors [36]. Fletcher
[37] presented a primitive variable, least-squares dimen-
sionless finite element formulation for inviscid, compress-
ible flow. The unique feature was that the formulation
was derived from groups of variables rather than single
variables. Velocity, density, and pressure were nondimen-
sionalized with respect to characteristic velocity and den-
sity values. The formulation was used for studying the
inviscid compressible flow over cylindrical and elliptical
cylinders and aerofoils. Dhaubhadel et al. [36, 38] studied
the laminar incompressible flow across the staggered and
inline bundles of cylinders. They used the penalty-
dimensionless finite element model for solving the two-
dimensional steady-state Navier-Stokes and energy equa-
tions. Apparently, it was the first application of the dimen-
sionless finite element formulation for solving the flow
across the bundle of cylinders [36]. Mahmood et al. [39]
studied the laminar flow of Bingham fluid past a 2-D cir-
cular cylinder using dimensionless finite element formula-
tion. Bingham fluids can sustain nonzero shear stress, and
flow occurs when the applied shear stress is more than a
limiting shear stress value [39].

Researchers have studied convection flow in enclosures,
Couette flow, natural convection over a vertical flat plate
embedded in a porous medium, and flow across cylinders
using dimensionless finite element analysis. Indeed, the
closed-form solution of all these problems is obtained by
solving dimensionless governing differential equations ana-
lytically. Therefore, a dimensionless finite element solution
is considered when an analytical solution is either challeng-
ing or impossible.

2.2. Dynamic Stability of Columns.Multiple researchers have
studied the dynamic structural stability of Beck’s column
using dimensionless finite element analysis. Beck’s column
is a cantilever subjected to a tangential follower load at the
free end [40], such as those caused by rocket and jet engines.
In a review paper, Langthjem and Sugiyama [40] presented
the dimensionless boundary value problem related to Beck’s
column’s basic linear dynamic and stability. They discussed
the semianalytical solutions available in the literature for
the columns with uniform mass and stiffness distribution.
In contrast, a discretization method is required for nonuni-
form cross-sections or distributed loads [40]. Therefore,
the dimensionless finite element method has been used to
analyze Beck’s column.

Apparently, Mote Jr. [41] and Barsoum [42] were the
first to apply finite element solutions almost simultaneously
for Beck’s column. Using an adjoint system, Prasad and
Herrmann [43] solved the dimensionless boundary value
problem related to nonconservative stability problems. They
concluded that the adjoint variational method is formally
like the Galerkin method under certain conditions. Rao
et al. [44, 45] obtained the governing differential equation
for the lateral motion of a cantilevered column with a tan-
gential load and obtained the solution using finite element
formulation based on the Galerkin method. The formulation
was then further extended for the damping effects [46]. Rao
and Raju [47] used the Galerkin finite element formulation
to solve the nondimensional governing equations for con-
ducting post-buckling analysis of uniform cantilever col-
umns. Ryu et al. [48, 49] studied the dynamic stability of
Timoshenko columns with a rigid body at the tip and sub-
jected to subtangential forces. They obtained the dimension-
less finite element formulation by using extended
Hamilton’s principle. Langthjem and Sugiyama [50, 51] pre-
sented the stability optimization of undamped cantilevered
columns subjected to the simultaneous action of a conserva-
tive and a nonconservative load at their free ends. They
solved the dimensionless optimization problem using the
finite element method and sequential linear optimization.
Lee et al. [52, 53] investigated the dynamic stability of the
damped Beck’s column on an elastic foundation under con-
centrated and linearly distributed follower force using
dimensionless finite element formulation based on the
extended Hamilton’s principle. Goyal and Kapania [54]
derived a 5-node, 21-degree-of-freedom dimensionless finite
element based on the first-order shear deformation theory to
analyze laminated composites under dynamic and static
loads. The closed-form element tangent stiffness and mass
matrices were derived using a dynamic version of the
principle of virtual work. The dimensionless formulation
was validated against an analytical solution for natural fre-
quencies for isotropic and laminated beams with different
boundary conditions. The formulation is then used for
studying laminated beams’ stability under subtangential
loading and a combination of conservative and nonconserva-
tive tangential follower loads [55]. Viola and Marzani [56]
performed a dimensionless finite element analysis of the
dynamic stability of restrained cracked beams. The beams
were subjected to triangularly distributed subtangential con-
servative and nonconservative forces. Another approach some
researchers use is conducting the conventional finite element
analysis and then converting the results into the nondimen-
sional form [57–59].

Most formulations were used for solving the dimension-
less governing equations of a particular problem, except for
the Goyal-Kapania element for composite laminates. They
first presented a general-purpose one-dimensional finite ele-
ment formulation for composite laminate structures (like
beams and columns) under static and dynamic loadings.
The formulation was then applied to study the beams’
dynamic stability under nonconservative loads. The
dynamic stability of columns and beams is studied through
dimensionless analysis. Therefore, researchers have used
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dimensionless finite element analyses for problems that are
too complicated for an analytical solution.

2.3. Fracture Mechanics of Cracked Structures. Fracture
mechanics use stress intensity factors to study stresses at
the crack tip. The stress intensity factors are not dimension-
less parameters. However, using charts with dimensionless
parameters for stress estimation at the crack tip is prevalent.
Therefore, some researchers have used dimensionless finite
element analysis to analyze cracked structures.

Sanz et al. [60] used dimensionless finite element results
to analyze the applicability of the Brazilian test to determine
the tensile strength of ultra-high-performance fiber-
reinforced concrete (UHPFRC). They conducted finite ele-
ment simulations through a commercial package COFE
(Continuum Oriented Finite Element). Fang and Charalam-
bides [61] studied a cantilever beam with an embedded
sharp crack using a dimensionless finite element analysis
and reported the mode I and II stress intensity factors. Bog-
dański and Trajer [62] introduced a dimensionless finite ele-
ment model to solve a class of rolling contact fatigue crack
problems.

None of the studies presented any dimensionless finite
element formulation, only the governing dimensionless
parameters. The dimensioned parameters corresponded to
the desired values of governing dimensionless parameters.
Therefore, the results of finite element simulations were
valid for the class of problems.

2.4. Heat Transfer from Extended Surfaces. Extended sur-
faces (or fins) increase heat transfer between a prime surface
and its’ surrounding environment by providing additional
surface area for convection. Closed-form solutions are avail-
able for fin efficiency and temperature distribution for vari-
ous fin geometry and operating conditions. The complexity
of a problem depends on the geometry, material, and oper-
ating conditions. For instance, if the fin has a variable
cross-section with a coating layer, the analytical solution
can become challenging, and the finite element method
would be the suitable choice.

Pashah et al. [63–65] derived a general finite element
formulation for conduction in orthotropic material with
convection boundary conditions. They extended the formu-
lation to account for dehumidifying conditions (i.e., both
latent and sensible heat transfer from the fins) in references
[66, 67]. They used the developed finite elements to study
the fin problems for which analytical solutions are unavail-
able in the literature, i.e., variable thickness composite pin,
plane, and annular fins, with contact resistance. However,
they only used the general finite element formulation to ana-
lyze extended surfaces and did not consider any other
applications.

2.5. Some Discrete Applications. Most of the dimensionless
finite element applications fall under a group of problems.
However, some researchers have applied it to discrete appli-
cations. Endahl [68] studied the Hertz contact problem for
elastoplastic deformation using dimensionless finite element
analysis. Basak et al. [69] used the Galerkin method to solve

the dimensionless governing equations to estimate the tem-
perature distribution in a honeybee swarm. Fredriksson
and Gudmundson [70] analyzed a thin film’s biaxial strain
and pure shear through the dimensionless finite element
method. Abbas and Youssef [71] presented a transient
dimensionless finite element analysis for a thermoelastic
solid. Toit and Pretorius [72] derived a dimensionless finite
element formulation for studying steady-state heat transfer
in a spherical domain.

2.6. Conclusion of the Presented Literature Review. The liter-
ature review demonstrates that the most frequent applica-
tions relate to fluid dynamics and heat transfer problems
because dimensionless solutions are prevalent in these
fields. Similarly, the applications for structural analysis
focus on the problems studied through dimensionless
closed-form solutions. Therefore, a dimensionless finite
element solution replaces an impossible or challenging
dimensionless closed-form solution. The implementation
is mostly through user-programmed codes, with a few
through commercial software. It is because commercial
packages use the dimensioned form of the governing equa-
tions. The limitation of user-defined codes is twofold. It
requires a considerable amount of programming effort to
write a complete finite element code. Also, the code may
not be easily accessible to others, and its application
becomes limited to developers only. Commercial finite ele-
ment software can usually incorporate customized formu-
lations as user-defined elements. The benefit of using
such a feature would be the ease of implementation
because only the formulation needs to be programmed
while using the commercial software’s built-in pre- and
postprocessing capabilities. Moreover, any user can use
the code for different applications.

The following section investigates the possibilities and
challenges of implementing a dimensionless finite element
formulation in a general-purpose finite element analysis
package. Therefore, the derivation of a basic finite element
formulation in conventional (i.e., dimensioned) and dimen-
sionless form is first presented. The objective is to identify
the differences between the two formulations from an imple-
mentation point of view.

3. Conventional and Dimensionless Finite
Element Formulation for Heat Transfer

A finite element solution provides a numerical solution to an
initial boundary value problem (i.e., a differential equation
with initial and boundary conditions). The finite element
formulation consists of a set of equations called element
equations. The element equations are obtained by convert-
ing the strong form to a weak form, followed by its minimi-
zation. The strong form is the actual governing differential
equation with the specified initial and boundary conditions
(i.e., initial boundary value problem). In contrast, the weak
form is an equivalent integral form that is more convenient
for obtaining the approximate numerical solution in the
form of element equations. The strong form states the con-
ditions that must be met at every point of the studied
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domain, whereas the weak form states the requirements that
must be met only in an average or integral sense. The deriva-
tion process is identical for both conventional and dimen-
sionless formulations. The following section presents the
traditional and dimensionless finite element formulations
for steady-state heat transfer problems.

3.1. Strong Form: Differential Equation with Boundary
Conditions. The boundary value problem for steady-state
heat conduction in a three-dimensional orthotropic space
without internal heat generation is described through the
following differential equation [73]:

kx
∂2T
∂x2

+ ky
∂2T
∂y2

+ kz
∂2T
∂z2

= 0, ð1Þ

and the associated boundary conditions

T = Tb on surface S1,

kx
∂T
∂x

l̂ + ky
∂T
∂y

m̂ + kz
∂T
∂z

n̂ + q = 0 on surface S2,

kx
∂T
∂x

l̂ + ky
∂T
∂y

m̂ + kz
∂T
∂z

n̂ + h T − T∞ð Þ = 0 on surface S3,

ð2Þ

where kx, ky , and kz are the orthotropic thermal conductivi-
ties, Tb and T∞ are the surface and surrounding tempera-
tures, q is the prescribed heat flux, h is the convective heat
transfer coefficient, l̂ , m̂, and n̂ are the unit vectors, whereas
S1, S2, and S3 are the surfaces corresponding to temperature,
heat flux, and convective boundary conditions because these
conditions cannot coexist.

3.2. Weak Form: The Variational Principle. The variational
principle provides the weak integral form of the continuum
problem through a scalar quantity (called functional Π)
given by [74]

Π = U +Ωq +Ωh: ð3Þ

The three terms correspond to internal energy ðUÞ, heat
convection ðΩhÞ, and heat conduction ðΩqÞ, are given by [74]

U =
1
2
∭

V
kx

∂T
∂x

� �2
+ ky

∂T
∂y

� �2
+ kz

∂T
∂z

� �2
" #

dV ,

Ωq = −∬
S2
qTdS,

Ωh =
1
2
∬

S3
h T − T∞ð Þ2dS:

ð4Þ

Therefore, equation (3) reduces to

Π =
1
2
∭

V
kx

∂T
∂x

� �2
+ ky

∂T
∂y

� �2
+ kz

∂T
∂z

� �2
" #

Á dV −∬
S2
qTdS +

1
2
∬

S3
h T − T∞ð Þ2dS:

ð5Þ

3.3. Finite Element Formulation. The textbooks contain
detailed derivation steps for the conventional finite element
formulation of a heat transfer problem. Therefore, the result
is reported here for completeness purposes. The minimization
of the functional with respect to the temperature provides the
finite element formulation, which can be expressed in the fol-
lowing matrix form [74]:

∭
V
B½ �T D½ � B½ � dV +∬

S3
h N½ �T N½ �dS

h i
Tf g

=∬
S2
q N½ �T dS +∬

S3
hT∞ N½ �TdS:

ð6Þ

The superscript T represents the transpose of a matrix. ½D�
is the material property matrix, whereas ½N� and ½B� are shape
function and strain matrices, respectively. The order of these
matrices is governed by element shape, number of nodes,
and geometry.

3.4. Dimensionless Finite Element Formulation. The follow-
ing nondimensional parameters are defined

θ =
T
T∞

 �q =
q

hT∞
 �x =

x
Lx

 �y =
y
Ly

 �z =
z
Lz

, ð7Þ

where θ is the nondimensional temperature, �q is the
dimensionless heat flux, �x, �y, and �z are dimensionless
coordinates, Lx, Ly , and Lz are the characteristic lengths
for normalizing dimensions in x, y, and z directions,
respectively.

The dimensionless strong form becomes

1
Bix

∂2θ
∂�x2

+
Lx
Ly

1
Biy

∂2θ
∂�y2

+
Lx
Lz

1
Biz

∂2θ
∂�z2

= 0, ð8Þ

with the following boundary conditions

θ = θb on surface �S1, ð9Þ

1
Bix

∂θ
∂�x

l̂ +
1
Biy

∂θ
∂�y

m̂ +
1
Biz

∂θ
∂�z

n̂ + �q = 0 on surface �S2, ð10Þ

1
Bix

∂θ
∂�x

l̂ +
1
Biy

∂θ
∂�y

m̂ +
1
Biz

∂θ
∂�z

n̂ + θ − 1ð Þ = 0 on surface �S3,

ð11Þ
where Bix = hLx/kx, Biy = hLy/ky , and Biz = hLz/kz are the
Biot numbers, whereas �S1, �S2, and �S3 are the dimensionless
surface areas, as explained in the appendix. Substituting
the dimensionless parameters in functional (cf. equation
(5)) provides the dimensionless form of functional Π as
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follows (Detailed step by step calculation is given in the
appendix.):

�Π =
1
2
∭�V

1
Bix

∂θ
∂�x

� �2
+
Lx
Ly

1
Biy

∂θ
∂�y

� �2
+
Lx
Lz

1
Biz

∂θ
∂�z

� �2
" #

Á d �V −∬�S2
�qθd�S +

1
2
∬�S3

θ − 1ð Þ2d�S:
ð12Þ

Minimizing �Π with respect to dimensionless tempera-
ture provides

∬
V

�B
Â ÃT �D

Â Ã
�B
Â Ã

d �V +∬
S3

�N
Â ÃT �N

Â Ã
d�S

h i
θf g

=∬
S2

�N
Â ÃTqd�S +∬

S3
�N
Â ÃTd�S: ð13Þ

On comparing the dimensionless formulation with the
conventional formulation (cf. equation (7)), it is noted that
the dimensionless formulation has the same dimensionless
matrices (i.e., ½�B�,½�D� , and ½�N�) that exist in a conventional
finite element formulation given by equation (6). However,
the elements of these matrices are dimensionless groups
rather than individual variables, as described in the
following.

3.5. Validity of Dimensionless Solution for Similar System.
Similar systems must have the same set of dimensionless
parameter values. The formulation has only two dimension-
less parameters corresponding to the studied domain. q is
the dimensionless specified heat flux, whereas matrix ½�D�
contains two similarity groups, i.e., the Biot number and
the aspect ratios. The same parameters appear in the dimen-
sionless strong form (cf. (8) and (9)). Therefore, the finite
element formulation has not added any additional similarity
requirements for the domain of study, and it would be valid
for a class of problems having the same set of values for q
and ½�D�.

Next, the possibility of implementing the derived dimen-
sionless finite element formulation (c.f. equation (13)) in a
commercial package is investigated.

4. Implementation of a Dimensionless Finite
Element Formulation in a
Commercial Package

Commercial finite element packages are vital for engineering
analysis because they ease dealing with arbitrary geometry,
material, and loading conditions without going through a
tedious and challenging implementation process of mathe-
matical derivation followed by its implementation through
computer programming. A brief overview of the finite ele-
ment analysis process would help understand the possibili-
ties and implementation challenges of a dimensionless
formulation in a commercial package.

4.1. Steps of a Finite Element Analysis in a Commercial
Package. The finite element analysis has three phases: pre-
processing, solution, and postprocessing.

Preprocessing corresponds to the problem description in
a commercial package. It defines the geometry, material,
loads, and initial and boundary conditions. The defined
geometry is also divided into subdomains called “finite ele-
ments.” The process is called discretization, and the collec-
tion of elements is called a finite element mesh. An
appropriate element type from the built-in element library
is selected according to the physics of the problem (e.g., heat
transfer or stress analysis). An option for user-defined ele-
ment types must be available to implement a dimensionless
formulation in a commercial package. Therefore, imple-
menting a dimensionless form of the available dimensioned
formulation would be possible only if the package allows the
user to modify any of the strong, weak, or element equations
coded and implemented by the developer.

The second step is the solution to the defined problem.
The program code takes care of the solution process in com-
mercial software. The end user does not have any direct
interaction with this step apart from selecting solution
options. Indeed, this is the main reason for using a commer-
cial package because it automatically solves a system of ele-
ment equations corresponding to the entire mesh under
specified loads, initial, and boundary conditions.

The last step is post-processing. It is the visualization of
estimated results in contour plots, tabulated data, and graph-
ical form. This handy feature helps users analyze the results
through various practical and convenient data analysis tools.

Therefore, the difference between a conventional and
dimensionless finite element analysis would be at the pre-
processing level only. The problem description would need
to be in terms of governing dimensionless parameters rather
than dimensioned ones. The most challenging part would be
to include the dimensionless element as a user-defined ele-
ment in the existing element library of commercial software.
In the next section, the available options for user-defined
elements in the commercial finite element packages are first
reviewed, followed by a discussion of the implementation
possibility for a user-defined dimensionless finite element
formulation.

4.2. Existing User-Defined Element Formulation in
Commercial Packages. A finite element package has a built-
in element library to select elements according to the physics
of the problem to be solved. Many commercial packages
provide the option to implement user-defined formulations.
In the following, the available options for user-defined ele-
ment formulations in commercial software packages are
reviewed. It would help identify the possibilities of using
strong, weak, or element equations.

Jeffers [75] presented a heat transfer element for model-
ing the 3D thermal response in plates and shells exposed to
nonuniform heating. The formulation was obtained as ele-
ment equations and implemented in ABAQUS [76] as a
user-defined element. In ABAQUS, a user-defined element
can be used by providing the element matrices (as direct
input or in the form of a data file) [77] or through a user
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subroutine that performs all calculations for the element
matrices [78]. Therefore, ABAQUS implements element
equations rather than strong or weak forms. Brouwer et al.
[79] implemented user-defined elements in the commercial
software ANSYS [80] for 2D multiphysics modeling of
superconducting magnets. The approach was based on mod-
ifying and coupling the existing elements to incorporate cus-
tomized features in the finite element formulation. The
implementation was through coding, which defines element
properties and builds the finite element matrices. The code is
then compiled as an ANSYS executable that allows selecting
the user-defined element the same way as an ANSYS built-in
element [79].

The implementations mentioned above are for the con-
ventional (i.e., dimensioned) user-defined elements in com-
mercial software. Next, evaluating if the dimensionless
formulation has been implemented in commercial software
is interesting. Reeve et al. [81] studied natural convection
in an annular cavity. They used the finite element code
FIDAP to solve the dimensionless axisymmetric Navier-
Stokes equations [82]. However, it is unclear if they imple-
mented a strong form or element equations because imple-
mentation details were not discussed. Khanafer and Aithal
[83] obtained the dimensionless form of the boundary value
problem to study the mixed convection flow and heat trans-
fer characteristics in a lid-driven cavity with a circular body
inside. They did not provide the element equations but a
general description of getting the finite element formulation
based on the Galerkin method with the implementation in
commercial software ADINA [84]. The mesh and the con-
tour plots from the simulation results were presented in
dimensionless form. ADINA allows a user-defined element
by entering the element matrices or by coding in an ADINA
subroutine to calculate the element matrices and vectors
[85]. The two examples imply that implementing a dimen-
sionless formulation is possible in commercial software.

The implementations above (dimensioned and dimen-
sionless) are through element equations. Deriving element
equations and programming them as source code is the most
challenging part of implementing a user-defined finite ele-
ment formulation. Implementing the strong form would be
the most convenient as that would neither require deriving
element equations nor programming them. Dillon et al.
[86] presented the dimensioned and dimensionless solution
for natural convection in a tall cavity using COMSOL [87].
The motivation for their study was that most experimental
correlations for CFD and heat transfer problems are
expressed in dimensionless groups, whereas the commercial
codes are in dimensioned form. Therefore, a dimensioned
solution must be compared against a benchmark dimension-
less solution or be calibrated with a key dimensionless
parameter. The other consideration was that a single strong
form might be converted into alternate dimensionless forms,
depending on the choice of the nondimensionalization
scheme. They presented three alternate sets of governing
dimensionless parameters for the dimensionless strong
forms. They obtained the dimensionless solutions without
deriving the dimensionless finite element formulations. Get-
ting alternate dimensionless solutions without deriving and

implementing the corresponding finite element equations
is highly convenient. Indeed, COMSOL allows the user to
define the strong form and then convert it into the weak
form, followed by its numerical solution using the finite ele-
ment method [88]. They validated their approach by consid-
ering Reeve et al.’s dimensionless finite element solution [81]
as a benchmark. They also obtained the dimensioned (con-
ventional) finite element solution in COMSOL that was in
excellent agreement with the corresponding dimensionless
finite element solutions.

4.3. Implementation Options for the Heat Transfer
Dimensionless Finite Element Formulation. The preceding
section showed that most commercial software allows user-
defined formulation through element equations, except for
one software that enables implementation through strong
and weak formulation. Therefore, the presented heat trans-
fer formulation can also be implemented in one of three
ways, depending on the choice of commercial software.
The most straightforward method would be the comparison
method used by Dillon et al. [86], as follows. The presented
formulation is the dimensionless form of a standard heat
transfer formulation already available in any commercial
software. Therefore, the implementation would be straight-
forward by identifying the dimensionless counterpart of
each dimensioned parameter. The comparison of the two
types of governing parameters is presented in Table 1.

Therefore, replacing dimensioned parameters with their
counterparts in a commercial package should provide a
dimensionless solution. The cylindrical spine studied by

Table 1: Comparison of parameters for dimensioned and
dimensionless formulations.

Dimensioned parameter Dimensionless parameter Definition

x (m) �x
x
Lx

y (m) �y
y
Ly

z (m) �z
z
Lz

T (°C) θ
T
T∞

q (W/m2) �q
q

hT∞

kx (W/m∙K)
1
Bix

kx
hLx

ky (W/m∙K)
Lx
Ly

 !
1
Biy

Lx
Ly

 !
ky
hLy

kz W/m∙Kð Þ Lx
Lz

� �
1
Biz

Lx
Lz

� �
kz
hLz

h (W/m^2∙K) 1 −

T∞ (°C) 1 −

Q (W) �Q
Q

hT∞LyLZ
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Bahadur and Bar-Cohen [89] and Zubair et al. [90] is con-
sidered the benchmark solution to verify this approach.
The schematic of the fin is presented in Figure 1, having
the following governing parameters:

Geometry:R = 0:45 cm, L = 5 cm
Material: kz = 20W/m −K with multiple krvalues
Loading: fin base temperature Tb = 95°C
Boundary condition: convective fin tip with T∞ = 45°C

and multiple h values
For the finite element analysis, the presented three-

dimensional formulation (cf. equation (13)) can be easily
converted to the axisymmetric case, and the details can
be found in [63]. The characteristic lengths are taken to
be Lz = Lr = L = 5 cm. The benefit of considering both
characteristic lengths equal to the fin length is that the
aspect ratio of the dimensionless mesh would be the same
as the actual fin aspect ratio, with a unit dimensionless fin
length, whereas taking Lz = L and Lr = R would result in
the dimensionless fin geometry as a unit square [63].
The dimensioned and dimensionless finite element analy-
ses use the same element type and mesh size. The mesh
size is chosen after checking the convergence of the results
for total heat loss. The finite element results for total heat
loss are compared with the reference closed-form solutions
in Table 2.

The dimensionless heat loss �Q is reported with multi-
ple decimal places to avoid the round-off error while con-
verting it to the corresponding dimensioned value QNDFEA,
as follows:

QNDFEA = hT∞LrLzð Þ�Q: ð14Þ

It is evident that the dimensioned value QNDFEA (based
on the dimensionless heat loss �Q) agrees well with the
conventional finite element analysis result QFEA.

Indeed, the comparison method works because the
dimensionless formulation (c.f. equation (13)) has the same
number and arrangement of matrices as the dimensioned
form (c.f. equation (6)). Moreover, all the coefficients are
constant values, and material properties do not depend on
temperature. Depending on the options available for user
input data in a commercial package, a dimensionless solu-
tion based on the comparison method might be challenging
or incompatible.

5. Discussion

The preceding section shows that the comparison
method’s dimensionless solution was relatively straightfor-
ward for simple geometry and a linear steady-state prob-
lem. The numerical methods are, however, necessary for
nonlinear problems and complicated geometries. For
example, an application to Navier-Stokes (a parabolic par-
tial differential equation) would be interesting in the case
of fluid dynamics. This section discusses the probability
of obtaining a dimensionless finite element solution
through commercial packages for nonlinear problems and
complicated geometries.

5.1. Application to Nonlinear Problems. As mentioned ear-
lier, Baker [4] was the first to use the dimensionless finite
element method based on the Navier-Stokes equation for
viscous, incompressible fluid dynamics. He then extended
the dimensionless finite element formulation for the elliptic
partial differential equation description of the Navier-
Stokes system [91]. The complete details of the dimension-
less nonlinear finite element formulation were reported;
however, it was implemented through a user-written code
called COMOC.

Dillon et al. [86] studied buoyancy-driven transient
flow in a tall cavity. It is modeled through a coupled fluid
motion system governed by Navier-Stokes and the convec-
tion and conduction heat transfer. They employed the
comparison method to obtain the nonlinear transient
dimensionless solution of the problem in the commercial
finite element package COMSOL and validated it through
a known solution. It is possible to get the dimensionless
solution of a nonlinear transient problem using a commer-
cial package.

5.2. Application to Complicated Geometries. The finite ele-
ment method can deal with complicated geometry without
considerable difficulties. The challenge is usually related to
the singularity at sharp corners, and it can be addressed by
mesh refinement or slight modification of the geometry.
However, once the geometry is meshed, the solution by a
dimensionless solution would mainly depend on how a non-
dimensional system is defined. Indeed, two different dimen-
sionless schemes of the same system should not change the
results of the system. However, depending on the scale of
each dimensionless scheme, the numerical rounding may
influence the accuracy of the results [86]. It may be
addressed by modeling considerations according to the
dimensionless scheme. To demonstrate this, let us recon-
sider the nominal case of the pin fin study (cf. Figure 1).
The geometric parameters related to the dimensionless
scheme are Lz = Lr = L = 5 cm. The corresponding uniform
meshes for the dimensioned and dimensionless finite ele-
ment model are shown in Figures 2(a) and 2(b). For demon-
stration purposes, the shown meshes are not for the
converged results presented in Table 2, but only for an initial
mesh with square-shape elements. An alternate dimension-
less scheme would be Lz = L = 5 cm and Lr = R = 0:45 cm.
This leads to a square, dimensionless geometry for the fin

L

r

z

R

T
b

T
∞

Figure 1: A cylindrical pin fin.
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as shown in Figure 2(c). The meshing details and results for
heat loss are summarized in Table 3. The dimensioned
values in parentheses for heat loss are obtained using
equation (14).

It can be noted that the first dimensionless scheme is
better than the second one because it preserves the aspect
ratio of the actual geometry. Therefore, it has the identical
mesh and heat loss value for the dimensioned model. On
the other hand, the second dimensionless scheme provides
an overestimated value for heat loss despite having a slightly
higher number of elements than the other models. The
dimensionless scheme has changed the rectangular aspect
ratio to a dimensionless square domain. Therefore, a
square-shaped elements mesh for the dimensionless square
domain (cf. Figure 2(c)) would correspond to a
rectangular-shaped elements mesh for the dimensioned
model, as shown in Figure 3. The mesh is overly refined in
the radial direction (that makes the mesh of the entire fin
appear as filled black in Figure 3(a)).

On the contrary, the mesh is very coarse in the longitu-
dinal direction (as shown in the zoom views of the fin top
and bottom portions in Figure 3(b)). The temperature gradi-
ent in the longitudinal direction would be much larger than
the radial direction, and a coarse mesh in the longitudinal
direction near the fin base cannot capture the large thermal
gradients. Therefore, a fine mesh must be used near the fin
base in the longitudinal direction, and a coarse mesh can
be used near the fin tip. The nonuniform meshes that pro-
vided the converged results (cf. Table 2) are shown in
Figures 4(a) and 4(b). The meshes for the rectangular
domains have the same number of elements as before (i.e.,
Figure 2). The only difference is that the element size only
varies in the longitudinal direction (mesh size in the radial
direction is the same as before). Mapping the refined mesh
of the dimensioned model (i.e., 20 × 222 = 4,440 elements)
on the square dimensionless domain, as shown in
Figure 4(c), results in a dimensionless heat loss �Q =
0:40786 (i.e., QNDFEA = 20:648W) which is in excellent

Table 2: Comparison of dimensionless and conventional FEA results with the ones available in the literature.

Case QRaj Wð Þ QZub Wð Þ Dimensionless FEA
QFEA Wð Þ�Q QNDFEA Wð Þ

h = 100W/m2K, kr = 0:5kz 2.94 2.94 0.26132 2.94 2.94

h = 500W/m2K, kr = kz 6.59 6.55 0.11781 6.627 6.627

h = 1000W/m2K, kr = 2kz 9.35 9.36 0.08331 9.372 9.372

h = 5000W/m2K, kr = 4kz 20.66 20.64 0.036708 20.648 20.648

(a) (b) (c)

Figure 2: Uniform meshes for the pin fin of the nominal case of study. (a) Dimensioned model. (b) Dimensionless model with Lz = Lr = L.
(c) Dimensionless model with Lz = L and Lr = R:
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agreement with the dimensioned results reported in Table 2.
It demonstrates that modeling considerations must be per
the dimensionless scheme to attain the desired level of accu-
racy of the result values.

5.3. Findings of the Present Study. The present study finds
that many researchers have used finite element analysis to
solve dimensionless initial-boundary-value problems. Most
researchers have focused on solving their specific problems

Table 3: Comparison of finite element results for dimensioned with two different dimensionless models for the nominal case of pin fin study
(h = 5000W/m2K, kr = 4kz).

Case Number of elements in r and z directions
Geometric size

Heat loss
Radial Longitudinal

Dimensioned 20 × 222 = 4,440 0.45 cm 5 cm 20.665W

Dimensionless 1 20 × 222 = 4,440 0.09 1 0.036738 (20.665W)

Dimensionless 2 67 × 67 = 4,489 1 1 0.41177 (20.846W)

(a) (b)

Figure 3: Mapping of square domain dimensionless uniform mesh on the dimensioned model. (a) Mesh for the entire fin. (b) Zoom view of
fin top and bottom portions to show the mesh details.

(a) (b) (c)

Figure 4: Nonuniformmeshes for the pin fin of the nominal case of study. (a) Dimensioned and dimensionless model with Lz = Lr = L. (b) Zoom
view of rectangular domain fin top and bottom portions to show the mesh variation details. (c) Dimensionless model with Lz = L and Lr = R.
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through user-developed codes. The reason might be that the
commercial packages were not flexible for implementing
customized formulations. However, the latest commercial
packages provide users with more flexibility to implement
customized formulations with minimal or no coding efforts.
Therefore, the present study makes the following
contributions:

(1) It provides a general overview of the state of the art
from the first applications to the recent ones

(2) It demonstrates the implementation of a dimension-
less formulation without writing a code

(3) It summarizes different ways of a dimensionless anal-
ysis using a commercial package. It would serve as a
reference and guide for the researchers and engineers

6. Concluding Remarks

The implementation of dimensionless finite element analysis
in commercial packages is mainly through user-written codes
at the element equation level. In contrast, if commercial soft-
ware has the option to describe the strong and weak forms,
then the coding efforts would be relatively insignificant. Com-
mercial packages have built-in formulations in dimensioned
forms. The dimensionless solution of a built-in formulation
can be obtained by a “comparison method” that does not
require any coding efforts. The method involves getting the
dimensionless counterpart to each dimensioned parameter.
A finite element analysis based on the identified dimensionless
parameters provides a dimensionless solution. Different
dimensionless schemes may require additional modeling con-
siderations to attain the same accuracy level of the results.

Therefore, it is possible to use the commercial finite ele-
ment packages for the dimensionless solution in the follow-
ing three ways:

(1) Implementation as user-defined dimensionless ele-
ment equations

(2) Implementing dimensionless strong (or weak) form

(3) Comparison of the dimensionless form with the
built-in dimensioned formulation

Appendix

Derivation Steps for Dimensionless Finite
Element Formulation

Substitution of dimensionless variables in the functional
gives

Π

hT2
∞
=
1
2
∭

V

1
Lx

1
Bix

∂θ
∂�x

� �2
+

1
Ly

1
Biy

∂θ
∂�y

� �2
+

1
Lz

1
Biz

∂θ
∂�z

� �2
" #

Á dV −∬
S2
�qθdS +

1
2
∬

S3
θ − 1ð Þ2dS:

ðA:1Þ

Which can be converted into dimensionless form by
dividing by LyLz as follows:

�Π =
1
2
∭�V

1
Bix

∂θ
∂�x

� �2
+
Lx
Ly

1
Biy

∂θ
∂�y

� �2
+
Lx
Lz

1
Biz

∂θ
∂�z

� �2
" #

Á d �V −∬�S2
�qθd�S +

1
2
∬�S3

θ − 1ð Þ2d�S,
ðA:2Þ

where �Π =Π/hT2
∞LyLz is the dimensionless functional

and �V =V/ðLxLyLzÞ is the dimensionless volume whereas
�S2 = S2/ðLyLzÞ, and �S3 = S3/ðLyLzÞ are the dimensionless
surface areas. Note that the functional is normalized with
respect to LyLz , whereas the two alternate options are Lx
Lz and LxLy which would provide similar expressions as

equation (A.2), with different coefficients for ð∂θ/∂�xÞ2,
ð∂θ/∂�yÞ2 and ð∂θ/∂�zÞ2 terms, also the definition of dimen-
sionless surface areas would change accordingly.

The matrix form of the dimensionless functional is

�Π =
1
2
∭�V

�gf gT �D
Â Ã

�gf gd �V −∬�S2
θf gT �N
Â ÃT

�qd�S

+
1
2
∬�S3

θf gT �N
Â ÃT − 1

� �2
d�S:

ðA:3Þ

The dimensionless material property matrix ½�D�, shape
function matrix ½�N� and temperature gradient matrix f�gg,
are given by

�D
Â Ã

=

1
Bix

0 0

0
Lx
Ly

 !
1
Biy

0

0 0
Lx
Lz

� � 1
Biz

2
66666666664

3
77777777775
,

�gf g = �B
Â Ã

θf g, and �B
Â Ã

=
∂ �N
Â Ã
∂�x

∂ �N
Â Ã
∂�y

∂ �N
Â Ã
∂�z

� �T
:

ðA:4Þ

Putting f�gg = ½�B�fθg, gives

�Π = θf gT 1
2
∭�V

�B
Â ÃT �D

Â Ã
�B
Â Ã

d �V
� �

θf g − θf gT∬�S2
�N
Â ÃT

�qd�S

+
1
2
∬�S3

θf gT �N
Â ÃT �N

Â Ã
θf g − 2 θf gT �N

Â ÃT + 1
h i

dS

ðA:5Þ

Minimizing the functional �Π with respect to dimension-
less temperature fθg gives

∭�V
�B
Â ÃT �D

Â Ã
�B
Â Ã

d �V +∬�S3
�N
Â ÃT �N

Â Ã
dS

h i
θf g

=∬�S2
�N
Â ÃT

�qd�S +∬�S3
�N
Â ÃTd�S: ðA:6Þ
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The equation can be compared to the following stan-
dard finite element form to identify the stiffness and load
matrices:

k½ � θf g = ff g: ðA:7Þ

Therefore, the element stiffness matrix is

�k
Â Ã

= �kq
Â Ã

+ �kh
Â Ã

, ðA:8Þ

with

�kq
Â Ã

=∭�V
�B
Â ÃT �D

Â Ã
�B
Â Ã

d �V ,

�kh
Â Ã

=∬�S3
�N
Â ÃT �N

Â Ã
dS:

ðA:9Þ

Similarly, the load vector is

�f
Â Ã

= �fq
Â Ã

+ �fh
Â Ã

, ðA:10Þ

with

�fq
Â Ã

=∬�S2
�N
Â ÃT

�qd�S,

�fh
Â Ã

=∬�S3
�N
Â ÃTd�S: ðA:11Þ

The plane and axisymmetric cases can be directly
deduced from the above generalized forms by adapting
the ½�B�, ½�D�,½�N� and nondimensional element volume
according to the two-dimensional problem type.
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