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This mathematical model studies the dynamics of tumor growth, one of the most complex dynamics problems that relates several
interrelated processes over multiple ranges of spatial and temporal scales. In order to construct a tumor growth model, an
angiogenesis model is used with focus on controlling the tumor volume, preventing new establishment, dissemination, and
growth. The lattice Boltzmann method (LBM) is effectively applied to Navier-Stokes’ equation for obtaining the numerical
simulation of blood flow through vasculature. It is observed that the flow features are extremely sensitive to stenosis severity,
even at small strains and stresses, and that a severe effect on flow patterns and wall shear stresses is noticed in the tumor blood
vessels. It is noted that based on the nonlinear deformation of the blood vessel’s wall, the flow rate conditions became unstable
or distorted and affect the complex blood vessel’s geometry and it changes the blood flow pattern. When the blood flows inside
the stenotic artery, depending on the presence of moderate or severe stenosis, it can lead to insufficient blood supply to the
tissues in the downstream. Consequently, the highly disturbed flow occurs in the downstream of the stenosed artery, or even
plaque ruptures happen when the flow pattern becomes very irregular and complex as it transits to turbulent which cannot be
described without assumptions on the geometry. The results predicted by LBM-based code surpassed the expectations, and
thus, the numerical results are found to be in great accord with the relevant established results of others.

1. Introduction

During the past decades, several experimental techniques
have been developed to contribute to the knowledge of
tumor growth dynamics and immune system interactions
[1, 2]. Theoretical, experimental, and clinical studies on
tumor growth progressed significantly to advance the under-
standing on the development mechanism of cancer, the
evolving process of tumor angiogenesis, and the migration
of new blood vessels and capillaries to the tumor blood ves-
sels. On the other hand, the mechanisms that have a func-
tion in tumor-induced angiogenesis’ interactions with the
avascular growth system remain unknown.

Tumor blood vessels are structurally abnormal, physi-
cally aberrant, and functionally inefficient; as a result, the
tumor vascular networks are not fully perfused, and chemo-
therapeutics are not delivered uniformly to tumor cells.
Angiogenesis is the process by which new blood vessels grow
and is a critical component of wound healing, providing
nutrients to newly formed tissue. This process also involves
the migration, growth, and differentiation of endothelial
cells, which are found inside the blood vessels’ wall. It is also
a mechanism to sustain tumor progression by maintaining
oxygen supply to the tumor as well as to its growth and
development. Tumor-induced angiogenesis also involves
the process of forming new blood vessels from the existing
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capillaries by endothelial cell sprouting, proliferation, and
fusion; thus, it is a critical component of solid tumor
growth [3].

In recent years, there have been several authors who
have investigated the repercussions of blood flow via a
vascular network on tumor growth [4–7] and employing
cellular automaton (CA) to tumor growth models which
are combined with the network models of the vasculature.
These authors had given due consideration to the vascular
network inhomogeneities, stress-induced blood vessel col-
lapse, and therapeutic implications to them. Accordingly,
some researchers attempted to consider the remodeling of
tumor-induced angiogenesis which dates back to the work
of Balding and McElwain [8] on this subject. Mantzaris
et al. [9] and Chaplain et al. [10] made a seminal contribu-
tion to this research area. Some relevant subject areas such
as avascular growth and angiogenesis have been quite
thoroughly discussed through the mathematical modeling
approach, while other topics like vascular tumor growth
have received considerably less interest and attention. For
instance, the scientific investigation of Orme and Chaplain
[11] focused on vascular tumor growth and invasion. Zheng
et al. [12] have recently enhanced and combined a level-set
method for solid tumor growth with a hybrid continuous
discrete angiogenesis model which was initially studied by
Anderson and Chaplain [13].

This research is aimed at providing a new contribution
in this direction through a mathematical model that com-
bines tumor dynamics and interactions between a vascular
growth and angiogenesis. Anderson et al. [14] along with
many authors Gerlee and Anderson [15–17], Cristi et al.
[18], and Schmitz et al. [19] established mathematical
models to describe the characteristics of cancer dynamics,
by integrating the gathered information in their model.

A wide range of mathematical models (discrete, continu-
ous, and hybrid) have been used to model the elements of
cancer progression (Duchting and Dehl [20], Duchting and
Vogelsaenger [21, 22], Duchting et al. [23], and Kansal
et al. [24]) as well as to make better understanding on cancer
dynamics, tumor growth, and metastasis. Discrete models
track and update individual cells according to a set of biolog-
ical rules [25, 26]. Discrete models shall be classified as
lattice-based models or lattice-free models. Lattice-based
models might be further classified one of the types, such as
lattice gas cellular automata model (LGCA), cellular autom-
ata (CA), and cellular Potts models (CPMs). In this connec-
tion, stochastic models and finite-difference approximation
methods are acclimated into the lattice-free approaches.
Even while various cellular automata approaches have
revealed anomalies in the invading front of the cells
(Hatzikirou and Deutsch [27]; Jiang et al. [28]), the invasion
process has not been well explored.

Continuum models investigate the tumor tissue as a con-
tinuous medium and use differential equations to model it
(Frieboes et al. [29] and Lowengrub et al. [30]). Ordinary
differential equations (ODEs) and partial differential equa-
tions (PDEs) were employed in continuum modeling. PDEs
frequently use too large scale and are ineffective when the
challenge concentrates on a tiny number of individual can-

cer cells. Single cell-matrix interactions cause the tumor front
to enter into healthy tissue which is a critical issue in the inva-
sion. Logistic power and the Gompertz law are the basics
involved in the formation of ODEs in continuum modeling.
From this perspective, PDEs such as reaction-diffusion and
partial integrodifferential equations are exerted.

Hybrid models are accomplished by two models [31, 32]
that combine the benefits of discrete and continuous modeling
and use the appropriate methodologies to represent the chemi-
cal interactions and tissue landscapes in a single model. In their
investigation, hybrid models are constructed by combining dis-
crete and continuum approaches for modeling and simulating
the cell dynamics. Multitudinous tumor microenvironmental
variables such as matrix-degrading enzymes, extracellular
matrix (ECM), oxygen, growth factors, and inhibitors are taken
into account in the formation of mathematical models.

Specific models of cancer cell invasion have been used to
explain the diverse aspects of tumor growth dynamics which
include discrete models (considering cells as individual enti-
ties) [19, 33], continuum models (using reaction-diffusion
equations) [34–38], and hybrid models [27, 39, 40]. More-
over, these models ignore all crucial geometrical aspects,
which are peculiar to continuous models, but they play an
important role in real-world system evolution. In fact, in
reality, these models were related to significant phenomena
like angiogenesis, angiostatin effects, and metastatic detach-
ment, which cannot be clearly understood without making
use of geometric assumptions.

The mathematical representation of the tumor’s progres-
sion in the presence of angiogenesis and the mathematical
structure of the model are both quite difficult. The effects
of blood flow through a vasculature in any arterial geometry
with tumor growth and angiogenesis can be better under-
stood using computer simulation approaches, and thus,
these simulation techniques have been used in a variety of
biomechanical applications ranging from blood vessels and
tissue structural features to fluid dynamic phenomena like
blood flow. Applied scientists have developed a highly
abstract cellular automaton model of early cancer growth
and a lattice model of blood-oxygen flow to study the effects
of knocking out pairs of “cancer hallmarks.” Many diseases
are associated with the abnormal rheology of blood. More
generally, the function of blood vessels and their dynamics
were discussed in relation to cancer (tumor angiogenesis)
and both vascular disorders that result in blood vessel anom-
alies like aneurysms. These abnormalities are usually pro-
duced by unhealthy red blood cells with a changed form
that has trouble passing through microvessels. Unfortu-
nately, due to challenges in distinguishing the fundamental
drivers of flow in vivo or in vitro, experimental methods
for these problems are limited.

These issues are overcome by computer models; how-
ever, most focus on reproducing the macroscopic, continu-
ous feature of blood flow by making numerous simplifying
assumptions. Unfortunately, these models are unable to
account the link between microscopic cellular flow dynamics
and macroscopic tumor tissue. The aim of the present
research is to apply a suitable lattice approach that can pre-
dict various impacts of blood flow in complex microvascular
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geometry, by explicitly accounting the shape of the metasta-
tic process (tumor angiogenesis), and cancer cellular autom-
ata (CA) model. The application of the LBM to blood flow
has piqued the interest of scholars in recent years [41–52].
For instance, the thrombus formation in blood flow is pre-
dicted by [50, 51, 53, 54] the blood flow simulation in the
microvascular bifurcations, and according to [55–58], blood
cell shape and interactions between the inflow and outflow
are also taken into account. Lattice Boltzmann method
(LBM) is applied to study the blood flow, and the main goal
of this study is to connect the two scales: the microscopic
scale of a cell and the mesoscopic scale of blood flow sur-
rounding a tumor in order to develop a biologically relevant
cancer growth model that could be employed in cancer treat-
ment research.

Due to the recent findings along with the advantages of
the applied methods, many difficult issues have been suc-
cessfully addressed using the LBM including for compress-
ible fluid flow [59]; multiphase and multicomponent fluids
[60], with particulate suspensions [61] using reaction-
diffusion system [62]; and flow through porous media [63,
64]. In other aspects, this method shows a variety of the flow
patterns and their flow instabilities which can be applied to
the number of equations of mathematical physics, including
wave motion equations [65], Burgers’ equations [66], KdV
equation [67], and nonlinear Schrodinger equations [68].
Alemani et al. [69] coupled a 2-state cellular automata model
of cancer tumor with a lattice fluid model of nutrition diffu-
sion [60]. This simulation demonstrated that a tumor may
grow from a single healthy cell in an acceptable amount of
time up to a biologically consistent size, using cellular
automata such as cancer cells and the lattice methods for
biofluid dynamics problems. This flexible, powerful, and
customizable approach can be used to predict and model a
framework for the blood flow properties in multitudinous
vessel geometry and with a wide range of blood composition.
The LBM has a significant benefit as it can mimic particulate
flow dynamics as well as in a variety of geometries.

The aim of this study is to formulate a computational
model to study the tumor-induced angiogenesis with the
support of mathematical framework and numerical simula-
tion by lattice Boltzmann method (LBM). The fundamental
biological processes associated with the angiogenesis are dis-
cussed, and these are incorporated into the proposed math-
ematical model. LBM has been proposed as a potential
computational method for obtaining the numerical solution
of the mathematical model that represents tumor angiogen-
esis which is applied to study the various effects of blood
flow in microvascular networks with the complexities. To
validate the formulated mathematical model and computa-
tional methodology, the obtained LBM solution is compared
with the results of Pontrelli et al. [70]. To authenticate the
results of this study, we compare the obtained data with
the data of Sun and Munn [48], Liu [71], and Harrison [72].

2. Governing Equations

2.1. Navier-Stokes’ Equation. Continuity equation and
Navier-Stokes’ equations are the governing equations for

the calculation of the velocity field and pressure distribution
in the rheology of blood under normal/abnormal state. The
Navier-Stokes equations are implemented for the computa-
tional blood flow determination in models such as stenosis
and hydrostatic stress by restricting the radii of the vessels.

Continuity equation:

∂ρ
∂t

+∇: ρ:uð Þ = 0: ð1Þ

Momentum equations (Navier-Stokes’ equations):

ρ
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂z

� �
= −

∂p
∂x

+ μ
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

" #
+ ρ · gx,

ð2Þ

ρ
∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂z

� �
= −

∂p
∂y

+ μ
∂2v
∂x2

+ ∂2v
∂y2

+ ∂2v
∂z2

" #
+ ρ · gy,

ð3Þ

ρ
∂w
∂t

+ u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂z

� �
= −

∂p
∂z

+ μ
∂2w
∂x2

+ ∂2w
∂y2

+ ∂2w
∂z2

" #
+ ρ · gz ,

ð4Þ

where gx, gy, and gz denotes the gravity along x, y, and z
directions, respectively.

2.2. Lattice Boltzmann Equation. The lattice Boltzmann
equation including a force term on a nine-velocity square
lattice is

f α X + eαΔt, t + Δtð Þ − f α X, tð Þ = −
1
τ

f α − f eqαð Þ + Δt
6e2 eαiFi:

ð5Þ

f αðx, tÞis the particle distribution function, wherexis the
space vector andtis the time;eαis the particle velocity vector,
where α = 1,⋯, 9; e = Δx/Δt, where Δx is the lattice size and
Δtis the time step; andτis the single relaxation time factor.
The stability of the equation requires that τ > ð1/2Þ. Based
on the conditions in test cases (please refer to the part of
Numerical Results and Discussion for details), the single
relaxation time parameter is approximately τ = 1:5, and
f ðeqÞα ðx, tÞ is the equilibrium distribution function at time t,
x, which is the Maxwell–Boltzmann distribution function.
Fi is the ith direction force component and is defined as

Fi = Fpi + Fbi + Fwi + Fci, ð6Þ

Fpi = −gh
∂zb
∂xi

, ð7Þ

Fbi = Cbui
ffiffiffiffiffiffiffiffi
uiui

p , ð8Þ
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Fwi =
ρa
ρw

Cwuwi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uwiuwi

p , ð9Þ

Fci =
f chuy, i = x,
−f chux, i = y,

(
ð10Þ

Fi = −gh
∂zb
∂xi

+ Cbui
ffiffiffiffiffiffiffiffi
uiui

p + ρa
ρw

Cwuwi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
uwiuwi

p + Fci,

ð11Þ

consisting of an appropriate hydrostatic pressure approxi-
mation, where Fbi denotes the stress of the shear wind, Fpi

is the stress of the shear bed, and Fwi is the Coriolis effect
forcing term, Fci.f c = 2ω sin φ is the Coriolis parameter, ω
is the rotation rate of the earth, φ is the latitude, zb is the
bed elevation,Cb = g/C2

z is the bed friction coefficient, and
Cz = h1/6/nb is both the Chezy and the Manning coefficients
at the bed, nb,½L−1/3T�. ρω gives the density, ρa gives the air
density, Cw = ð0:63 + 0:66 ffiffiffiffiffiffiffiffiffiffiffiffiffi

uwiuwi
p Þ × 10−3is the expression

for the coefficient of the wind, and uwi is the ith direction
velocity of the wind.

2.3. Lattice Arrangements (D2Q9). The model is used mostly
for solving the fluid flow problem. On the 9-speed square
lattice shown in Figure 1, each particle moves one lattice unit
at its velocity only along the eight links indicated with 1-8, in
which 0 indicates the rest particle with zero speed. The par-
ticles velocity vector is defined by

eα =

0, 0ð Þ, α = 0,

e cos α − 1ð Þπ
4 , sin α − 1ð Þπ

4

� �
, α = 1, 3, 5, 7,

ffiffiffi
2

p
e cos α − 1ð Þπ

4 , sin α − 1ð Þπ
4

� �
, α = 2, 4, 6, 8:

8>>>>>><
>>>>>>:

ð12Þ

In this, the central particle speed is zero, while the
velocity vectors are very high. The respective speed on
elements f0, f1,…f6, f7, and f8 is e0ð0, 0Þ, e1ð1, 0Þ, e3ð0, 1Þ,
e5ð−1, 0Þ, e7ð0,−1Þ, e2ð1, 1Þ, e4ð−1, 1Þ, e6ð−1,−1Þ, and e8ð1,−1Þ.

The weighting factors for the corresponding distribution
elements are 4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, and 1/36.

2.4. Equilibrium Distribution Function for D2Q9. The aim of
using the equilibrium function in the lattice Boltzmann
equation is to recover the Navier-Stokes equation. A power-
ful and alternative way is to assume that an equilibrium
function can be expressed as a power series in macroscopic
velocity as

f eqi = Aα + Bαeαiui + Cαeαieαjuiuj +Dαuiuj: ð13Þ

From the symmetry of the lattice, resulting into the
equation as

f eqα =

ρ −
5gρ2
6e2 −

2ρuiui
3e2 , α = 0,

gρ2

6e2 + ρeαiui
3e2 +

ρeαieαjuiuj

2e4 −
ρuiui
6e2 , α = 1, 3, 5, 7,

gρ2

24e2 + ρeαiui
12e2 +

ρeαieαjuiuj

8e4 −
ρuiui
24e2 , α = 2, 4, 6, 8:

8>>>>>>><
>>>>>>>:

ð14Þ

2.5. Definition of Macroscopic Quantity. The macroscopic
fluid density ρðX, tÞ and velocity uðX, tÞ are computed from
the particle distributions.

The physical variable fluid density ρ is

ρ X, tð Þ =〠
α

f α X, tð Þ =〠
α

f eqα X, tð Þ,

ρ X, tð Þui X, tð Þ =〠
α

eαi f α X, tð Þ

=〠
α

eαi f
eq
α X, tð Þ,

ρ X, tð Þui X, tð Þuj X, tð Þ =〠
α

eαieαj f α X, tð Þ

=〠
α

eαieαj f
eq
α X, tð Þ

= 1
2gρ

2δij + ρuiuj:

ð15Þ

The macroscopic quantity velocity uðX, tÞ is defined in
terms of the distribution function as

ui X, tð Þ = 1
ρ X, tð Þ〠α

eαi f α X, tð Þ: ð16Þ

2.6. Recovery. Performing an expansion using Chapman-
Enskog on the lattice Boltzmann equation recovers the
macroscopic equations. Suppose that Δt (the time t new
positions of molecules) is small and is equal to ε, ðΔt = εÞ,
then Equation (5) is expressed as

f α X + eαε, t + εð Þ − f α X, tð Þ = −
1
τ

f α − f eqαð Þ + ε

6e2 eαjF j,

ð17Þ

with a Taylor expansion to the first term on the left side of
Equation (17) taking time and space about point ðX, tÞ in
consideration resulting as

f α X + eαε, t + εð Þ − f α X, tð Þ = ε
∂
∂t

+ eαj
∂
∂Xj

 !
f α

+ 1
2 ε

2 ∂
∂t

+ eαj
∂
∂xj

 !2

f α +O ε2
À Á

= 1
τ

f α − f eqαð Þ

+ ε

6e2 eαjF j,

ð18Þ
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where f α around f ð0Þα can also be expanded as

f α = f 0ð Þ
α + εf 1ð Þ

α + ε2 f 2ð Þ
α +O ε2

À Á
, ð19Þ

where f ð0Þα = f eqα :
Expanding f α around f ð0Þα in equation f α = f ð0Þα + εf ð1Þα

+Οðε2Þ, the collision operator can be rewritten as

−
1
τ

f α − f eqαð Þ½ � = −
1
τ

f 0ð Þ
α + εf 1ð Þ

α + ε2 f 2ð Þ
α +O ε2

À Á
− f eqα

� �h i
= −

1
τ

εf 1ð Þ
α + ε2 f 2ð Þ

α +⋯
h i

:

ð20Þ

Equation (18) to order ε is

ε
∂
∂t

+ eαj
∂
∂Xj

 !
f α = −

1
τ
εf 1ð Þ

α + ε

6e2 eαjF j ⟶
∂
∂t

+ eαj
∂
∂Xj

 !
f α

= −
1
τ
f 1ð Þ
α + 1

6e2 eαjF j

ð21Þ

and to order ε2 is

ε2
∂
∂t

+ eαj
∂
∂Xj

 !
f 1ð Þ
α + 1

2 ε
2 ∂

∂t
+ eαj

∂
∂Xj

 !2

f 0ð Þ
α

= −
1
τ
ε2 f 2ð Þ

α ⟶
∂
∂t

+ eαj
∂
∂Xj

 !
f 1ð Þ
α + 1

2
∂
∂t

+ eαj
∂
∂Xj

 !2

f 0ð Þ
α

= −
1
τ
f 2ð Þ
α ε2

∂
∂t

+ eαj
∂
∂Xj

 !
f 1ð Þ
α + 1

2 ε
2 ∂

∂t
+ eαj

∂
∂Xj

 !2

f 0ð Þ
α

= −
1
τ
ε2 f 2ð Þ

α ⟶
∂
∂t

+ eαj
∂
∂Xj

 !
f 1ð Þ
α + 1

2
∂
∂t

+ eαj
∂
∂Xj

 !2

f 0ð Þ
α

= −
1
τ
f 2ð Þ
α :

ð22Þ

Substituting Equation (21) of order ε into Equation (22)
of order ε2 and after rearrangement leads to

1 − 1
2τ

� �
∂
∂t

+ eαj
∂
∂xj

 !
f 1ð Þ
α = −

1
τ
f 2ð Þ
α

−
1
2

∂
∂t

+ eαj
∂
∂xj

 !
1
6e2 eαkFk

� �
:

ð23Þ

Taking ∑α½ð20Þ + ε × ð22Þ�, about α provides

〠
α

∂
∂t

+ eαj
∂
∂Xj

 !
f α = −

1
τ
f 1ð Þ
α + 1

6e2 eαjF j + ε

"

× 1 − 1
2τ

� �
∂
∂t

+ eαj
∂
∂xj

 !
f 1ð Þ
α

 
= −

1
τ
f 2ð Þ
α

−
1
2

∂
∂t

+ eαj
∂
∂xj

 !
1
6e2 eαkFk

� �#
ð24Þ

and about α gives

∂
∂t

〠
α

f 0ð Þ
α

 !
+ ∂
∂xj

〠
α

f 1ð Þ
α

 !
= −ε

1
12e2

∂
∂xj

〠
α
eαjeαkFk

� �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

0

:

ð25Þ

By applying accuracy of the first order to the force term,
local equilibrium function, and evaluating for the remaining
terms in Equation (25), we obtain Equation (1) which is the
continuity equation (1) for the Navier-Stokes equation.

∂ ρð Þ
∂t

+
∂ ρuj

À Á
∂xj

= 0,

∂tρ+∇: ρuð Þ = 0,
ð26Þ

which is the momentum equation (2) for the Navier-Stokes
equation.

Figure 1: Tumor vessel.
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From ∑αeαi½ð20Þ + ε × ð22Þ�, about α provides

〠
α

eαi
∂
∂t

+ eαj
∂
∂Xj

 !
f α = −

1
τ
f 1ð Þ
α + 1

6e2 eαjF j

 !"

+ ε 1 − 1
2τ

� �
∂
∂t

+ eαj
∂
∂xj

 !
f 1ð Þ
α = −

1
τ
f 2ð Þ
α

 

−
1
2

∂
∂t

+ eαj
∂
∂xj

 !
1
6e2 eαkFk

� �!#
〠
α

eαi

Á ∂
∂t + eαj

∂
∂Xj

 !
f α = −

1
τ
f 1ð Þ
α + 1

6e2 eαjF j

 !"

+ ε 1 − 1
2τ

� �
∂
∂t + eαj

∂
∂xj

 !
f 1ð Þ
α = −

1
τ
f 2ð Þ
α

 

−
1
2

∂
∂t

+ eαj
∂
∂xj

 !
1
6e2 eαkFk

� �!#
:

ð27Þ

About α, we have

∂
∂t

〠
α

eαi f
0ð Þ
α

 !
+ ∂
∂xj

〠
α

eαieαj f
0ð Þ
α

 !
+ ε 1 − 1

2τ

� �
∂
∂xj

Á 〠
α

eαieαj f
1ð Þ
α

 !
= Fjδij − ε

1
2〠α

eαi
∂
∂t

+ eαj
∂
∂xj

 !

Á 1
6e2 eαjF j

� �
:
∂
∂t 〠

α

eαif 0ð Þ
α

 !
+ ∂
∂xj

〠
α

eαieαj f 0ð Þ
α

 !

+ ε 1 − 1
2τ

� �
∂
∂xj

〠
α

eαieαj f
1ð Þ
α

 !
= Fjδij

− ε
1
2〠α

eαi
∂
∂t

+ eαj
∂
∂xj

 !
1
6e2 eαjF j

� �
:

ð28Þ

Again, by using the accuracy of the first order to the
force term in Equation ((28)) with reference to LB equation
and equilibrium function (Equation ((14))), the remaining
terms can be broken down and Equation ((28)) becomes
Equation ((2)) which is the momentum equations
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The above equation becomes
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ε
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By considering Equation (11) and using LB equation and
equilibrium function (Equation (14), results) after some
manipulation and algebraic operations, we obtain

ʌij ≈ −γ
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+
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À Á
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" #
: ð32Þ

Substituting Equation (32) into Equation (30) gives
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with the kinematic viscosity γ defined as γ = ðc2Δt/6Þð2τ − 1Þ.
2.7. Flow Modeling (LBM). To show from the dynamics of
the lattice Boltzmann method that gives a behavior consis-
tent with the Navier-Stokes equations,

f α X + eαε, t + εð Þ − f α X, tð Þ = −
1
τ

f α − f eqαð Þ + ε

6e2 eαjF j,
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�
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Recovery of the continuity equation is as follows:

∂ρ
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Recovery of the momentum equation is as follows:
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Vessel constriction
Tumor

Vessel

Figure 4: Tumor-vessel interaction.

Tumour
tissue

Increase in vascular permeability:
protein leakage Active vaso-

constriction Reduced
blood flow

Red cell
stacking

High blood
viscosity

High interstitial
fluid pressure

Water balance
disrupted: oedema

Endothelial cells
rounding up & blebbing:

increased vascular resistance

Blood

Figure 2: The mechanism of process of angiogenesis in tumor blood vessels.

CC
ECM

Figure 3: Normal vessel—tumor vessel.

7Computational and Mathematical Methods



Inserting all the unknown terms into

∂tρu
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3. Numerical Results and Discussion

3.1. Discussion. Modeling of tumor blood vessels (modeling
of solid tumor invasion (growth)) is typically a challenging
task. This work focuses on the mathematical framework
and computational solution methodology through numeri-
cal simulation for the blood flow (perfusion) patterns inside

vascular networks with the solid tumors (in tumor vessels)
plug away at the effects of vessel leakiness and compression.
During the process of angiogenesis, cancer tumors are sup-
plied with fresh oxygen and nutrients as well as blood flow
in the networks of vasculature to find the routes of metasta-
sizing cancer cells. With regard to cancer, a process of angio-
genesis allows tumors to grow in an irregular form, its
function being characterized by abnormal endothelial cell
stratification and altered basement membranes, creating large
gaps between endothelial cells of the vasculature and blood
vessel tortuosity, andmetastasize or host tissue invasion phase.
While the process of angiogenesis is induced in tumors, it
commonly leads to poorly set up of vasculature with several
issues, namely, particularly leakiness (the leakage of blood
plasma carries off to an increase in the interstitial pressure.
This leads to the artery burst, whereas in a narrow artery, there
is a risk of the blood being blocked in greater amount leading
to erratic blood flow which has the consequence of poor blood
circulation in the downstream. Thus, it results in the vessel
occlusion and acute hypoxia and excessive and convoluted
branching of blood vessels that leads to the persisting release
of VEGF. Abnormalities in various components of the tumor
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Figure 5: An arterial stenosis’ flow geometry with 1/3D:
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vessel wall have been caused by various changes in the struc-
ture of the vessel’s diameter in the hierarchy of arterioles,
capillaries, and venules. This provided the hyperpermeability
of the tumor vessels and generates a couple of topological
changes such as the forming hypovascular and hypervascular
regions inside the tumors as well as in the adjoining areas [73].

In the presence of the avascular growth phase, the vascu-
lature begins to grow rapidly as well as often chaotically, and
its poor function leads to tumor vasculature lacking in the
conventional hierarchy of blood vessels. Thus, the large sub-
sets of tumor cells become deprived of nutrients and oxygen.
The deformability of the vessel geometry, tumor vasculature,
and artery wall such as rupture (stenosed) with any blood
composition under stresses denotes the wall shear stresses
inside the tumor. These demonstrate the lowdown of oxygen
to a tumor that could possibly become a more aggressive
tumor which is vulnerable for more high risk and damage
the oxygenated one [74, 75]. The blood flow through the
network of solid tumors leads to arterial stenosis and the
hydrostatic stress (generated by the growing tumor). Thus,
the stenosis in the artery is generated by the growth and

movement of solid tumors and mediated by hydrostatic
stress, and as the consequence, the hydrostatic stress affects
vascular remodeling by restricting the radii of the vessels.
Thus, mathematically, arterial stenosis is vascular compres-
sion, and this phenomenon reduces the effective cross-
sectional area of tumor blood vessels by the constriction
and collapse of vessels which can result in insufficient blood
supply to the tissues downstream region of stenosis.

The vessel geometry and the dynamic behavior of blood
flow in the vascular network affected by tumor growth play
decisive roles in the formation of atherosclerosis, arterial ste-
nosis, and hypoxia (deficiency in the amount of oxygen
reaching the tissues), as seen in Figure 1. The computational
fluid dynamics (CFD) techniques, mathematical modeling,
and biophysically justified computer models are valuable
tools with great potential in biofluid research, due to the fact
that they are widely applied under complex fluid dynamics
issues related to medical research. The ultimate aim of those
scientific research is to aid to figure out the mechanisms of
the diagnosis and treatment of these diseases or even control
the progression of the disease [76].
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Figure 6: An arterial stenosis’ flow geometry with 1/2D:
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In accordance with the size and the dimensional irregu-
larities of vessel diameters, one can see a drastic change in
the blood viscosity in the aftermath of arterial stenosis or
solid pressure that further decreases blood vessel diameter
and presents high viscosity of blood, enhancing the friction
between RBCs and endothelial cells, intensifying at high
hematocrit (see Figure 2). The viscosity of blood that flows
through the arteries does not behave as a continuum, slow
and steady. The blood flow is a kind of non-Newtonian fluid
flow such that viscosity of blood can change systematically
when it is subjected to force; it deforms either as more liquid
or more solid. The viscosity for the non-Newtonian flow dis-
plays the shear-thinning feature close to the wall. The visco-
elastic properties which make human blood non-Newtonian
depend on blood cell distribution, the elastic behavior of red
blood cells, and the aggregation of red cells cause the blood
clotting to happen [77].

In consequence, the ambient physical conditions like
shearing, extensional, and any deformation forces have an
impact on the blood viscosity. The viscosity of blood has
an inverse correlation with the Reynolds number (Re) when-
ever fluid behaves as a Newtonian, which can be seen when
the viscosity nonlinearly decreases when Re increases. Based

on the experimental studies on non-Newtonian fluid, it
could be tough to determine the viscosity for the Reynolds
number [12]. The Reynolds number is used to categorize
the fluid systems in which the effect of viscosity is crucial
in controlling the velocities, the flow pattern of a fluid, clot-
ting, and arterial thrombosis [78, 79].

3.2. Validation of Model. The data of Sun andMunn [48], Liu
[71], and Harrison [72] are used to verify the current LBM
results with the help of the lattice nodes in the computational
domain, flow parameters, and initial and boundary conditions
(bounce-back boundary condition is imposed at the walls; cor-
responding to a nonslip wall boundary condition, the flow
velocities at the inlets are imposed). To compare the numerical
results (obtained from LBM) with the numerical data of Tan
[80], two results were randomly picked to obtain the maxi-
mum absolute error (MAXE) as 9:8492 × 10−4 and the global
relative error (GRE) as 1:4295 × 10−4. In most cases, the initial
validation not only showed good code performance, but also it
exhibits good agreement with the referred data. It can be con-
cluded that the LBmethod performs with the present research
problem. The numerical results agree with the theory; hence,
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the stability analysis is a good tool for designing the
LB method.

3.3. Numerical Scheme. In the solution methodology of this
study, the lattice Boltzmann method has been applied to
simulate the nonlinear incompressible blood flow in a com-
plex microvascular network. It has been noted that a wide
range of problems of nonlinear incompressible fluid flow
are within the dynamics range of the LBM and the utiliza-
tion of this technique has been affirmed. The use of LBM
provides the flexibility to study the effects of blood flow in
complex microvascular networks by explicitly accounting
for RBC aggregation, leukocyte-endothelium interactions,
and cell-cell interactions [81, 82].

To demonstrate the potential of the NS-LBM approach
and its appropriateness for the application, three benchmark
problems that are widely come across in the model of solid
tumor growth are investigated. Regarding the models, the
work presented here plans to progress with better accuracy
and develop additional information analysis of the impact
of blood flow and interstitial flow through solid pressure
and stenotic vessels which along with the constriction and
collapse of vessels across capillary walls or in microvascular

networks (the solid pressure on blood vessel dynamics) as
shown in Figures 3 and 4.

In order to investigate on how the variability in the size
of vessel diameter is connected to changes in the high leaki-
ness of vessels in the lack of lymphatic function which leads
to create an elevated interstitial pressure and compression
(the solid pressure generated by the growing tumor and
flows in tumor-induced vascular networks) of tumor blood
vessels, three test cases of generic stenosis geometries are
constructed and designed.

3.4. Cases of a Stenosis through the Vessel Diameter. The
computational domain (as depicted in Figures 5–13) is com-
posed of a 3D blood vessel with stenosis across the capillary
walls, and flow happens between upper and lower walls. The
stenosis is axially symmetric with diverse occlusion percent-
ages of 1/3D, 1/2D, 2/3D or 1/4D, 1/3D, 1/2D located 2D far
from each other’s, where D is the blood vessel’s diameter.
The unidirectional steady flow of blood in the stenotic artery
is considered and is along the longitudinal direction (along
x-axis).

In order to use the test cases for the lattice Boltzmann
method, an accurate description of the model’s parameter
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such as the parameters’ range and units, lattice sizes, and
relaxation time is required. The D2Q9 velocity model is used
to study the problem of blood flow in stenosed artery. The
results further indicate that when lattice sizes become
smaller, better results are obtained. Since the results based
on Δx ≤ 0:05m provides better and more accurate solutions,
the model is conservative and accurate. The method
implored is sensitive to the choice of values for the single
relaxation time over the range considered. For single relaxa-
tion time τ < 1, LBM will not be stable and generate unphy-
sical oscillations. For a single relaxation time τ≫ 1, LBM
will be stable and depend on value which shows different
quantity. To achieve a lattice-independent solution, a lattice
of grid size 15,000 × 6,000 with speed e = 200m/s is used. In
this simulation, the vessel diameter has 40 lattice nodes and
the length has 80 lattice nodes. The LBM is a discrete
numerical method; it may suffer instability like any other
numerical method, but by using suitable time relaxation
values, lattice size, and time step (iterations), such instabil-
ities could be minimized. Also, another option that is impor-
tant for the stability of LBM is kinematic viscosity. The

kinematic viscosity υ must be positive υ = ð2τ − 1Þ/6 > 0. In
these three test problems, we assume the density ρ as con-
stant and choose it as ρ = 1. The steady-state solution tends
to be accurate after the 2,000th iteration. It has been appar-
ent that when the Re number increases, the non-
Newtonian fluid viscosity nonlinearly decreases. For the
non-Newtonian fluids, blood flow behaves as a non-
Newtonian fluid flow through stenosed blood vessels with
viscosity μ in the range 0.001-1.0.

Moreover, for modeling tumor blood vessels with LBM,
appropriate boundary conditions must be selected since the
solutions should be compatible with the physical constraints
and the inherent nature/regime of the flow. The slip boundary
condition is applied at the side walls. Results are plotted using
the inflow and outflow scheme as seen in the figures and
codes. The slip or nonslip boundary conditions are handled
at the solid walls (solid walls: nonslip velocity). For the nonslip
condition, the bounce-back scheme is imposed, and for slip
conditions, a zero gradient of the distribution function normal
to the solid wall is applied. Periodic boundary conditions were
used in the upper and lower walls. Furthermore, a bounce-
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back boundary condition acts as a nonslip wall boundary con-
dition applied at walls.

The streamlines of blood flow through a microchannel
(vessel) with stenosis and other snapshots of the schematic
of the model in Cartesian coordinate system are simulated
using the LBM. The result shows the geometry, motion of
the flow of blood in small vessels, inlet and outlet velocity,
and deformation of arterial stenosis.

The results of several different flow velocities are pre-
sented in Figures 5–13. It becomes apparent with the minor
variation of depth in the stenosed vessel; the blood flow
velocity convergence can be transitional or turbulent that
depends on the diameter of stenosis of the artery, directions,
and geometry. Whenever the depth of stenosis of the artery
is 1/3D of depth in the vessel, a higher flow velocity can be
observed at the center of the stenosis (at the crest), which
is 0:4ms−1: The mainstream flows parallel to the center of
this vessel and instantaneously at the downstream of the ste-
nosis; the outflow velocity field becomes steady. By increas-
ing the depth of the stenosis to 1/2D of depth in the vessel,
the maximum velocity is over 0.6 ms−1, slightly higher than
the maximum velocity of the previous case. A higher flow
velocity and intensified results can be found when the depth

of the stenosis increased to 2/3D of depth in the vessel,
where it approached ~ 1ms−1. The downstream tissues have
insufficient blood supply; moreover, risk factors for these
kinds of stenosis include high blood pressure and high cho-
lesterol when the solid pressure is high. Figures 5–7 show the
number of snapshots of the free surface elevation during the
propagation of the blood flow velocity test case.

Figures 8–10 show the generic stenosis geometries with
different occlusion percentages in the opposite directions
of both the top and bottom walls. By increasing the diameter
of the stenosis from 1/4D, 1/3D, and 2/3D, the results show
that the blood flow velocities’ raise will be significant in the
area between the occlusions, where they approach from 0:5
ms−1 to ~ 1:8ms−1 that a higher flow velocity will cause fas-
ter advection. As a consequence of radical change (revolu-
tionary change), the blood flow of red cell reduces
remarkably and leads to blood clotting too fast with high
blood viscosity. Peak turbulence intensities are present for
the present cases, the blood flow velocity is intensively con-
centrated in the center of the vessel, and the highest wall
shear stress exists in the geometry.

According to the results, there exist two regions of highly
concentrated stresses, and these areas may possess the
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highest risk of rupture. In consonance with the high-stress
regions, it may pose severe problems if they exceed the
allowable stress level causing the wall to deform. With
regard to the dynamics of the blood, the vortex intensity is
relatively high behind the narrow area.

Figures 11–13 depict the three cases of tests with differ-
ent generic stenosis geometry occlusions with the stenosis
diameter from 1/3D, 1/2D, and 2/3D with two-sided con-
stricted vessel and 2D distances from each other. The peak
velocity is highly increased in two regions on the top of the
stenosis and vortices near the top of the stenotic parts as
well. By increasing the diameter of the stenosis and minimiz-
ing the distances between the stenosis, two distinct recircula-
tion regions appear near the postlip of the stenosis due to the
separation of the shear layer induced by the stenosis. In the
region of the stenosis, the amount of blood flow decreases,
and the turbulent intensity of the flow increases significantly,
so the flow recirculates and an adverse streamwise pressure
gradient exists near the walls.

According to the information provided by the
researchers and the research carried out on blood flow, the
viscosity for the non-Newtonian fluid flow displays the
shear-thinning feature close to the wall that it depends on
the geometry and the Reynolds number, and high viscosity
is observed in some cases, in terms of preventing any devia-
tions and oscillation on plots and demonstrating the velocity
being stable. The Reynolds number tested was set between
20 and 1,500 that is dependent on the test cases. The typical
Reynolds number for the blood flow varies; in small arteries,
it starts to range from 1000 to 4,000 in large diameter arter-
ies; meanwhile, based on the experimental studies on non-

Newtonian fluid, it could be tough to determine the proper
viscosity for the Re number [12] in small diameter arteries.
Blood flow always shows unsteady (pulsatile) nature, and
blood pressure fluctuates continuously due to the cyclic
nature of the pumping action of the heart. When blood flows
through small diameter arteries (<300μm), it exhibits non-
Newtonian fluid’s character. The Reynolds number range
20-1,000 is estimated; when blood flows in stenosed narrow
blood vessels, the rate of Re reduced up to 50% at the area of
reduction. In the downstream region of the stenosis, when
the flow becomes transition-to-turbulent, it is evident that
the Re numbers are in the high-frequency range and have
revealed a high level of turbulence.

4. Conclusions

This research paper analyzed the blood vessel dynamics
modeling in the presence of tumor and/or stenosis, by apply-
ing, verifying, and affirming LBM as an invaluable numerical
modeling and simulation method. The model result shows
that the flow features are extremely sensitive to stenosis
severity, even at small strains and stresses, and that a
severe effect on flow patterns and wall shear stresses is
noticed in the tumor blood vessels. The results obtained
in this study reveal a useful information on describing
blood vessel deformations more precisely. The results
obtained are beneficial to realize the impacts of the geo-
metrical complexity factors on the natural blood flow rates
through the bucked shapes. It also exhibits the various
biological properties, blood vessel deformability, and severe
cardiovascular diseases.

It is found that based on the nonlinear deformation of
the blood vessel’s wall, the flow rate conditions became
unstable or distorted and affect the complex blood vessel’s
geometry and it changes the blood flow pattern. When the
blood flows inside the stenotic artery, depending on the
presence of moderate or severe stenosis, it can lead to insuf-
ficient blood supply to the tissues in the downstream. Conse-
quently, the highly disturbed flow occurs in the downstream
of the stenosed artery, or even plaque ruptures happen when
the flow pattern becomes very irregular and complex as it
transits to turbulent which cannot be described without
assumptions on the geometry.

The lattice Boltzmann (LB) method is a sophisticated
and powerful computational tool which can simulate the
blood flow through stenosed arteries under steady and
pulsatile states, treating it as non-Newtonian fluid. Thus,
the LB method presents the results professionally and esti-
mates the numerical solution with high accuracy even to
nonlinear flow problems. The outcomes of test cases (given
in Section 3.3) provide vital information about stenosis in
the vessel with solid tumor. Thus, this computational model
provides significant results which could be beneficial to the
clinician as well as to the patient, and in fact, these results
may guide the society for efficiently searching the efficient
and optimal individualized treatment strategies that can
include chemotherapeutic procedures and adjuvant treat-
ments like antiangiogenic (drugs).
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Nomenclature

g: Gravity acceleration vector
t: Time
p: Blood pressure
i: Cartesian indices
j: Einstein’s summation
ui: ith direction-average depth velocity
∇: Vector differential operator
u = ðu, v,wÞ: ui + vj +wk
ν: Kinematic viscosity
μ: Dynamic viscosity (blood)
ρ: Density (blood) ~ ρblood 1060 kgm3).

Data Availability

The numerical data are included within the article.
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