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In this article, we have carried out a case study to optimize the classification of the maliciousness of cybersecurity events by IP
addresses using machine learning techniques. The optimization is studied focusing on time complexity. Firstly, we have used
the extreme gradient boosting model, and secondly, we have parallelized the machine learning algorithm to study the effect of
using a different number of cores for the problem. We have classified the cybersecurity events’ maliciousness in a biclass and a
multiclass scenario. All the experiments have been carried out with a well-known optimal set of features: the geolocation
information of the IP address. However, the geolocation features of an IP address can change over time. Also, the relation
between the IP address and its label of maliciousness can be modified if we test the address several times. Then, the models’
performance could degrade because the information acquired from training on past samples may not generalize well to new
samples. This situation is known as concept drift. For this reason, it is necessary to study if the optimization proposed works
in a concept drift scenario. The results show that the concept drift does not degrade the models. Also, boosting algorithms
achieving competitive or better performance compared to similar research works for the biclass scenario and an effective
categorization for the multiclass case. The best efficient setting is reached using five nodes regarding high-performance
computation resources.

1. Introduction

Data science has become essential for companies and orga-
nizations to extract actionable knowledge. This can be a
competitive edge whose value is directly related to the
quality of the used datasets and the efficiency of the models
and their implementations. The case of computer security
incident response teams (CSIRTs) and the managing of
cybersecurity databases is one of the best-known examples
of the scenario described. A cybersecurity database is a data-
base with reports of cybersecurity events. A cybersecurity
report contains data about a cybersecurity incident that is
considered malicious. The information included is, for
example, its geolocation, time stamp, type of event, and con-

fidentiality. Then, a cybersecurity database contains a lot of
unstructured and correlated information. Several sources of
information provide streams of data, and they are enriched
by human agents, usually by requesting external platforms
of blacklists or malware platforms. The information is
updated daily, weekly, or online depending on the source
and the type of event that is reported. Data flow is constant
and dynamic, generating large volumes of data. In this
scenario, knowing the severity of a cybersecurity event of
potentially malicious activity is essential to determine an
appropriate response.

In this article, we present a study case in which we opti-
mize the application of supervised machine learning (ML)
models to classify cybersecurity data streams of IP addresses
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in terms of the level of the maliciousness of the associated
cybersecurity incident. In particular, we have applied the
extreme gradient boosting algorithm and used geolocation
features [1]. The study has been carried out on 99720 IP
addresses provided by the Spanish National Cybersecurity
Institute (INCIBE). We have conducted the experiments in
two scenarios: biclass and multiclass. Also, data distribution
can change over time, yielding a concept drift scenario and
increasing the possible error associated with the models
[2–4]. Then, detecting concept drift, or the absence, is cru-
cial to evaluate the suitability of the models and the possible
effect of this on the classification of the maliciousness [5].
For this reason, we have extracted the data from the experi-
ments at two different time points, and we have analyzed the
degree of concept drift and the possible effect on the accu-
racy of the results.

Since the usual cybersecurity databases are huge, we have
created theMLmodels using a different number of cores to opti-
mize the procedure’s time complexity. Then, we highlight the
necessary high-performance computing (HPC) resources, con-
sidering the validity of incoming data and resulting measures.

The concrete results of our experiments are three-fold; it
is shown that there is no significant concept drift among the
proposed databases; it is evaluated the degradation of geolo-
cation features and, finally, the suitability of HPC to the cre-
ation of ML models among those cybersecurity databases.
Regarding the latter question, although HPC does not
improve the ML algorithms’ accuracy/sensitivity/specificity
performance, the optimum number of cores [6] is reached
with 5, where our algorithms gain 50% of execution time.

The article is organized as follows: In Section 2, we
develop the related work. In Section 3, experimental details
are explained. The results are included and discussed in
Section 4. Finally, the conclusions and the references are given.

2. Related Work

A cybersecurity event is a cybersecurity change that may
have an impact on organizational operations (including
capabilities or reputation). (https://csrc.nist.gov/glossary/
term/cybersecurity_event). The severity of a cybersecurity
event is a measure that determines its risk or maliciousness.
The assessment of this characteristic is crucial to ensure that
the countermeasures that are taken are appropriate. For this
reason, an increasing body of literature is trying to solve this
task from several approaches. The perspective depends
mainly on the type of cybersecurity event with which we deal
and the resources that we have available. There are tools
based on different methodologies and standards (Microsoft
Security Bulletin Vulnerability Rating [7], Common Vulner-
ability Scoring System (CVSS) [8], Open Web Application
Security Project (OWASP) Risk Rating Methodology [9],
and Cyber Incident Scoring System [10], among others) or
other approaches based on data science and ML models
[11]. In all cases, we need a tool that not only determines
the maliciousness of a cybersecurity event as closely as
possible but also attaches importance to identifying false
negatives. These cases may become difficult situations for
citizens, institutions, and companies.

This work focuses on the maliciousness assigned to an IP
address. Then, we use registers of the IPs of the different several
cybersecurity events as any occurrence of an adverse nature in a
public or private sphere within a country’s information and
communication networks. In particular, an IP address’s severity
is considered a measure of its reputation. We deal with cyberse-
curity databases with all IP addresses associated with threats. It is
not a question of determining whether an address is malicious.
We know that all the registers are “threats.”The point is to assess
the level of maliciousness to provide an adequate response.

Measuring the maliciousness of the reputation of an IP
address has been studied from several perspectives. The first
approach is using blacklists to create alerts. These works apply
techniques such as time series forecasting, clustering, or ML
models based on data in the blacklists reachingmaximum accu-
racy rates of 0.776 and predicting if an IP can be considered
malicious or not. One of the disadvantages of this approach is
the vast volume of black or whitelisted IPs to create the models
[12–15]. The second approach takes advantage of contextual
information about the IP address, such as geolocation, DNS
registers, hosts, and the proper address. This information is easy
to extract and does not require a large volume of data. In this
case, the models that are created are based on computations
about the frequencies at which contextual information appears,
or again, clustering techniques [16–19]. A global accuracy of
0.77 is reached to classify an IP address as malicious or not.
Another perspective is analyzing the dynamical behavior of
the IP address from logs or intrusion detection systems
[20–22]: the number of alerts that are generated, requests,
access, etc. Although this approach reaches the best accuracies,
0.91-0.93, it implies additional resource costs because it requires
monitoring and extracting the features online.

As we mentioned, one of the most used approaches to cat-
egorizing the maliciousness of an IP address is applying ML
models. However, although we find relevant features such as
geolocation variables, the values of these variables, or the
blacklists are expected to change over time, leading to a con-
cept drift scenario. A concept drift scenario is that in which
there is a change in the data distribution ([3]). If X denotes
the feature vector space in a data sample and Y is the X label
space, then the concept drift happens if PtðyjXÞ ≠ Pt+ΔtðyjXÞ
and/or PtðXÞ ≠ Pt+ΔtðXÞ, where PtðXÞ is the marginal distri-
bution of data in an instant t. Analogously, PtðyjXÞ. The drift
is real, virtual, or a combination of both if the differences
appear on one or the other—or both, probabilities [2–4]. Ough
there are studies in which the concept drift is involved, usually,
something other than this is the focus of the research.

Recently, in [1], an optimal feature set to categorize an IP
address’s maliciousness was configured with Autosklearn [23]
by analyzing contextual variables joint with temporal informa-
tion extracted by blacklists. Although the feature set has been
optimized, the question now is whether the implementation
can be optimized in terms of efficiency and scalability. For this
reason, in this work, we have conducted a case study with the
optimal configuration set of [1], the geolocation features, but
changing theML algorithm and adding a possible parallelization
by HPC resources. Also, we have conducted the experiments in
a biclass and a multiclass scenario to compare our results with
other research works.
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3. Materials and Methods

In this section, the experimental details are described.

3.1. Features Extraction. The selected features that are used
are related to the geolocation and the time stamp of the IP
address. After analyzing the existing studies on IP classifica-
tion [1], we keep with the geolocation of the IP address with-
out feature selection. In all, we have extracted five features:

(i) Latitude and longitude: these are measured as deci-
mal numbers (F1 and F2)

(ii) The country code: this is categorized as an integer
number taking values from 0 to the total of coun-
tries represented by the ISO 3166-1 (F3)

(iii) The IP is transformed into a numerical integer value
in the following way (F4)

(iv) A:B:C:D⟶ A ∗ 2563 + B ∗ 2562 + C ∗ 2561 +D ∗
2560

(v) The time stamp is transformed in UNIX time
(number of elapsed seconds from 01/01/1970 at
00 : 00) (F5)

3.2. Datasets. In the experimentation, several datasets have
been used and constructed:

(1) BL, the reputation list or blacklist of IPs (INCIBE has
provided this dataset under a confidentiality agree-
ment). This sample is from May 2021. It contains
99720 IPs. We have the IP address, time stamp,
and associated severity from each IP. An expert of
INCIBE assigns the severity value. It takes values 1,
3, 6, and 9, ordered from less severity to high sever-
ity. We have analyzed two scenarios: biclass and
multiclass

(2) Then, we constructed another blacklist from BL by
transforming the labels 1 and 3 into 0 and 6 and 9
into 1. Then, we clustered the samples with very
low and low severity on the one hand and grouped
the samples with high and very high severity. This
experiment is denoted by B. Also, we have repeated
the experiment but transforming the label 1 into 0,
and grouping the labels 3, 6, and 9 into 1. This exper-
iment is denoted by B′

(3) The second dataset, D1, is a subset of BL with 55728
IPs. In this dataset, we have extracted the set of the
features latitude, longitude, and country code by
querying to Maxmind (https://www.maxmind.com/
en/home) in May 2021

(4) The third dataset, D2, is D1, but the geolocation fea-
tures were extracted in April 2022 to analyze the
presence of concept drift

The reason to take a subset of 55728 IPs from BL and not
all the IP addresses is that these present changes in the geo-
location features.

The datasets are in https://github.com/amunc/IP_
datasets, but by the confidentiality agreement, the variable
with the IP is transformed to a numerical value for anon-
ymizing it. The proportion of each severity class in the data-
sets is included in Table 1.

3.3. Research Questions. The research questions are
described below:

Table 1: Frequency of each class of the severity in the datasets D1,
D2, and BL:

Dataset Severity Frequency Proportion

BL

1 8402 8.4255%

3 24943 25.0130%

6 54437 54.5898%

9 11938 11.9715%

D1 and D2

1 3618 6.4922%

3 14126 25.3481%

6 31966 57.3607%

9 6018 10.7988%

B
0 33345 33.4386%

1 66375 66.5614%

B′ 0 8402 8.4256%

1 91318 91.5744%

Table 2: Results of applying ML-constructed models with Dt

predicting over Dt+Δt . B, B′ = bi − class, M =multiclass:

Scenario
Response
variable

Average
(B)

Average
(M)

Average
(B′)

Biclass

MCC .7622 .7586 .8762

Accuracy .8982 .8590 .9852

Sensitivity .8982 .8590 .9852

Specificity .8982 .9530 .9852

Table 3: Confusion matrix for the biclass scenario B. In
parenthesis, the rate of success by row.

True label
Predicted label

Total
0 1

0 3603 (81.80%) 802 (18.20%) 4405

1 616 (6.47%) 8911 (93.53%) 9527

Total 4219 9713 13932

Table 4: Confusion matrix for the biclass scenario B′. In
parenthesis, the rate of success by row.

True label
Predicted label

Total
0 1

0 775 (86.08%) 130 (13.92%) 905

1 87 (0.60%) 12940 (99.4%) 13027

Total 858 13074 13932
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R1: Is there any concept drift in the geolocation features
of IP addresses between D1 and D2?

R2: Do the results obtained from applying the ML
models show any degradation when geolocation features
change?

R3: Is HPC a suitable tool to face the computation of
concept drift?

3.4. Analyses. To analyze the presence of concept drift in the

geolocation features, we have computed σt,t+ΔtðZÞ and σY jXt,t+Δt
where

σt,t+Δt Zð Þ = 1
2

〠
�z∈Dom Zð Þ

Pt �zð Þ − Pt+Δt �zð Þj jy, ð1Þ

σ
Y jX
t,t+Δt =〠 Pt �xð Þ + Pt+Δt �xð Þ

2
1
2
〠 Pt y �xjð Þ − Pt+Δt y �xjð Þj j

� �
,

ð2Þ

following the approach given in [24]. Both take values
between 0 and 1. Here, we take D1 =Dt , and D2 =Dt+Δt .

The ML models have been created by extreme gradi-
ent boosting, XGB, [25], whose implementation is [26].
The hyperparameters that have been optimized are the
depth and the number of trees. 70% of the data is used
for hyperparameter optimization, and the other 30% is
used to evaluate the suitability of the optimized models.
For all experiments, we have performed 10-fold cross-
validation. Since the datasets are unbalanced, the
response variables that have been analyzed are the accu-
racy and Matthews’ coefficient, MCC = TP · TN − FP · FN
/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP + FPÞðTP + FNÞðTN + FPÞðTN + FNÞp
where TP,

TN, FP, and FN denote the true positives, true negatives,
false positives, and false negatives, [27] Also, we have
computed the recall (or sensitivity) and the selectivity (or
specificity) of the models for each class.

Also, to evaluate the computational cost, we have
collected the total time in seconds of the procedure. This
includes the time model construction, the time features
selection, the time feature construction, the time preprocess-
ing, and the time data load. We highlight that, in our case,
the time feature selection is 0.

Finally, to decide if HPC is a suitable tool to face this
problem, we have carried out all the above experiments with
different cores parallelizing the XGB algorithm. We have

performed the analyses with 1, 2, 3, 5, 10, and 16 cores.
The experiments have been carried out with Python 3.8.

4. Results and Discussion

This section is organized according to the research questions
proposed.

Table 5: Confusion matrix for the multiclass scenario. In parenthesis, the rate of success by row.

True label
Predicted label

Total
1 3 6 9

1 846 (92.97%) 18 (1.98%) 39 (4.29%) 7 (0.77%) 910

3 23 (0.66%) 2885 (82.55%) 429 (12.27%) 158 (4.52%) 3495

6 44 (0.55%) 420 (5.24%) 7376 (92.1%) 169 (2.11%) 8009

9 15 (0.99%) 273 (17.98%) 369 (24.3%) 861 (56.72%) 1518

Total 928 3596 8213 1195 13932

Table 6: Results of applying ML-constructed models with Dt+Δt
predicting over Dt+Δt . B, B′ = biclass, M =multiclass.

Scenario Response variable Average Median

Biclass B

MCC .7388 .7393

Accuracy .8877 .8880

Sensitivity .8877 .8880

Specificity .8877 .8880

Biclass B′

MCC .8692 .8692

Accuracy .9844 .9844

Sensitivity .9844 .9844

Specificity .9844 .9844

Multiclass

MCC .7122 .7159

Accuracy .8342 .8320

Sensitivity .8342 .8320

Specificity .9447 .9401

Table 7: Confusion matrix for the biclass scenario B. In
parenthesis, the rate of success by row.

True label
Predicted label

Total
0 1

0 3563 (80.89%) 842 (19.11%) 4405

1 721 (7.57%) 8806 (92.43%) 9527

Total 4284 9648 13932

Table 8: Confusion matrix for the biclass scenario B′. In
parenthesis, the rate of success by row.

True label
Predicted label

Total
0 1

0 775 (85.64%) 130 (14.36%) 905

1 87 (0.67%) 12940 (99.33%) 13027

Total 862 13070 13932
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4.1. RQ1: Study of the Concept Drift. Recall that we set Dt =D1
and Dt+Δt =D2 and compute the concept drift measures σt,t+Δt
and σ

Y jFi
t,t+Δt. The average results are σt,t+Δt = 0:3178 ± 0:0427

and σY jFi
t,t+Δt = 0:1589 ± 0:0213. Although the values are not high,

we need to study whether this drift affects the ML models’ per-
formance to predict the severity. That is, what is the result if we
remain the ML model obtained with Dt and apply it over Dt+1.

4.2. RQ2: Do the Results Obtained from Applying the ML
Models Show any Degradation when Geolocation Features
Change? In Table 2, we have included the results of the

ML models constructed when they are applied over t
and t + Δt.

Regarding the confusion matrices, they are included in
Tables 3, 4, and 5.

We can see in Table 6 the average and the median results
of applying ML-constructed models with Dt+Δt predicting
over Dt+Δt .

Regarding the confusion matrices, they are included in
Tables 7, 8, and 9.

4.3. RQ3: Is HPC a Suitable Tool to Face the Creation and
Application of ML Models over Cybersecurity Datasets with
Concept Drift? If we analyze the above results but performed
with a different number of cores with the parallelization in
the algorithm XGB, see Figures 1, 2, and 3, as it was to be
expected, the results about the MCC, accuracy, sensitivity,

Table 9: Confusion matrix for the multiclass scenario. In parenthesis, the rate of success by row.

True label
Predicted label

Total
1 3 6 9

1 789 (86.70%) 50 (5.49%) 63 (6.92%) 8 (0.88%) 910

3 35 (1%) 2796 (80%) 460 (13.16%) 204 (5.87%) 3495

6 55 (0.69%) 491 (6.13%) 7231 (90.29%) 232 (2.90%) 8009

9 7 (0.46%) 290 (19.1%) 445 (29.31%) 776 (51.11%) 1518

Total 886 3627 8199 1220 13932

MCC

1

1

0,75

0,5

0,25

0
2 3 5 10 16

Accuracy
Sensitivity
Specificity

Figure 1: Average results of the response variables with different
cores in the biclass scenario B. Axis X: number of cores. Axis Y :
values of the response variable.
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0.5

0.25

0

MCC

1 2 3 5 10 16

Accuracy
Sensitivity
Specificity

Figure 2: Average results of the response variables with different
cores in the biclass scenario B′. Axis X: number of cores. Axis Y :
values of the response variable.
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0

MCC
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Figure 3: Average results of the response variables with different
cores in the multiclass scenario. Axis X: number of cores. Axis Y :
values of the response variable.
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Figure 4: Average total time depending on the cores used in the
biclass scenario B. Axis X: number of cores. Axis Y : time in seconds.
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and specificity are similar. They are better for the biclass sce-
nario. As expected, the settings obtained with a different
number of cores are very similar. So, it seems logical to study
the temporal complexity of the process. Thus, we will be able
to analyze whether the increase in the number of cores and
the use of HPC resources provides us with a considerable
reduction necessary to work in conceptual drift scenarios.

The overall running time (in seconds) of the biclass and
multiclass scenarios is included in Figures 4, 5, and 6. We
can observe that introducing a greater number of cores pro-
vides less consumed time. However, the gain is limited to 5
cores. From this, the asymptotic behavior of the paralleliza-
tion process begins to lose time. The boosting algorithm
depends on the results of past iterations, so the paralleliza-
tion model used in XGB does not create several trees in par-
allel but produces several different candidate splits that are
integrated into a single tree in each iteration. Synchronizing
the splits incurs additional costs, so adding too many parallel
processes increases the time spent in synchronization rela-
tive to the computation of the tree model. Using five cores
instead of 1 gives us a gain of 39.50% in the binarized case
and 53.82% in the multiclass scenario. Then, parallelizing
the construction model, we reduce the time in half.

In Figures 7, 8, and 9, we have included the distribution
of the running time (in seconds) of the biclass and multiclass
scenarios. Still parallelized, what is taking the most time is
the construction of the model.

4

3

2

1

0
1 2 3 5 10 16

Figure 6: Average total time depending on the cores used in the
multiclass scenario. Axis X: number of cores. Axis Y : time in
seconds.

FC
MC

PP
DL

1 2 3 5 10 16

1

0,75

0,5

0,25

0

Figure 7: Distribution time depending on the cores used in the
biclass scenario B. Axis X: number of cores. Axis Y : time in
seconds. FC: feature construction; MC: model construction; PP:
data preprocessing; DL: data load.
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PP
DL

1 2 3 5 10 16
0

0.1

0.3
0.2

0.4
0.5
0.6
0.7
0.8
0.9
1

Figure 8: Distribution time depending on the cores used in the
biclass scenario B′. Axis X: number of cores. Axis Y : time in
seconds. FC: feature construction; MC: model construction; PP:
data preprocessing; DL: data load.
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MC

PP
DL

1 2 3 5 10 16

Figure 9: Distribution time depending on the cores used in the
multiclass scenario. Axis X: number of cores. Axis Y : time in
seconds. FC: feature construction; MC: model construction; PP:
data preprocessing; DL: data load.
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Figure 5: Average total time depending on the cores used in the
biclass scenario B′. Axis X: number of cores. Axis Y : time in seconds.
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5. Conclusions

We propose concrete experiments involving dynamic
cybersecurity datasets to optimize the categorization of the
maliciousness of an IP address by ML models and geoloca-
tion information. Also, we study whether concept drift
degrades the obtained models. Furthermore, we want to
know if HPC would improve our results and performances
since cybersecurity datasets are always massive. Accurate
boosting ML models are studied, showing that the optimum
number of cores is around 5 for the analyzed dataset.

In future work, we plan to relate this optimum to the
adequate size of datasets and the type of ML models.
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