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In this paper, we present an innovative approach for the discovery of involutory maximum distance separable (MDS) matrices
over finite fields F2q , derived from MDS self-dual codes, by employing a technique based on genetic algorithms. The
significance of involutory MDS matrices lies in their unique properties, making them valuable in various applications,
particularly in coding theory and cryptography. We propose a genetic algorithm-based method that efficiently searches for
involutory MDS matrices, ensuring their self-duality and maximization of distances between code words. By leveraging the
genetic algorithm’s ability to evolve solutions over generations, our approach automates the process of identifying optimal
involutory MDS matrices. Through comprehensive experiments, we demonstrate the effectiveness of our method and also
unveil essential insights into automorphism groups within MDS self-dual codes. These findings hold promise for practical
applications and extend the horizons of knowledge in both coding theory and cryptographic systems.

1. Introduction and Preliminaries

Error correction is a critical aspect of various fields, includ-
ing telecommunications, data storage, and digital communi-
cation. In these domains, ensuring the integrity and accuracy
of transmitted or stored information is of paramount impor-
tance. Errors can occur due to noise, interference, or other
factors, potentially leading to data corruption or loss. To
address this challenge, error correction techniques are
employed to detect and correct errors, enhancing the reli-
ability and performance of systems.

One widely used approach for error correction is based
on encoding data using polynomials and matrices over finite
fields. Finite fields provide a mathematical framework for
representing and manipulating data elements in a structured
manner. The encoding process involves mapping the origi-
nal data into a set of symbols, which are then transformed
into polynomials or matrices. These encoded representations

incorporate redundancy, enabling the detection and correc-
tion of errors during the decoding phase.

Finding suitable matrices is essential for error correction
codes. Specifically, maximum distance separable (MDS)
matrices play a crucial role in achieving maximum error cor-
rection capability [1–3]. MDS codes can correct the maximum
number of errors possible for a given code length, making
them highly desirable for error-prone environments [1]. Addi-
tionally, MDS matrices facilitate efficient error correction
algorithms and reduce complexity in error correction proce-
dures, thus enhancing overall system performance.

Moreover, special matrices, such as involutory matrices,
have gained attention for their unique properties. Involutory
matrices have their own inverses, simplifying the decoding
process and reducing computational overhead. The search
for MDS involutory matrices is particularly significant, as it
allows for efficient error correction with fewer computational
resources, making them valuable in resource-constrained
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applications and enhancing the overall reliability and security
of the system [4]. By leveraging special matrices, researchers
can achieve a delicate balance between error correction capa-
bility, reliability, and performance, enabling the development
of robust and efficient error correction techniques for various
real-world applications.

Maximum distance separable (MDS)matrices not only find
applications in coding theory but also play a crucial role in the
design of block ciphers and hash functions [5, 6]. Their unique
properties, including full rank and nonsingularity, make them
essential for achieving error correction and data integrity. How-
ever, findingMDSmatrices is a highly nontrivial task due to the
stringent conditions they must satisfy. In recent years, various
techniques have been explored to efficiently discover MDS
matrices with desired properties, paving the way for enhanced
reliability, security, and robustness of both communication
and cryptographic systems [7–9]. The construction of MDS
matrices, including involutory MDS matrices over Fpq , uses
self-dual codes [10] or often involves utilizing specific matrices
with desirable properties. Companion matrices, Hadamard
matrices, Cauchy matrices, and Vandermonde matrices, along
with the inverse of another Vandermonde matrix, are among
the key matrices used for this purpose [5, 11–15]. Hadamard
matrices possess orthogonal properties, making them valuable
for constructing MDS matrices that aid in error correction
and data integrity. The Cauchy matrices, on the other hand,
are essential in constructing MDS matrices with a high degree
of redundancy, contributing to enhanced fault tolerance. Addi-
tionally, the Vandermonde matrices and their inverses play a
pivotal role in generating involutory MDS matrices, ensuring
that thesematricesmaintain their properties even after squaring
to the identity matrix. By leveraging these particular matrices,
researchers have been able to develop efficient and reliable
methods for constructing MDS and involutory MDS matrices.

Let Fp be the field of p elements and Fp X be the polyno-
mial ring with coefficients in Fp. We denote by Mn,n Fp
squared matrices with coefficients in Fp.

A code C of dimension n and length 2n over Fp is a sub-

space F2np . Moreover, if C is a subspace of F2np , then the code
C is said to be linear code; in this case, the Hamming distance
between two vectors x and y in F2np is defined as follows:

dH x, y = i xi ≠ yi 1

The minimum distance of a codeC is defined as the smal-
lest Hamming distance between any two distinct elements
within the code C , denoted as d C .

Let C be a n, k, d linear code over Fp. Then, C is MDS if
its d meets the singleton bound:

d ≤ n − k + 1 2

The dual code of C ⊂ Fnp is defined by

C⊥ = x ∈ Fnp <x, c > = 0∀c ∈C , 3

where <x, c > =∑n
i=1xici.

Definition 1. C is self-dual code if C =C⊥.

Definition 2. Matrix M ∈Mn,n Fp is MDS if and only if all
its minors are nonzero.

Definition 3. Another definition using the fact that C is an
MDS codes is that matrix M ∈Mn,n Fp is MDS if and only
if the generator matrix of C is equal to I M .

Definition 4.Matrix M ∈Mn,n Fp is involutory MDS ifM is
MDS and M2 = In.

Definition 5.M ∈Mn,n Fp is orthogonal ifMM⊺ =M⊺M = In.

Proposition 6. Let C be an MDS self-dual code over Fp of
dimension n and length 2n and generator matrix G = In M ;
then, M is an orthogonal MDS matrix.

Proof. Since G = In M is a generator matrix of MDS self-
dual code C , then

GG⊺ = 0 = In M
In

M⊺
= In +MM⊺

= 0⟹MM⊺ =M⊺M = I

4

So, M is an orthogonal matrix. Moreover, since C is
MDS, then M is orthogonal MDS.

For our purpose, we only consider square MDS matrices.
These matrices are redundant part of MDS self-dual codes of
dimension n and length 2n over Fp where p = 2m.

Let σ ∈ Sn be a permutation; Pσ is a permutation matrix
related to σ defined as follows:

Pσ = σ In 5

Also, Nσ =DPσ is monomial matrix, where Pσ is a per-
mutation matrix and D is a matrix such that D = diag α1,
α2,⋯, αn . As shown in [5], multiplying by a monomial
matrix preserves the invariant properties of an MDS matrix.
This means that if M is an MDS matrix, Nσi

i ∈ 1, 2 are
monomial matrices. Then, Nσ1

MNσ2
is an MDS matrix.

2. Genetic Algorithm

The genetic algorithm is a computational search heuristic,
drawing inspiration from Charles Darwin’s theory of natural
evolution [16]. This algorithm simulates the process of
natural selection, wherein individuals exhibiting higher
fitness levels are chosen for reproduction, thereby generating
offspring for the subsequent generation. By mimicking the
principles of natural selection, the genetic algorithm seeks to
efficiently optimize solutions to complex problems through
iterative improvement and selection mechanisms [17–19].
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The genetic algorithm addresses the issue of permutation
in combinatorial optimization problems by efficiently explor-
ing the search space. It achieves this by employing selection,
crossover, and mutation operators, which contribute to the
generation of better chromosomes at minimal cost [11].
Empirical studies have demonstrated the efficacy of evolution-
ary algorithms, including GA, in tackling various combinato-
rial optimization challenges [17].

GA offers several advantages over traditional algorithms:
It relies solely on the objective function’s evaluation,

irrespective of its characteristics (e.g., continuity, and differ-
entiability), providing greater flexibility and applicability
across diverse problem domains [20, 21].

The generation process in GA operates in a parallel man-
ner, allowing for simultaneous exploration of multiple
points, in contrast to standard algorithms that typically
involve single iterations.

Probabilistic transition rules, involving selection, cross-
over, and mutation probabilities, are employed in GA, offer-
ing stochastic and dynamic decision-making capabilities
rather than deterministic approaches.

Overall, the utilization of GA and similar nature-inspired
algorithms presents a promising avenue for efficiently address-
ing complex optimization problems with diverse applications.
It may suffer from slow convergence and may not always find
the global optimum due to their stochastic nature.

The algorithm begins with an initial population of poten-
tial solutions, where fitter individuals are selected based on a
fitness function. These selected individuals then undergo
crossover and mutation operations, which mimic the inheri-
tance and variation mechanisms in natural evolution. The
process iterates, generating new generations with increasingly
fit individuals until a satisfactory solution is obtained. The five
key phases of the GA include the following:

(1) The initial population setup

(2) Defining the fitness function

(3) Selection of fitter individuals

(4) Applying crossover to create offspring

(5) Introducing mutation for genetic diversity

By following these phases, the genetic algorithm effec-
tively explores the search space to find optimal or near-
optimal solutions to the given problem. In our specific case,
the optimal solution corresponds to the exact solution (or
solutions), and there are no near-optimal solutions as the
objective is to precisely identify the best possible outcome
within the given problem domain.

3. Proposed Method

In this section, we present a comprehensive explanation of
the method employed in this paper, which is based on the
genetic algorithm. Our aim is to provide a detailed account
of the GA’s underlying mechanisms and operations, thereby
offering a clear understanding of how it functions to attain
optimal solutions. Specifically, we will delve into the intrica-

cies of its key operators, namely, the selection, crossover, and
mutation operations. Through this detailed exposition, we seek
to demonstrate the efficiency and efficacy of our GA-based
approach in addressing the specific optimization problem
under investigation, while emphasizing our focus on achieving
exact optimal solutions which is the involutory MDS matrices.

3.1. The Search Space and the Fitness Function. The problem-
solving process commences with the establishment of a popu-
lation, consisting of a collection of individuals. Each individual
represents a potential solution to the problem at hand and is
defined by a unique set of parameters, referred to as genes
(see Figure 1). To form a complete solution, these genes are
combined into a string structure known as a chromosome.
In the genetic algorithm framework, he Genes of an individual
are typically represented using a list of genes, often employing
binary values. However, in our case, they are represented as a
list of integers ranging from 1 to the dimension of the code
(the number of rows in a matrix). This process of encoding
the genes within a chromosome allows for efficient handling
and manipulation of the solutions during the evolutionary
search, enabling the algorithm to explore and refine a diverse
set of potential solutions over successive generations.

In our study, the search space is tied to the size n, repre-
senting the number of matrix M columns (or rows). The
search space consists of all possible pairs of permutations,
amounting to n 2 pairs of permutations, involving the
rows or columns of matrix M. However, the ultimate solu-
tions are derived from the action of permutations on the
arrangement of M’s rows or columns. To navigate this
extensive search space effectively, we employ a fitness func-
tion that serves to evaluate candidate permutations. The
fitness function assesses the optimality of each pair of per-
mutations based on specific optimization criteria. During
the selection process, the fittest candidates, those with higher
fitness scores based on fitness function value (see Equation
(6)) are identified by their lower values according to the fit-
ness function, which are favored to advance to the next gen-
eration of the genetic algorithm. In our approach, pairs of
permutations (chromosomes) are represented as lists of inte-
gers from 1 to n for each permutation. These permutations
are related to their permutation matrices, which in turn are
randomly applied to the rows or columns of matrix M. This
randomness ensures exploration of the search space to find
potentially optimal solutions (pairs of permutations).

Let M ∈M n×n F2m be an MDS matrix, D = dij =M2.

f M = 〠
n

i=1
f i + 〠

n

j=1
〠
n

k=1
k≠j

f i,j, 6

where

f i =
1, if di,i ≠ 1,
0, otherwise,

f i,j =
1, if di,i ≠ 0,
0, otherwise

7
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We are adopting the Hamming distance as the measure
of dissimilarity between any two elements.

3.2. The Selection, the Crossover, and the Mutation. The pro-
posed genetic algorithm-based method is depicted in the
diagram (Figure 2), taking several inputs such as the number
of generations, initial population size, crossover rate, muta-
tion rate, and the fitness function. The selection process
employs elitism, where individuals are chosen based on their
fitness values as determined by equation (6). Crossover and
mutation operations are illustrated in Figure 3, detailing
their implementation steps within the algorithm.

Figure 3 presents a comprehensive schema illustrating
the crossover and mutation operators employed in the
genetic algorithm. For the crossover operation, a single
parent is selected, and subsequently, three positions are ran-
domly chosen within the permutation set, denoted as acting
on the left of the matrix. Similarly, the same process is
applied to the permutation set that acts on the right of the
matrix. This procedure facilitates the exploration of pairs
of permutations that lead us to minimize the fitness func-
tion, thereby ensuring a thorough examination of potential
solutions. Following the crossover, the mutation operator is
implemented, involving the swapping of two genes within
each permutation. This step introduces further diversity
and exploration in the search process, enabling the algo-
rithm to converge towards more optimal solutions. The
inherent property of MDS matrices, where permuting rows
or columns does not compromise their MDS characteristics,
extends to our algorithm. Consequently, operations such as
crossover and mutation (involving the swapping of two
genes within the permutation) also uphold the MDS prop-
erty. The combination of these operators contributes to the
efficacy and robustness of the genetic algorithm in efficiently
navigating through the search space and identifying MDS
involutory matrices with improved characteristics.

4. Results and Discussion

The pursuit of self-dual MDS codes presents a challenging
task, given the inherent complexities associated with their
construction. Furthermore, the creation of MDS matrices
over finite fields of characteristic 2 is no straightforward
endeavor. Therefore, our approach primarily focuses on
smaller code sets, where we endeavor to extract specific
properties. These properties serve as foundational elements
for the utilization of our algorithm in the identification of
involutory MDS matrices. The application of our method
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Figure 1: Population, chromosomes, and genes.
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Figure 2: Genetic algorithm-based method.
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holds significant value, as it enables the derivation of crucial
matrices. These matrices, in turn, contribute to the establish-
ment of an essential automorphism group. This develop-
ment opens doors to important applications that extend
beyond the realm of error correction coding, encompassing
broader domains where automorphisms play a pivotal role.
To execute the method, the default parameters mentioned
in Table 1 are used.

Our initial population is comprised of permutations of
length n, where the product of n × n represents the dimen-
sion of the MDS matrix. These permutations act upon the
rows (left action) and columns (right action) of the MDS
matrix iteratively, with the objective of identifying a pair of
permutations that satisfy a specific condition, leading to
the transformation of the MDS matrix into an involutory
MDS matrix.

The size of our initial population is contingent upon the
search space, which is equal to n 2 . In our particular case,
given the relatively small size of the matrix, we have opted
for an initial population size of 12 individuals. Also, a high
crossover rate promotes diversity and accelerates conver-
gence in our algorithm, while a low mutation rate maintains
diversity and prevents local solution trapping. As a selection
method, we employ elitism by selecting the top 6 chromo-
somes. This balance optimizes solution exploration. The
solution involves finding pairs of permutations that lead to
an involutory property in MDS matrix. By employing these
predefined parameter values, the genetic algorithm-based
method can efficiently explore the search space, find poten-
tial solutions, and converge towards an optimal the given
problem.

In the context of MDS codes, the generator matrix G
may not always be in systematic form initially. However,
through the application of the Gauss-Jordan elimination
process, it can be transformed into systematic form. In our
specific case, we focus on working with generator matrices
that are already in systematic form. This form facilitates
the representation of the code with easily identifiable sys-
tematic components.

Example 1. Let α be a root of p x = x4 + x + 1 ∈ F2 X , where
α is a primitive element in F24 , and let G1 be the following
generator matrix of an MDS code of dimension 3 and length
6 over F24 [8]:

G1 =

1 0 0 α3 1 + α2 α2 + α3

0 1 0 α α3 1 + α + α3

0 0 1 1 + α + α3 α2 + α3 α + α2

=

1 0 0 α3 α8 α6

0 1 0 α α3 α7

0 0 1 α7 α6 α5

= I3 M

8

Our MDS matrix M is

M =
α3 α8 α6

α α3 α7

α7 α6 α5

9

We can easily check that our MDS matrix M is an
orthogonal MDS matrix; also, M is not an involutory MDS
matrix.

After using the algorithm, we get the following matrix
using the pair of permutations ((),(1,2)):

M ′ =
α8 α3 α6

α3 α α7

α6 α7 α5

10

M ′ is the involutory MDS matrix.

Example 2. Let α be a root of p x = x4 + x + 1 ∈ F2 X , where
α is a primitive element in F24 , and let G2 be the following

1 2 4 5 6 ………… 9 7 8 n 2 5 4 1 3 ………… 9 6 7 nParents

1 7 4 5 2 ………… 9 6 8 n 2 3 4 1 6 ………… 9 5 7 nOffspring

1 7 4 5 2 …… 9 …… 6 8 n 2 3 4 1 6 ………… 9 5 7 nMutated offspring

Crossover

Mutation

Left action Right action

Figure 3: Crossover and mutation operators.

Table 1: Default parameters.

Parameter Value

Initial population size 12

Selection Elitism

Crossover rate 0.97

Mutation rate 0.02

Number of generations 8
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generator matrix of an MDS code of dimension 4 and length
8 over F24 :

G2 =

1 0 0 0 α + α3 α2 + α3 1 α + α2

0 1 0 0 1 α + α2 α + α3 α2 + α3

0 0 1 0 α + α2 1 α2 + α3 α + α3

0 0 0 1 α2 + α3 α + α3 α + α2 1

=

1 0 0 0 α9 α6 1 α5

0 1 0 0 1 α5 α9 α6

0 0 1 0 α5 1 α6 α9

0 0 0 1 α6 α9 α5 1

= I4 M

11

For this example, our MDS matrix M is

M =

α9 α6 1 α5

1 α5 α9 α6

α5 1 α6 α9

α6 α9 α5 α9

12

After using the same algorithm, we get the following
matrix using the pair of permutations ((24), (34)):

M ′ =

α9 α6 α5 1
α6 α9 1 α5

α5 1 α9 α6

1 α5 α6 α9

13

M ′ is the involutory MDS matrix.

Example 3. Let α be a root of p x = x3 + x + 1 ∈ F2 X , where
α is a primitive element in F23 , and let G3 be the following
generator matrix of an MDS code of dimension 3 and length
6 over F23 [14]:

G3 =

1 0 0 1 + α + α2 1 + α2 1 + α

0 1 0 1 + α2 1 + α 1 + α + α2

0 0 1 1 + α 1 + α + α2 1 + α2

=

1 0 0 α5 α6 α3

0 1 0 α6 α3 α5

0 0 1 α3 α5 α6

= I3 M

14

For this example, our MDS matrix M is

M =
α5 α6 α3

α6 α3 α5

α3 α5 α6

15

After using the same algorithm, we get the following
matrix using the pair of permutations ((23), (23)):

M ′ =
α5 α3 α6

α3 α6 α5

α6 α5 α3

16

M ′ is the involutory MDS matrix.

It is important to note that the results obtained from the
search for MDS involutory matrices using generator matrices
of self-dual MDS codes and genetic algorithm-based methods
are not unique. The nature of the genetic algorithm introduces
an element of randomness in the selection, crossover, and
mutation processes, leading to different solutions in each
run. As a result, multiple valid involutory MDS matrices
may be discovered, all satisfying the desired criteria. The non-
uniqueness of solutions highlights the diversity and flexibility
of the genetic algorithm in exploring the search space and pre-
senting a variety of feasible solutions for the given problem,
which may be advantageous in practical applications.

5. Automorphism Group of Some MDS Codes

By employing the Jordan-Gauss elimination technique, we
transform the generator matrix into a systematic form I
M ′ , with M ′ being an MDS matrix. Subsequently, our
genetic algorithms facilitate the derivation of an involutory
MDS matrix M from an existing MDS matrix. Let C be 2
n, n an MDS code of generator matrix G in systematic form
and GLn 2q the general linear group of size n over F2q ; we
consider this mapping ψ which is also a group homomor-
phism defined by

ψ Aut C ⟶GLn 2q ,
σ⟶D such thatDG =GPσ,

17

where Pσ is the permutation matrix associated with σ.

Theorem 7. Aut C is not trivial.

Proof. Let σ0 ∈ S2n; its corresponding permutation matrix
Pσ0

= σ0 I2n , where

σ0 = 1, n + 1 2, n + 2 ⋯ n, 2n ,

6 Computational and Mathematical Methods



σ0 ∈Aut C ⇔ ∃D ∈GLn 2q such thatDG = GPσ0

⇔DIn +DM =MIn + I2n
⇔DIn =MIn andDM = I2n
⇔M2 = In

18

The automorphism group Aut C always contains at
least one nontrivial automorphism, distinct from the iden-
tity automorphism.

Corollary 8. Let σ0 = 1, n + 1 2, n + 2 ⋯ n, 2n .

σ0 ∈Aut C M is involutory MDSmatrix 19

Proof. The proof is an outcome of the preceding proof.

Proposition 9. Let π, σ ∈ S2n such that Pπ = U ⊕ L , where
U and L are two permutation matrices of permutations in
Sn:

Pσ = Pσ0
Pπ,

π ∈Aut C ⇔UM =ML,
σ ∈Aut C ⇔MUM = L

20

Proof.

π ∈Aut C ⇔ ∃D ∈GLn 2q such thatDG = GPπ

⇔DIn +DM = InU +ML

⇔DIn = InU andDM =ML

⇔UM =ML,

σ ∈Aut C ⇔ ∃D ∈ GLn 2q such thatDG =GPσ

⇔ ∃D ∈ GLn 2q such thatDG =GPσ0
Pτ

⇔ ∃D ∈ GLn 2q such thatD InM = InM
0 L

U 0
⇔DIn +DM andMU + InL

⇔DIn =MU andDM = InL

⇔MUM = L

21

Proposition 10. Let M ∈GLn 2q with M as an involutory
matrix and P m a group of n × n permutation matrices; then,
σ ∈Aut M ⇔MPσM ∈Aut M .

Proof.

σ ∈Aut M ⇔ ∃D ∈P m such thatDMPσ =M

⇔ ∃D ∈P m such that P⊺
σM

⊺D⊺ =M⊺

⇔ ∃D ∈P m such that P−1
σ M⊺D−1 =M⊺

⇔D−1 ∈Aut M⊺

⇔D−1 ∈Aut M

⇔D ∈Aut M

⇔M MPσ
−1 ∈Aut M

⇔MP−1
σ M−1 ∈Aut M

⇔MPσM
−1 ∈Aut M

⇔MPσM ∈Aut M

22

Theorem 11. Let M be an involutory matrix; then,

(1) S1 = MPσM ⊕ Pσ : σ ∈Aut M is an automor-
phism group of C

(2) S2 = Pσ0
MPσM ⊕ Pσ : σ ∈P m is an automor-

phism set of C

Proof. Let U and L be two permutation matrices.

Pτ = U ⊕ L ∈ S1 ⇔UM

=ML⇔U

=MLM−1 and L ∈Aut M ⇔U

=MLM and L ∈Aut M ⇔ Pτ

= MLM ⊕ L and L ∈Aut M ,

Pσ = Pσ0
U ⊕ L ∈ S2 ⇔MUM

= L⇔ Pσ

= Pσ0
U ⊕MUM andU

=M−1LM−1 ⇔ Pσ

= Pσ0
U ⊕MUM andU

=MLM⇔ Pσ

= Pσ0
U ⊕MUM andU ∈P m

23

Corollary 12. Let M be an involutory matrix; then, S3 =
Pσ0

, MPσM ⊕ Pσ : σ ∈Aut M is an automorphism
group of C .

Proof. Since ∀σ ∈M, from Theorem 11, MPσM ⊕ Pσ =
Pσ ⊕MPσM and Pσ ⊕MPσM Pσ0

are automorphisms
of the code C .

The identification of the automorphism group is straight-
forward when the permutation on the left side is the identity

7Computational and Mathematical Methods



permutation. This is deduced through the application of the
equivalence property, as exemplified in Example 1.

If S3 = Aut C , we say that S3 is the full automor-
phism group of the code C . Also, the number of distinct
codes that are equivalent to C is 2n / Aut C .

6. Conclusion

In this paper, we present an innovative methodology for the
identification of MDS matrices within finite fields F

q
2. This

approach leverages genetic algorithms and draws from MDS
self-dual codes, demonstrating its effectiveness through a prac-
tical example. The discovered matrices offer valuable applica-
tions, notably in establishing essential automorphism groups
that play a pivotal role in decoding algorithms, further enhanc-
ing our understanding of code structures. Looking forward, our
future endeavors will emphasize the exploration of larger
matrices, expanding the scope of practical applications. Addi-
tionally, our focus will extend to the deliberate construction
of matrices with specific and noteworthy properties, contribut-
ing to the advancement of coding theory and cryptographic
systems. These efforts collectively deepen our understanding
and open new avenues for research in this critical domain.
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