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The Sumudu transform is presented in this paper in a modified form which is aimed at improving its performance and employing
it along with a modified iteration method in order to determine the solution to a system of nonlinear partial differential equations.
This includes a theoretical analysis of the associated modified Sumudu transform. It also includes an explanation of the
mathematical method for utilizing the transform in conjunction with the modified iteration technique. The iteration method is
employed to determine the nonlinear terms of the equations. The research is valuable in the sense that it allows approximate
and exact solution configurations to be determined by combining the modified Sumudu transform with a modified iteration
method. As another benefit, the modified Sumudu transform can be developed and enhanced to be applicable to a wide range
of equations, making it an effective solution tool. By combining techniques, a final advantage is that the solutions can be
derived quickly and easily as a result of the combined approach. Finally, an old transformation which has been modified from
the Sumudu transform is combined with the modified iteration method to examine its capability of yielding convergent
solutions by incorporating the modified iteration method into it.

1. Introduction

Some phenomena occurring in nature can be modeled using
nonlinear partial differential equations (NPDEs) which is
possible in the vast majority of cases. They can be used to
model physical phenomena such as nonlinear fibre optics
and wave propagation in the Kerr media [1–3]. Systems of
NPDEs have wide-ranging engineering and science applica-
tions in many areas, such as quantum field theory and fluid
mechanics [4, 5]. Solutions of these equations can be used to
predict the behavior of a system over time, allowing us to gain
a deeper understanding of the underlying physical phenom-
ena. By utilizing this knowledge, one can design effective
solutions to problems that are difficult to solve [6]. In the
areas mentioned above, these solutions are extremely valu-
able, and they can help us optimize the design of a system.
In short, NPDEs have a wide range of applications and are
essential tools for understanding the world around us [1, 2].

The NPDEs are notoriously difficult to solve and can
require advanced mathematical techniques, their solutions
are often not unique. However, numerical methods can be
used to approximate the solutions, allowing us to gain
insight into the behavior of the system being modeled. This
is because the fact that these equations can represent intri-
cate systems with a large number of interacting components
provides a more sophisticated description of physical
systems than linear equations [4, 5].

Differentmethodshave beendevelopedbymathematicians
and physicists to solve systems of partial differential equations
(PDEs). In this regard, the Sumudu transform (ST) can be
regarded as one of these methods. The ST belongs to the class
of integral transforms such as the Laplace, Kamal, and Sawi
transforms [7–9]. It is easy to implement and an efficient, reli-
able technique and powerful tool for solving a wide range of
mathematical problems, among them PDEs [10, 11]. Further-
more, by utilizing this transform, not only will time be saved,
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but also precise and reliable results can be obtained in a
fraction of the time by using its capabilities [12–14].

The ST has applications in various fields, including phys-
ics, engineering, and mathematics. It is widely used in phys-
ics applications, such as signal processing, heat transfer, and
fluid dynamics [11, 15–17]. The ST can be used to transform
a given signal into a different domain in which the original
signal can be more easily analyzed. This is particularly useful
for solving differential equations and integral equations,
which are often encountered in physics and engineering [7,
10, 18, 19].

It is worthwhile to mention that the use of the ST in con-
junction with other methods is useful for solving PDEs with
nonlinear terms [20]. Combining these techniques can be
used to simplify the complexity of equations and make the
solution process easier. Additionally, it can be applied for
the precise determination of various systems [21–25].

Combining modified iteration (MI) and the ST is one of
the possibilities. This combination allows for the accurate
solution of many NPDEs that were previously difficult to
solve [22, 26]. In connection with the MI method, it is a
numerical technique which involves repeatedly applying a
function to the current approximation of the solution in
order to obtain a better approximation. It starts with a guess
of the solution and then uses steps of calculations to improve
the accuracy of the guess. Each iteration adds more details
and refines the solution until it converges to a precise
answer. As a result of this method, it is often used when solv-
ing a problem for which there is no analytical approach. It
uses a numerical approach to approximate the solution of
the equation. This approach is simpler than analytical
methods and can be used to quickly find approximate solu-
tions. The accuracy of the solution depends on the number
of iterations used [27].

The ST may allow more efficient and appropriate
equation-solving methods to be developed by understanding
their underlying principles [28, 29]. Thus, this would enable
researchers to explore more effective approaches to solving
equations. By doing so, researchers could unlock new solu-
tions to complicated mathematical problems that could
impact many areas of study, enabling major advances in
different fields, and paving the way for more challenging
and effective equation-solving applications [30].

Specifically, and as a follow-up to the ST, in this article,
the aim of this study is to modify the ST and then to com-
bine it with the MI method, which becomes a new technique
that can be used to solve a system of NPDEs in order to
achieve the desired results. We will demonstrate the use of
this combination by solving three systems of NPDEs as
examples. We will also present a clear example of a NPDE
and demonstrate how to combine the old transformations
from [31] with the MI method to obtain convergent solu-
tions to the NPDE.

Based on the results of our study, it is worth mentioning
that the modified Sumudu transform (MST) is an effective
technique for determining various equations that involve
derivatives. The MST is able to accurately calculate deriva-
tives of functions. It is based on the idea that a function
can be represented in terms of its derivatives. By using this

method, we can find the value of a function at a certain point
and its derivatives at that point. Additionally, it can be used
to reduce the equations to simpler forms, making them
easier to solve. This could lead to faster problem-solving
and a better comprehension of the mathematics involved.
This allows for more factual solutions to equations, as well
as a better understanding of the mathematics involved.

As a matter of fact, each integral transform has its own
properties and structure typical of a mathematical method,
and their aim is to find the solution to the differential equa-
tion based on their properties [7–9]. In spite of this, these
techniques face dilemmas if they stop at a certain number
of iterations. For instance, stopping on the third or fourth
iteration would indicate that there is an error associated
with the iteration. In order to avoid this dilemma, the
MST has been designed with a condition in its mathematical
method structure to avoid this dilemma from ever occurring
(see Section 3).

The article is structured in the following way: In Section
2, a fundamental definition of MST is presented, followed by
proofs of its theorems regarding certain functions. Examples
that we prove include constants, polynomials, trigonometric,
and exponential functions which are the main examples that
we use in this section. In Section 3, a mathematical tech-
nique for using the MST in combination with the MI
method to solve systems of NPDEs is explained which
includes the design of a combination technique and illustrat-
ing how to apply the new approach. In Section 4, we will
present a theorem concerning the convergence of series
solution. Section 5 presents three different examples of
NPDE systems solved using an appropriate MST method
combined with an MI approach, deriving the solutions of
the corresponding NPDE system that evaluates the effective-
ness of the modified Sumudu-modified iteration (MSMI)
method. At last, Section 6 demonstrates how the transfor-
mation proposed in [31] can be combined with the MI
method to solve a NPDE.

2. Fundamental Definition and Theorems

It is the primary objective of this section to establish a
fundamental understanding of the MST and to prove the
theorems of our transform that lead to results for some func-
tions, and this explores how the MST can be applied to a
range of different functions, demonstrating its potential for
a variety of applications. Furthermore, this section will pro-
vide an analysis of the various properties of the MST that
distinguish it from the traditional ST.

2.1. Modified Sumudu Transform. The MST of the function
(t) is specified as

MS f t = log a
p

∞

0
f t a− t/p dt = G p , p ∈ η1, η2

1

Here, G represents a function with respect to p and
a ∈ 0,∞ \ 1 , η1 and η2 may be finite or infinite, p is
a real number, f t is a piece-wise continuous function,
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and the abbreviation “MS” denoted to the integral trans-
form of the modified Sumudu that is studied on the
collection of functions:

A = f t ∃M,M > 0, η1, η2 > 0, s t f t <Ma t /ηg , if t ∈ −1 g × 0,∞

2

Here, g = 1, 2 and the constantMmust be finite numbers,
and the definition above is established with its applications
on the system of NPDEs. The following section is devoted
to using the above theorems with the aid of the MI method
to determine an appropriate solution to the NPDEs.

Theorem 1. For t ∈ 0,∞ , MS f t =G p , then,

MS f j t = log a
p

j

MS f t

− 〠
j−1

k=0

log a
p

j−k
f 0 , for j ≥ 0

3

Here, f j represents the jth derivative. In regards to
j = 1, it gives

MS f ′ t = log a
p

MS f t −
log a

p
f 0 4

Proof. According to the definition (1) of the MS f ,

MS f ′ t = log a
p

∞

0
f ′ t a− t/p dt 5

Using integration by parts results in

MS f ′ t = log a
p

a− t/p f t
∞

0
−

∞

0
−
log a

p
a− t/p f t dt

== −
log a
p

f 0 + log a
p

MS f t

6

Theorem 2. Let s be a constant and s ≥ 0, then

MS s = s 7

Proof. We have t = s, and using definition (1) of the MST
(MS), we obtain

MS f t = log a
p

∞

0
f t a− t/p dt

= log a
p

∞

0
s a− t/p dt

= −s a− t/p ∞

0
= s

8

Theorem 3. For an integer number j ≥ 1, the MS t j is

MS t j = j
pj

logj a
9

Let us take j = 1:

MS t = p
log a

10

Proof. When j = 1, f t = t, according to definition (1) of the
MST, we obtain

MS f t = log a
p

∞

0
f t a− t/p dt,

MS t = log a
p

∞

0
t a− t/p dt

11

Using integration by parts results in

MS t = 0 − p
log a

a− t/p
∞

0
= p
log a

12

For j = 2

MS t2 = 2 p2

log2 a
13

Proof. When j = 1, f t = t, according to definition (1) of the
MST, we obtain

MS f t = log a
p

∞

0
f t a− t/p dt,

MS t2 = log a
p

∞

0
t2a− t/p dt

14
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Using integration by parts results in

MS t2 = t2a− t/p ∞

0
−

2 t p
log2 a

a− t/p
∞

0

− 2 p2

log2 a
a− t/p

∞

0

= 0 − 0 − 0 + 2 p2
log2 a

= 2 p2
log2 a

,

15

and so on for j = 3, 4,⋯.

Remark 4. The MST of some other functions

MS emt = log a
log a − pm

, m < log a
p

,

MS sin mt = mp log a

log2 a − p2m2
,

MS cos mt = mp log2 a

log2 a − p2m2

16

3. Mathematical Method

In this section, we exhibit our mathematical technique for
solving NPDEs. This technique involves incorporating
MST into a MI method so that it can enhance precision
and adequacy.

3.1. Modified Sumudu-Modified Iteration Method for Solving
Partial Differential Equation. The combination method
corresponding to MSMI will be shown in the following
mathematical steps. We begin by considering NPDEs in
the following equation as a starting point for our technique:

L γ r, t + LN γ r, t + B r, t = 0 17

Here, γ r, t is a function with respect to the scaled
spatial variable r and time variable t, a linear operator is L
of the first order, functions in LN are linear and nonlinear,
the initial condition(s) (IC(s)) of equation (17) is γ r, 0 =
V r , and the functions V r and B r, t are known. As part
of the next step, we first apply the MST to eq. (17):

MS L γ r, t +MS LN γ r, t +MS B r, t = 0, 18

Theorems 1 and >2 can now be used along with the IC
on eq. (18) as follows:

γ r, υ = γ r, 0 −
p

log a
MS LN γ r, t + B r, t 19

According to Theorem 1, we get

MS L γ r, t = log a
p

γ r, υ − γ r, 0 20

Now, taking the inverse of MST MS
−1 of eq. (19), we

can then produce the value of γ r, t as follows:

γ r, t = γ r, 0 −MS−1 p
log a

MS LN γ r, t + B r, t

21

In the second stage, employing the MI method, eq.
(17) can be solved. In eq. (21), assume γ r, 0 = γ0 r, t ,
which would be the first approximate solution, so eq. (21)
would become

γn+1 r, t = γ0 r, 0 −MS−1

p
log a

MS LN γn r, t + Bn r, t , n = 0, 1, 2,⋯

22

Here, γ+1n represents the number of approximate
solution, and γ0 is defined as a known function.

Remark 5. In the classical iteration method, some terms are
generated during the calculation process. As a consequence,
we have to eliminate unnecessary terms from our calcula-
tions in order to avoid any complications that disturb our
calculation [3]. This can be achieved by ensuring that a
condition is defined in the MI procedure as follows:

LN γn r, t =Qn r, t + O tn+1 23

Here, O tn+1 represents terms of higher order that
should be disregarded. In this case, we can write eq. (22)
as follows:

γn+1 r, t = γ0 r, 0 −MS−1 p
log a

MS Qn r, t + Bn r, t

24

Assume that Bn r, t is taken as smooth enough so that
Taylor’s expansion can be found in the variable t,

Bn r, t =Bn r, t + O tn+1 , 25

where

Bn = 〠
n+1

k=0
Skt

k = S0 + S1t + S2t
2+⋯+Sn+1tn+1,

Sk =
1
k

dk
dtk Bn r, t

26

So, eq. (24) becomes

γn+1 r, t = γ0 r, 0 −MS−1 p
log a

MS Qn r, t + Bn r, t

27
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In contrast, it is possible to write eq. (27) as follows:

γn+1 r, t = γ0 r, 0 −MS−1

p
log a

MS Qn−1 + Bn−1 −−MS−1

p
log a

MS Qn −Qn−1 + Bn − Bn−1

28

Put n = n − 1 in (27), and after that, we employ it to
eq. (28), which gives us

γn+1 r, t = γn r, 0 −MS−1

p
log a

MS Qn −Qn−1 + Bn − Bn−1 ,

29

where the value Q−1 = B−1 = 0. Next, assume T γn r, t be
defined as follows:

T γn r, t = −MS−1 p
log a

MS Qn −Qn−1 + Bn − Bn−1

30

Assuming ξn+1 = T ξ0 + ξ1 + ξ2+⋯+ξn , such that

ξ0 = γ0,

ξ1 = T ξ0 ,

ξ2 = T ξ0 + ξ1 = T γ1 ,

⋮

ξn+1 = T ξ0 + ξ1 + ξ2+⋯+ξn ,

31

eq. (29) will be

γn+1 r, t = γn r, 0 + T γn r, t , 32

where

γ1 = γ0 + T γ0 = ξ0 + ξ1,

γ2 = γ1 + T γ1 = ξ0 + ξ1 + T ξ0 + ξ1 = ξ0 + ξ1 + ξ2,

⋮

γn = ξ0 + ξ1 + ξ2+⋯+ξn

33

Considering iterative solutions to the problem, an
approximate solution γn+1 r, t has been determined which
represents the sum of the solutions that can be obtained
through a series of solution:

γ r, t = lim
n⟶∞

γn r, t = 〠
∞

k=0
ξk 34

4. Convergence of Series Solution

The series approaches a definite limit as the number of terms
increases, indicating that the series converges to a particular
value. This is usually seen as the series approaching a single
value as the number of terms increases. There is no doubt that
infinite series is one of the most widely used concepts in math
and science. These series are useful for approximating trigo-
nometrical and logarithmic functions, evaluating difficult
differential equations, and defining new functions. In this
study, it will be useful to refer to the following theorem.

Theorem 6. Assuming that the series starts with λ, and
each term is the result of multiplying the preceding term
by μ, which is known as a geometric series, and has the
following form

〠
∞

c=0
λμc = λ + λμ + λμ2 + λμ3+⋯,  λ ≠ 0 , 35

then the series (35) tends to converge if μ < 1 and
tends to diverge if μ ≥ 1 [32]. If convergence occurs then,
the sum is

〠
∞

c=0
λμc = λ

1 − μ
36

5. Numerical Applications

Here, we illustrate how the MSMI method is effective for
solving certain systems of NPDEs, and the semianalytic
(numerical with analytic) MSMI method is employed for
homogeneous and nonhomogeneous systems. In order to
attain the desired solution, we start with a first approximate
solution γ0 r, h, t , based on the IC γ r, h, 0 , and then apply
the MSMI method onto the system of NPDEs.

Example 7. Take into consideration the system of homoge-
neous NPDEs,

ϕt r, h, t = ϕ2ψ − 2ϕ + 1
4 ϕrr + ϕhh ,

ψt r, h, t = ϕ − ϕ2ψ + 1
4 ψrr + ψhh ,

37

where ϕ and ψ are functions with respect to the scaled
spatial variables r and h and time variable t. The ICs of
eq. (37) are

ϕ r, h, 0 = ϕ0 = e−r−h,

ψ r, h, 0 = ψ0 = er+h
38
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In comparison with eq. (17), it is evident that B
r, h, t = 0 in eq. (37), and

ϕt =
∂ϕ r, h, t

∂t
,

LN ϕ r, h, t = − ϕ2ψ − 2ϕ + 1
4 ϕrr + ϕhh ,

ψt =
∂ψ r, h, t

∂t
,

LN ψ r, h, t = − ϕ − ϕ2ψ + 1
4 ψrr + ψhh

39

As outlined in Section 3, by using the MST and
applying the steps from eq. (18) to eq. (29), we have

γ n+1,ϕ r, h, t = e−r−h −MS−1 p
log a

MS Q n,ϕ −Q n−1,ϕ ,

γ n+1,ψ r, h, t = er+h −MS−1 p
log a

MS Q n,ψ −Q n−1,ψ ,

40

where γ 0,ϕ r, h, t = e−r−h and γ 0,ψ r, h, t = er+h are first
approximate solutions. Significantly from eq. (23), we can
findQ n,ϕ andQ n,ψ in eq. (40) from the following relations:

Q n,ϕ = LN ϕn r, h, t = −ϕ2nψn + 2ϕn −
1
4 ϕ n,rr + ϕ n,hh ,

Q n,ψ = LN ψn r, h, t = −ϕn + ϕ2nψn −
1
4 ψ n,rr + ψ n,hh

41

Next, we need to follow the steps from eq. (30) to relation
(34). When n = 0, eq. (30) becomes

ξ 1,ψ = T γ 0,ψ = −MS−1

p
log a

MS Q 0,ψ −Q 0−1,ψ , whereQ −1,ψ = 0,

ξ 1,ϕ = T γ 0,ϕ = −MS−1

p
log a

MS Q 0,ϕ −Q 0−1,ϕ , whereQ −1,ϕ = 0,

42

ξ 0,ϕ = γ 0,ϕ r, h, t = e−r−h,

ξ 0,ψ, = γ 0,ψ r, h, t = er+h
43

As n = 0, eq. (41) becomes

Q 0,ψ = ϕ20ψ0 − 2ϕ0 +
1
4 ϕ 0,rr + ϕ 0,hh ,

Q 0,ϕ = ϕ0 − ϕ20ψ0 +
1
4 ψ 0,rr + ψ 0,hh ,

44

by substituting relation (43) in eq. (44) and neglecting the
coefficients of t for which the indicators are greater or equal
to 1 O t . Then

Q 0,ϕ = 1
2 e

−r−h,

Q 0,ψ = −
1
2 e

r+h
45

Here, Q 0,ψ and Q 0,ϕ in relation (45) are time inde-
pendent, so, substituting the values of Q 0,ψ and Q 0,ϕ in
eq. (42), we get

ξ 1,ϕ = −MS−1 p
log a

MS −
1
2 e

−r−h ,

ξ 1,ψ = −MS−1 p
log a

MS
1
2 e

r+h ,
46

Since − 1/2 e−r−h and 1/2 er+h are time independent,
which mean that they are constants with respect to t, then
MST for a constant is the same constant (see Theorem 2):

ξ 1,ϕ = −MS−1 p
log a

1
2 e

−r−h ,

ξ 1,ψ = −MS−1 p
log a

−
1
2 e

r+h ,
47

and MS−1 p/log a is t (see Theorem 3). So, we have

ξ 1,ϕ = −
t
2 e

−r−h,

ξ 1,ψ = t
2 e

r+h
48

Then, the first iterations γ 1,ψ and γ 1,ϕ are

γ 1,ϕ r, h, t = ξ 0,ϕ + ξ 1,ϕ = e−r−h −
t
2 e

−r−h, 49

γ 1,ψ r, h, t = ξ 0,ψ + ξ 1,ψ = er+h + t
2 e

r+h, 50

When n = 1, we substitute γ 1,ψ and γ 1,ϕ in eq. (41)
to find Q 1,ψ and Q 1,ϕ . Our approach in this case is to
neglect the coefficient of t for which the indicators are
greater or equal to 2 (O t2 ). In this regard, we can
observe that Q 1,ψ and Q 1,ϕ are t independent:

Q 1,ϕ = 1
2 e

−r−h −
t
4 e

−r−h + O t2 ,

Q 1,ψ = −
1
2 e

r+h −
t
4 e

r+h + O t2 ,
51
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substituting the values of Q 1,ψ and Q 1,ϕ in eq. (42) to
find ξ 2,ψ and ξ 2,ϕ . So, the second iterations γ 2,ψ and
γ 2,ϕ are

γ 2,ϕ r, h, t = e−r−h −
t
2 e

−r−h + t2

8 e−r−h,

γ 2,ψ r, h, t = er+h + 1
2 e

r+h + t2

8 er+h,
52

and so on, and in the case of n⟶∞, an approximate
solution of the NPDE system can be obtained by nth
iterations as shown below:

γ ϕ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ϕ

= e−r−h − e−r−ht
2 + e−r−ht2

8 −
e−r−ht3
48

+ e−r−ht4
384 −

e−r−ht5
3840 +⋯,

53a

γ ψ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ψ

= er+h + er+ht
2 + er+ht2

8 + er+ht3
48

+ er+ht4
384 + er+ht5

3840 +⋯

53b

As a result of Theorem 6, we can verify that the series
(53a) converges, where λ = e−r−h and μ = −t/2. Now, when
t/2 < 1, the resulting sum is

〠
∞

c=0
e−r−h −

t
2

c

= e−r−h

1 + t/2 , 54

and the series in t of γ ϕ will give

γ ϕ r, h, t = e−r−h− 1/2 t 55a

The same discussion can be made about (53b), where
the series in t of ψ gives

γ ψ r, h, t = er+h+ 1/2 t 55b

From relations (55a) and (55b), the convergent
Taylor’s series yield the solutions shown in Figures 1 and
2, Figure 3 illustrates the exact and approximate solutions
of (37) at t = 1 related to (55a) and (53a), respectively, and
Figure 4 illustrates the exact and approximate solutions of
(37) at t = 1 related to (55b) and (53b), respectively. The
results from Figures 3 and 4 with the least square error
are shown in Table 1.

Example 8. Take into consideration the system of nonhomo-
geneous NPDEs:

ϕt r, h, t − ψrχh = 1,
ψt r, h, t − χrϕh = 5,
χt r, h, t − ϕrψh = 5,

56

with the ICs

ϕ r, h, 0 = r + 2h,

ψ r, h, 0 = r − 2h,

χ r, h, 0 = −r + 2h

57

Compering eq. (56) to eq. (17)

ϕt =
∂ϕ r, h, t

∂t
,

LN ϕ r, h, t = −ψrχh,

ψt =
∂ψ r, h, t

∂t
,

LN ψ r, h, t = −χrϕh,

χt =
∂χ r, h, t

∂t
,

LN χ r, h, t = −ϕrψh, 58

Bϕ r, h, t = −1,
Bψ r, h, t = −5,
Bχ r, h, t = −5

59

As outlined in Section 3, by using the MS method and
applying the steps from eq. (18) to eq. (29), we have

γ n+1,ϕ r, h, t = t + r + 2h −MS−1

p
log a

MS Q n,ϕ −Q n−1,ϕ

+ B n,ϕ − B n−1,ϕ ,

γ n+1,ψ r, h, t = 5t + r − 2h −MS−1

p
log a

MS Q n,ψ −Q n−1,ψ

+ B n,ψ − B n−1,ψ ,

γ n+1,χ r, h, t = 5t − r + 2h −MS−1

p
log a

MS Q n,χ −Q n−1,χ

+ B n,χ − B n−1,χ ,

60
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Figure 1: The plot that shows the solution of (37): (a) the function γ ϕ r, h, t = e−r−h− 1/2 t and (b) the function γ ϕ r, h, t at r = 5,
h = 5, t = 5.
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Figure 2: The plot that shows the solution of (37): (a) the function γ ψ r, h, t = er+h+ 1/2 t and (b) the function γ ψ r, h, t at r = 5,
h = 5, t = 5.
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Figure 3: The plot that shows the exact solution (55a) and approximate solution (53a) of (37) at t = 1.
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where

γ 0,ϕ r, h, t = t + r + 2h,

γ 0,ψ r, h, t = 5t + r − 2h,

γ 0,χ r, h, t = 5t − r + 2h,

61

are first approximate solutions. Significantly from eq. (23),
we can find Q n,ϕ and Q n,ψ in eq. (60) from the following
relations:

Q n,ϕ = −ψ n,r χ n,h ,
Q n,ψ = −χ n,r ϕ n,h ,
Q n,χ = −ϕ n,r ψ n,h

62

Next, we need to follow the steps from eq. (30) to rela-
tion (34). When n = 0, eq. (30) becomes

ξ 1,ϕ r, h, t = T γ 1,ϕ

= −MS−1 p
log a

MS Q 0,ϕ −Q −1,ϕ

+ B 0,ϕ − B −1,ϕ ,

ξ 1,ψ r, h, t = T γ 1,ψ

= −MS−1 p
log a

MS Q 0,ψ −Q −1,ψ

+ B 0,ψ − B −1,ψ ,

ξ 1,χ r, h, t = T γ 1,χ

= −MS−1 p
log a

MS Q 0,χ −Q −1,χ

+ B 0,χ − B −1,χ

63
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Figure 4: The plot that shows the exact solution (55b) and approximate solution (53b) of (37) at t = 1.

Table 1: Least square error of the solutions for Example 7.

The points The results from Figure 3 and the errors The solutions from Figure 4 and the errors
r Exact Approximate Error Exact Approximate Error

-1 4.48169 4.48154 2 2373e − 08 0.22313 0.22313 9 9895e − 12
-0.77778 3.58866 3.58854 3 6719e − 08 0.27866 0.27865 2 5569e − 11
-0.55556 2.873571 2.87348 4 5917e − 08 0.34800 0.34799 4 9868e − 11
-0.33333 2.30098 2.30089 5 1814e − 08 0.43460 0.43459 8 7765e − 11
-0.11111 1.84248 1.84242 5 5595e − 08 0.54275 0.54274 1 4687e − 10
0.11111 1.47534 1.47529 5 8020e − 08 0.67781 0.67780 2 3905e − 10
0.33333 1.18136 1.18132 5 9575e − 08 0.84648 0.84647 3 8282e − 10
0.55556 0.94596 0.94593 6 0571e − 08 1.05713 1.05711 6 0705e − 10
0.77778 0.75747 0.75744 6 1210e − 08 1.32019 1.32017 9 5675e − 10
1 0.60653 0.60651 6 1620e − 08 1.64872 1.64870 1 5022e − 09
Least square error 4 5179e − 07 Least square error 2 5057e − 09
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The values Q−1 = 0 and B−1 = 0, and

ξ 0,ϕ = γ 0,ϕ r, h, t = t + r + 2h,

ξ 0,ψ, = γ 0,ψ r, h, t = 5t + r − 2h,

ξ 0,χ, = γ 0,χ r, h, t = 5t − r + 2h

64

As n = 0, relations (59) and (62) become

Q 0,ϕ = −ψ 0,r χ 0,h = −2, B 0,ϕ = −1,

Q 0,ψ = −χ 0,r ϕ 0,h = 2, B 0,ψ = −5,

Q 0,χ = −ϕ 0,r ψ 0,h = 2, B 0,χ = −5

65

Here, Q 0,ϕ ,Q 0,ψ , Q 0,χ , B 0,ϕ , B 0,ψ , and B 0,χ in
(65) are time independent. So, substitute relation (65) in
eq. (63) to find ξ 1,ψ , ξ 1,ϕ and ξ 1,χ :

ξ 1,ϕ = −MS−1 p
log a

MS −3 ,

ξ 1,ψ = −MS−1 p
log a

MS −3 ,

ξ 1,χ = −MS−1 p
log a

MS −3

66

Since 3 is constant, then MS of a constant is the same
constant (see Theorem 2):

ξ 1,ϕ =MS−1 3p
log a

,

ξ 1,ψ =MS−1 3p
log a

,

ξ 1,χ =MS−1 3p
log a

,

67

and MS−1 p/log a is t (see Theorem 3), so we get

ξ 1,ϕ = 3t,
ξ 1,ψ = 3t,
ξ 1,χ = 3t,

68

and then, the first iterations γ 1,ψ , γ 1,ϕ and γ 1,χ are

γ 1,ϕ r, h, t = ξ 0,ϕ + ξ 1,ϕ = r + 2h + 3t,

γ 1,ψ r, h, t = ξ 0,ψ + ξ 1,ψ = r − 2h + 3t,

γ 1,χ r, h, t = ξ 0,χ + ξ 1,χ = −r + 2h + 3t

69

When n = 1, to find Q 1,ψ ,Q 1,ϕ and Q 1,χ and B 1,ψ ,
B 1,ϕ and B 1,χ , we substitute γ 1,ψ and γ 1,ϕ in relation

(62). Clearly, we do not have any neglected terms (O t2 ).
In this regard, we can observe that Q 1,ψ ,Q 1,ϕ and Q 1,χ
are t independent,

Q 1,ϕ = −2, B 1,ϕ = −1,

Q 1,ψ = 2, B 1,ψ = −5,

Q 1,χ = 2, B 1,χ = −5,

70

and in order to find ξ 2,ψ , ξ 2,ϕ and ξ 2,χ , substitute the
values of relation (70) in eq. (30):

ξ 2,ϕ r, h, t = −MS−1 p
log a

MS Q 1,ϕ −Q 0,ϕ

+ B 1,ϕ − B 0,ϕ = 0,

ξ 2,ψ r, h, t = −MS−1 p
log a

MS Q 1,ψ −Q 0,ψ

+ B 1,ψ − B 0,ψ = 0,

ξ 2,χ r, h, t = −MS−1 p
log a

MS Q 1,χ −Q 0,χ

+ B 1,χ − B 0,χ = 0

71

So, the second iterations γ 2,ψ , γ 2,ϕ and γ 2,χ are

γ 1,ϕ r, h, t = ξ 0,ϕ + ξ 1,ϕ + ξ 2,ϕ = r + 2h + 3t + 0,

γ 1,ψ r, h, t = ξ 0,ψ + ξ 1,ψ + ξ 2,ψ = r − 2h + 3t + 0,

γ 1,χ r, h, t = ξ 0,χ + ξ 1,χ + ξ 2,χ = −r + 2h + 3t + 0
72

Therefore, the series solutions (72) of the system (56) are
ended in the second iterations. As a result, the solution of the
system (56) is

γ 1,ϕ r, h, t = r + 2h + 3t, 73a

γ 1,ψ r, h, t = r − 2h + 3t, 73b

γ 1,χ r, h, t = −r + 2h + 3t 73c

From (73a), (73b), and (73c), the convergent Taylor’s
series yield the solutions shown in Figure 5, and
Figures 6–8 illustrate the exact solutions of (56) at t = 1
related to (73a), (73b), and (73c), respectively. Based on the
results of (71), the third iteration is equal to the second
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iteration. So, the functions (73a), (73b), and (73c) consider
the final (exact) solutions.

Example 9. Take into consideration the system of homoge-
neous NPDEs:

ϕt r, h, t + ϕϕr + ψϕh − ϕrr − ϕhh = 0,
ψt r, h, t + ϕψr + ψψh − ψrr − ψhh = 0,

74

with the ICs

ϕ r, h, 0 = r + h,
ψ r, h, 0 = r − h

75

As in Example 7, it is evident that B r, h, t = 0, and we
need to follow the process in Section 3, and apply the steps
from (18) to (29), we get
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Figure 5: The plot that shows the solution of (56). (a) The function γ 1,ϕ r, h, t = r + 2h + 3t. (b) The function γ 1,ϕ r, h, t = r + 2h + 3t at
r = 5, h = 5, t = 5. (c) The function γ ψ r, h, t = r − 2h + 3t. (d) The function γ ψ r, h, t = r − 2h + 3t at r = 5, h = 5, t = 5. (e) The function
γ χ r, h, t = −r + 2h + 3t. (f) The function γ χ r, h, t = −r + 2h + 3t at r = 5, h = 5, t = 5.
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γ n+1,ϕ r, h, t = r + h −MS−1 p
log a

MS Q n,ϕ −Q n−1,ϕ ,

γ n+1,ψ r, h, t = r − h −MS−1 p
log a

MS Q n,ψ −Q n−1,ψ

76

So, when n = 0, we get

ξ 0,ϕ = γ 0,ϕ r, h, t = r + h,

ξ 0,ψ, = γ 0,ψ r, h, t = r − h,

ξ 1,ϕ = −2rt,

ξ 1,ψ = −2ht

77

Then, the first iterations γ 1,ψ and γ 1,ϕ are

γ 1,ϕ r, h, t = ξ 0,ϕ + ξ 1,ϕ = r + h − 2rt,

γ 1,ψ r, h, t = ξ 0,ψ + ξ 1,ψ = r − h − 2ht,
78

when n = 1, we get

ξ 2,ϕ = 2ht2 + 2rt2,

ξ 2,ψ = 2rt2 − 2ht2
79

Then, the second iterations will be

γ 2,ϕ r, h, t = r + h − 2rt + 2ht2 + 2rt2,

γ 2,ψ r, h, t = r − h − 2ht + 2rt2 − 2ht2,
80

and so on, and when n⟶∞, the nth iterations will be

γ ϕ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ϕ = r + h − 2rt + 2ht2 + 2rt2 − 4rt3+⋯,

γ ψ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ψ = r − h − 2ht + 2rt2 − 2ht2 − 4ht3+⋯

81

more clearly,

γ ϕ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ϕ

= r + h − 2rt + 2r + 2h t2 − 4rt3

+ 4r + 4h t4 − 8rt5+⋯,

82a

γ ψ r, h, t = lim
n⟶∞

〠
n

k=0
ξ k,ψ

= r − h − 2rt + 2r − 2h t2 − 4rt3

+ 4r − 4h t4 − 8rt5+⋯

82b

As a result of Theorem 6, we can verify that the
series (82a) converges, where λ = 2t2 and μ = −2t. Now,
when 2t < 1, the resulting sum is

〠
∞

c=2
2t2 −2t c = 2t2

1 + 2t , 83

and the series in t of γ ϕ will give

γ ϕ r, h, t = r + h − 2rt
1 − 2t2 84a

The same discussion can be made about (82b), where
the series in t of ψ gives

γ ψ r, h, t = r − h − 2ht
1 − 2t2 84b

From (84a) and (84b), the convergent Taylor’s series
yield the solutions shown in Figures 9 and 10, and in
Figure 11, we can see the exact and approximate solu-
tions to the system (74) at t = 0 1, which relate to (84a)
and (82a), respectively, while in Figure 12, we can see
the exact and approximate solutions to the system (74)
at t = 0 1, which relate to (84b) and (82b), respectively.
Table 2 shows the results from Figures 11 and 12 as well
as the least square error for the two figures.

6. Combination of the Old Modified Sumudu
Transform with the MI Method

According to article [31], the author introduced a transform
called “the modified Sumudu transform”, which was applied
to a number of functions, and its properties were studied.
Nevertheless, despite its presented properties, it is possible
to investigate whether a convergent series solution can be
achieved when it is combined with the MI method for
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Figure 8: The plot that shows the exact solution (73c) of (56) at t
= 1.
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solving NPDE. The following example illustrates that the
combination of these techniques can produce an approxi-
mate solution when used in conjunction with the MI
method and that it can be used effectively.

Example 10. Take into consideration the NPDE:

ϕt + ϕϕr r, t = 0, 85

with the ICs

ϕ r, 0 = r, ϕ 0, t = 0, 86

and using the transformation mentioned in [31] to eq. (85)
with utilizing (86), we obtain

1
v
log a Φ v − r + Sa ϕϕr = 0,

log a Φ v − r + vSa ϕϕr = 0,
log a Φ v = r − vSa ϕϕr ,

Φ v = r
log a

−
1

log a
vSa ϕϕr

87

Now, both sides of eq. (87) need to be transformed in the
inverse direction as follows:
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Figure 9: The plot that shows the solution of (74): (a) the function γ ϕ r, h, t = r + h − 2rt / 1 − 2t2 and (b) the function γ ϕ r, h, t
= r + h − 2rt / 1 − 2t2 at r = 5, h = 5, t = 5.
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Figure 11: The plot that shows the exact solution (84a) and approximate solution (82a) of (74) at t = 0 1.
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Figure 12: The plot that shows the exact solution (84b) and approximate solution (82b) of (74) at t = 0 1.

Table 2: Least square error of the solutions for Example 9.

The points The results from Figure 11 and the errors The results from Figure 12 and the errors
r Exact Approximate Error Exact Approximate Error

-1 -1.83673 -1.83672 2 1591e − 10 0.20408 0.20408 2 6656e − 12
-0.77778 -1.60998 -1.60996 3 8180e − 10 -0.02268 -0.02268 2 6985e − 12
-0.55556 -1.38322 -1.38321 5 0425e − 10 -0.24943 -0.24943 6 6803e − 12
-0.33333 -1.15646 -1.15645 5 8984e − 10 -0.47619 -0.47619 2 1193e − 11
-0.11111 -0.92971 -0.92970 6 4516e − 10 -0.70295 -0.70294 5 2817e − 11
0.11111 -0.70295 -0.70294 6 7679e − 10 -0.92971 -0.92970 1 0814e − 10
0.33333 -0.47619 -0.47619 6 9130e − 10 -1.15646 -1.15645 1 9373e − 10
0.55556 -0.24943 -0.24943 6 9528e − 10 -1.38322 -1.38321 3 1618e − 10
0.77778 -0.02268 -0.02268 6 9532e − 10 -1.60998 -1.60996 4 8207e − 10
1 0.20408 0.20408 6 9798e − 10 -1.83673 -1.83672 6 9798e − 10
Least square error 5 0956e − 9 Least square error 1 1861e − 9
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ϕ r, t = r − S−1
a

1
log a

vSa ϕϕr , = r − S−1
a

1
log a

vSa ϕϕr

88

Then, when

ϕ r, t = 〠
∞

n=0
ϕn r, t , 89

then,

ϕn+1 r, t = r − S−1
a

1
log a

vSa ϕϕr 90

Now, the zero iteration is

ϕ0 r, t = r, 91

and using the MI method, we get the first iteration,

ϕ1 r, t = −S−1
a

1
log a

vSa ϕ0ϕ 0,r , = −rt, 92

and so on,

ϕ r, t = −rt5 + rt4 − rt3 + rt2 − rt + r+⋯ 93

In this case, according to Theorem 6, eq. (93) converges
when t < 1 and the sum is

〠
∞

c=0
r −t c = r

1 + t
94

The function (93) is a convergent series solution in
which the sum of a convergent series is ϕ r, t = r/ 1 + t
(see Figure 13). Consequently, this result has implications
for the understanding that the combination of the old MST
presented in [31] with the MI method is able to provide a
solution for eq. (85) that cannot be achieved by using the
transformation only. This means that, by leveraging the MI

−5
5

4 5

0

3
2 0

5

1
0 −5

t
r

�
 (r

, t
)

Figure 13: The plot that shows the solution ϕ r, t = r/ 1 + t of eq. (85).
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Figure 14: The plot that shows the exact solution (94) and approximate solution (93) of (85) at t = 0 4.
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method, we can combine the old transformation with the
MI method in order to solve the NPDE and have certainty
that the solution will be accurate. In Figure 14, we can see
the exact and approximate solutions of (85) as a result of
using the combination of the old MST with the MI
method. Also, the values of solutions and the least square
error are introduced in Table 3.

7. Conclusion

The major results of our research have been summarized
briefly. As a first step, a new transformation corresponding
to the ST has been formulated. This has been implemented
by studying transform theory and achieving MST. To get a
better understanding of MST, we began the first part of the
investigation by giving a preliminary essential definition
about the functions associated with MST. In the second step,
we proceeded to formulate the theorems of the MST, in
which we proved that the MST for various functions, as well
as the unknown function derivatives, which were utilized in
the problems, have achieved results. The transforms of these
functions have enabled us to determine the solutions to
equation systems.

In the second part of our study, we have presented a
mathematical method that employs the newly discovered
MST in conjunction with the MI method to determine sys-
tems of NPDEs whose nonlinear terms are evaluated by the
MI method. Based on this combination, the MSMI method
has produced a convergent series that is highly accurate
and reliable. Consequently, the combination of these two
methods has been effective in solving a variety of NPDE
systems. As shown in Examples 7 and 9, the approximate
solutions have been found for the systems of homogeneous
NPDEs, and according to Theorem 6, the exact solutions
have been derived (see Figures 1, 2, 9, and 10), whereas in
Example 8, an exact solution has been found to the system
of nonhomogeneous NPDEs (see Figure 5). Figures 3, 4, 11,
and 12 exhibit to the exact and approximate solutions. Addi-
tionally, Figures 6–8 only exhibit the exact solution since the
third iteration equals zero, which is the second iteration.

After that, it has been demonstrated that the old MST
referred in [31] can be used in conjunction with the MI
method to determine a NPDE, and this combination has
given a guaranteed convergent series solution, which led
to appropriate results being obtained. Accordingly,
Figure 13 has shown the convergent solution of (85) using
the method in [31] in conjunction with the MI method
which reveals through Example 10 that it gives an increas-
ingly convergent series. Consequently, we can now confi-
dently conclude that this combination provided us the
proper solution. It is evident that this method leads to the
solutions of (85) as shown in Figure 14, and the values of
the results are displayed in Table 3.

Finally, our method has the advantage of being efficient
and reliable, as it resulted in precise calculations and results,
and being able to solve NPDEs of any order. Consequently,
it is an important source of research for solving a variety
of mathematical physics problems, and one of the most
widely used tools in the field, making it one of the most
sought-after tools for researchers.
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