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In this study, we examined the impact of Cu-H2O nanoparticles on two-dimensional Casson nanofluid flows past permeable
stretching/shrinking sheet embedded in a Darcy-Forchheimer porous medium in the presence of slipperiness of surface,
suction/injection, viscous dissipation, and convective heating. Using some realistic assumptions and appropriate similarity
transformations, the governing nonlinear partial differential equations were formulated and transformed into a system of
nonlinear ordinary differential equations and then numerically solved by using the shooting technique. Numerical results are
displayed for dimensionless fluid velocity and temperature profiles, skin friction, and the local Nusselt number. The impacts of
different governing physical parameters on these quantities are presented and discussed using graphs, tables, and a chart. For
the specific range of shrinking sheet, the result shows that dual solutions exist, and temporal stability analysis is performed by
introducing small disturbances to determine the stable solutions. It is detected that the upper branch solution is
hydrodynamically stable and substantially realistic; however, the lower branch solution is unstable and physically unachievable.
The fluid flow stability is obtained by enhancing the suction, surface slipperiness, and viscous dissipation parameters. However,
augmenting the values of the Casson factor, Cu-H2O nanoparticle volume fraction, porous medium, porous medium inertia,
and convective heating parameters increases the blow-up stability of the fluid flow. The rate of heat transfer enhances with the
increment in the Casson factor, porous medium, porous medium inertia, suction, velocity ratio, nanoparticle volume fraction,
and convective heating parameters, whereas it reduces as the slipperiness of the surface and viscous dissipation parameters rise.
Increment of Cu-H2O nanoparticle volume fraction into the Casson fluid boosts the heat transfer enhancement rate higher for
the shrinking sheet surface.

1. Introduction

For a few decades, researchers have given due attention to
the study of non-Newtonian fluids due to their significant
features in the fields of industrial processes and technologi-
cal sciences, such as polymer engineering, certain separation
processes, manufacturing of papers and foods, and petro-
leum drilling, according to Bhattacharyya [1]. For instance,
drilling muds, synthetic lubricants, clay coating, biological
fluids like blood, certain oils, paints, and sugar solutions

are common cases of non-Newtonian fluid types. The fun-
damental equations of Navier-Stokes cannot momentarily
define the characteristics of the non-Newtonian fluid flow
field due to the complexity in the mathematical expression
of the flow problem. For non-Newtonian fluid, several
models are defined based on rheological qualities, such as
Bulky, Casson, Eyring-Powell, Seely, Oldroyd-B, Maxwell,
Oldroyd-A, Carreau, Jeffrey, and Burger. From these
models, the Casson model [2] is the most important model
for the suspension and blood properties in our daily life.
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Magnetohydrodynamic Casson fluid under the aligned
magnetic field with inconstant thickness was investigated
by Saravana et al. [3]. Zhang et al. [4] studied the heat
transport characteristic flow of the Casson fluid with elec-
troosmosis forces. Recently, heat transfer on the Casson
nanofluid overflow past a Riga plate (one of the external
agents used to limit the friction force and control the flow
of fluid) was investigated by Upreti et al. [5].

For its frequent applications in industrial and engineer-
ing, the theme of flow nanofluids has attracted due atten-
tion. Tawari and Das [6] did an analysis on nanofluids.
Gupta et al. [7] discovered the astonishing thermal proper-
ties of nanofluids and improved the causes of nanofluids’
thermal conductivity. In many industrial processes, heating
and cooling of fluids are fundamental demands such as
power manufacturing and delivery. Frequently, there is a
need to enhance the process of cooling of high-energy
equipment. [8–10] worked on how to improve the thermal
conductivity of fluids, so that the heat transfer of the fluid
enhances. Eastman et al. [11] investigated enhancements in
thermal conductivity of fluid using Cu nanofluids, where
just a 0.3% volume fraction of 10 nm diameter Cu nano-
particles led to an increment of up to 40% in the ethylene
glycol thermal conductivity. Moreover, the convection heat
transfer of nanofluids was also investigated by different
researchers, and based on that, significant improvement
was reported in the heat transfer rate. Zubair et al. [12]
did an analysis on the magnetohydrodynamic Casson
nanofluid flow with entropy generation in the presence of
viscous dissipation. Saeed et al. [13] demonstrated three-
dimensional Casson’s nanofluid flow past a rotating
inclined disk with the influence of heat absorption/produc-
tion. Khan et al. [14] studied the impact of an induced
magnetic field on mixed convective stagnation flow of
TiO2-Cu-H2O hybrid nanofluid towards a stretchable sheet
surface. Rizwana et al. [15] concentrated on the non-
Newtonian fluid flow at an oblique stagnation point of
Cu-H2O nanofluid flow, concluding that the Casson fluid
parameter makes the fluid velocity faster and decreases
the boundary layer while the temperature profile drops
with non-Newtonian parameter β and nanoparticle volume
fraction ϕ, and the system heats up by the impact of vis-
cous dissipation. More discussion on heat transfer
enhancement is detailed by Lund et al. [16] and Hussanan
et al. [17].

Due to its enormous applications in areas of industry
and engineering, according to Hayat et al. [18], the boundary
layer flows of non-Newtonian fluids and the heat transfer
properties due to a stretching sheet surface have attracted
researchers’ attention. Crane [19] investigated the viscous
fluid flows because of linearly stretching surface problems.
Tamoor et al. [20] studied the MHD flow of Casson’s fluid
past a stretching cylinder. In contrast to stretching sheets,
Wang [21] considered shrinking sheets, which exhibit quite
different properties from that of the stretching sheet flow.
In the shrinking surface case, because of the free-range fluid
flow happening in the boundary layer, no possible solution is
obtained. Consequently, the addition of a sufficient amount
of wall mass suction (which controls the vorticity produced

because of the shrinking of the sheet within the boundary
layer) by Miklavcic and Wang [22] or by adding stagnation
flow by Wang [23] may guarantee the existence of a solution
that is not unique. This leads to the existence of a nonunique
solution for the system of governing differential equations.
For the non-unique solutions obtained, we use a mathemat-
ical technique (called temporal stability analysis) that is used
for testing temporal stability. Experimentally, the lower
branch solution which is a part of the solution of the system
differential equations cannot be produced and, hence,
should be analyzed. Nazar et al. [24] examined a nanofluid
stagnation-point flow over a shrinking sheet. Layek et al.
[25] presented boundary layer stagnation-point flow of
non-Newtonian fluids past a shrinking/stretching sheet and
showed that as the value of the velocity ratio (shrinking/
stretching) parameter increases, the velocity and thermal
boundary layer thicknesses decrease. Again, Mandal and
Layek [26] investigated the unsteady magnetohydrodynamic
(MHD) mixed convective Casson fluid flow over a flat sur-
face in the presence of slip conditions and blowing/suction
and obtained significant results. More flow stability analysis
and testing for the existence of a dual solution were detailed
in the literature [27–30].

Studies of fluid flow and heat transfer in a porous
medium have attracted the attention of researchers towards
fluid flow in porous media for the past several decades
because of the wide range of applications, such as water
developments in geothermal supplies and drying technolo-
gies. For simulating porous media there are the Darcy,
non-Darcy, and nonequilibrium models. For low-velocity
flow with weak porosity conditions, a pioneering semi-
empirical equation was developed by Darcy. Accordingly,
Forchheimer [31] prophesied a modified equation known
as the Darcy-Forchheimer equation by introducing qua-
dratic terms in the governing momentum equation of the
fluid flow. Harris et al. [32] studied mixed convection
boundary-layer flow over a vertical surface through a porous
medium using the Brinkman model with slip. The
Brinkman-extended Darcy model was used by Dogonchi
et al. [33] to explore the natural convection of a Cu-H2O
nanofluid across a porous medium and obtain the Darcy
number which has a direct relationship with the intensity
of the convective flow across the medium. Shaw et al. [34]
studied the application to brain dynamics of the impact of
entropy generation on the Darcy-Forchheimer flow of
MnFe2O4-Casson/water nanofluid because of a rotating
disk. In their recent study, Upreti et al. [35] discussed the
hydromagnetic stagnation point magnetite ferrofluid flow
over a convectively heated shrinking/stretching permeable
sheet surface which is exposed to injection/suction in a
Darcy-Forchheimer porous medium. Joshi et al. [36] inves-
tigated the Darcy-Forchheimer flow model in a three-
dimensional case and the heat transfer phenomenon of
H2O-CNT nanofluid on a two-way stretchable surface, and
it was observed that with an enhancement in the Eckert
numbers along the two directions, for temperature curves,
two patterns were obtained, the initial temperature outlines
rose, and after that, they diminished. Moreover, Tadesse
et al. [37] studied the overall influence of blowing/suction
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on the MHD flow of Cu-Ag/H2O-C2H6O2 hybrid nano-
fluid through a stretchable surface in Darcy-Forchheimer
porous medium and found that velocity drops in the case
of suction and absence of suction/injection region, on aug-
menting the values of Forchhiemer, and porosity parame-
ters, and for blowing region, dual behavior is observed in
velocity profiles with a rise in Forchhiemer and porosity
parameters.

A thorough observation of the aforementioned above-
cited reviews and works reveals that no scientific analysis
has been done to study the mutual effects of the slipperi-
ness of the surface, nanoparticle volume fraction, thermal
and viscous dissipation, porous media, and stretching/
shrinking surface on the rate of heat transfer enhancement
in a flow into the boundary layer of the Cu-H2O-Casson
nanofluids. Filling the gap in the work of Upreti et al.
[35] (in which they consider MHD Newtonian flow), this
paper considers non-Newtonian flow subjected to a slip-
pery surface. Since in this type of fluid flow problem, dual
solutions possibly exist due to stretching/shrinking surface,
the main goal of this paper is to do stability analysis to
determine physically reliable and stable solutions and
enhancement of heat transfer as a result of adding the
Cu-H2O nanoparticle to non-Newtonian Casson fluids for
the coupled transformed ordinary differential equations.
Moreover, the numerical results of the coefficient of skin
friction, rates of heat transfer, and velocity and tempera-
ture profiles are demonstrated and discussed both graph-
ically and quantitatively. Thermally driven boundary layer
flow of the Casson nanofluid in a porous medium has
several applications in chemical and mechanical engineer-
ing, e.g., food processing and storage, geophysical sys-
tems, electrochemistry, fibrous insulation, metallurgy, the
design of pebble bed nuclear reactors, underground dis-
posal of nuclear or nonnuclear waste, and microelectron-
ics cooling. Casson’s nanofluid is more helpful for cooling

and friction-reducing agents compared to Newtonian-type
nanofluid flow.

2. Mathematical Description of the Problem

Consider the two-dimensional, viscous, homogeneous,
steady, isotropic, laminar, and incompressible boundary
layer flow of a Cu-H2O-Casson nanofluid over a linearly
stretching/shrinking sheet within a Darcy-Forchheimer
porous medium. The flow is subjected to suction/injection
of constant velocity V0 perpendicular to the sheet surface.
The shrinking/stretching sheet moves with velocity Uw =
ax, and the flow is subjected to slip condition. The surface
below the shrinking/stretching sheet surface is heated con-
vectively by a hot fluid having an initial temperature T f that
gives a heat transfer coefficient hf , and the ambient temper-
ature of the Casson nanofluid is taken as T∞. Geometrical
orientation for the flow considers the Cartesian coordinate
system where the x-axis is taken as the shrinking/stretching
sheet surface, and the y-axis is perpendicular to the sheet
surface so that the flow is confined to the half plane y > 0,
as the physical model shown in Figure 1.

The rheological equation of an isotropic and incom-
pressible flow of a Casson fluid can be written based on
Nakamura and Sawada [38] and Animasaun [39] as

τij =
2 μB +

pyffiffiffiffiffiffi
2π

p
� �

eij if π > πc

2 μB +
pyffiffiffiffiffiffiffi
2πc

p
� �

eij if π < πc

8>>><
>>>:

, ð1Þ

where τij represents components of the stress tensor, μB is
the plastic dynamic viscosity of the non-Newtonian fluid,
py ≡ μB

ffiffiffiffiffiffiffi
2πc

p
/β is the yield stress of the fluid, β is the non-

u
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Figure 1: Physical model of flow.
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Newtonian Casson parameter, π = eijeij is the ði, jÞth defor-
mation rate component (product of the rate of strain tensor
with itself), eij = 1/2½ð∂ui/∂xjÞ/ð∂uj/∂xiÞ� is the rate of strain
tensor, and πc is a critical value of π, which is based on the
non-Newtonian model. Some non-Newtonian fluids (for
instance rheopectic fluids) require a gradually enhancing
shear stress to get a constant strain rate. For the Casson fluid
flow under consideration, π > πc, and the dynamic viscosity
is defined as μf = μB + py/

ffiffiffiffiffiffi
2π

p
, and hence, the kinematic vis-

cosity becomes

νf =
μB
ρf

1 +
1
β

� �
: ð2Þ

Adopting the Darcy-Forchheimer flow model, Tiwari-
Das [6] convective transport model equations, for this inves-
tigation, the governing equations are formulated from the
balance of continuity, linear momentum, and energy past a
permeable shrinking/stretching sheet surface, with respect
to a Cartesian coordinate; x-y system is given by Tshivhi
and Makinde [28] and Tadesse et al. [37] as

∂u
∂x

+
∂v
∂y

= 0, ð3Þ

u
∂u
∂x

+ v
∂u
∂y

=U∞
dU∞
dx

+
μnf
ρnf

1 +
1
β

� �
∂2u
∂y2

−
μnf
ρnf k1

1 +
1
β

� �
·

u −U∞ð Þ − F

ρnf
ffiffiffiffiffi
k1

p u −U∞ð Þ2,
ð4Þ

u
∂T
∂x

+ v
∂T
∂y

=
knf

ρCp

À Á
nf

∂2T
∂y2

+
μnf

ρCp

À Á
nf

1 +
1
β

� �
∂u
∂y

� �2

+
μnf

ρCp

À Á
nf
k1

1 +
1
β

� �
u −U∞ð Þ2

+
F

ρCp

À Á
nf

ffiffiffiffiffi
k1

p u −U∞ð Þ3,

ð5Þ

with the subjected boundary conditions given by

u x, 0ð Þ =Uw xð Þ + μf

L
1 +

1
β

� �
∂u
∂y

, v x, 0ð Þ =V0,

−kf
∂T
∂y

x, 0ð Þ = hf T f xð Þ − T x, 0ð ÞÂ Ã
, u x,∞ð Þ⟶U∞ xð Þ, T x,∞ð Þ⟶ T∞,

ð6Þ

where u is the x component and v is the y component of the
Casson nanofluid velocity. U∞ = bx is the free stream veloc-
ity of the Casson fluid, α is the thermal diffusivity of the
fluid, μnf is the effective dynamic viscosity of the Casson
nanofluid, β is the non-Newtonian or Casson parameter,
ρnf is the effective density of the Casson nanofluid, knf is
the effective thermal conductivity of the nanofluid, k1 is
the permeability of the porous medium, F is the Forchheimer

drag force coefficient, T is the temperature of the fluid,
ðρCpÞnf is the effective heat capacity of the Casson nanofluid,
Cp is the specific heat at a constant pressure of the fluid, μf is
the dynamic viscosity of the fluid, L is the slip length coeffi-
cient, kf is the thermal conductivity of the fluid, hf is the con-
vective heat transfer coefficient, T f = T∞ + nx2 is the
convective fluid temperature below the stretching/shrinking
sheet, a is the constant of the linear stretching rate (s−1) of
the Casson fluid, and b is the constant of the linear stretch-
ing/shrinking rate (s−1) of the wall (stretching for b > 0 and
shrinking for b < 0). The parameters μnf , ρnf , knf , and
ðρCpÞnf are defined by Tadesse et al. [37] as

μnf = μf 1 − ϕð Þ−2:5,

knf =
ks + 2kf − 2ϕ kf − ks

À Á
ks + 2kf + ϕ kf − ks

À Á kf ,

ρnf = 1 − ϕð Þρf + ϕρs,

ρCp

À Á
nf = 1 − ϕð Þ ρCp

À Á
f
+ ϕ ρCp

À Á
s
,

ð7Þ

where ρf , ρs, kf , ks, ϕ and μf are the density of the base
fluid, density of the solid nanoparticle, base fluid thermal
conductivity, nanoparticle thermal conductivity, nanoparti-
cle volume fraction, and base fluid dynamic viscosity,
respectively. Note that

knf =
ks + n − 1ð Þkf − n − 1ð Þϕ kf − ks

À Á
ks + n − 1ð Þkf + ϕ kf − ks

À Á kf : ð8Þ

n = 3/Ψ, whereΨ, called the “sphericity,” is defined as the ratio
of the surface area of the sphere to that of the particle for the
same volume. For spherical particles, Ψ = 1, and for the cylin-
ders, Ψ = 0:5. This study considers the copper particle and is
spherical in shape, so that n = 3, according to Hamilton and
Crosser [40]. The thermophysical properties of nanoparticles
and base fluid at T = 300K are given in Table 1, according to
Tshivhi and Makinde [28] and Shaw et al. [34].

The above Equations (4)–(6) represent the governing
equations of the nanofluid flow when β⟶∞ and the Cas-
son fluid flow when β ≠∞ and ϕ = 0. Equations (3)–(5) can
be transformed to the dimensionless form by using the non-
dimensional variables below to obtain the similarity solu-
tions by Tadesse et al. [37].

u = axf ′ ηð Þ, v = −
ffiffiffiffiffiffiffi
aνf

p
f ηð Þ, η =

ffiffiffiffiffi
a
νf

s
y, θ ηð Þ = T − T∞

T f − T∞
,

ð9Þ
where the stream function ψ = x ffiffiffiffiffiffiffiaνf

p f ðηÞ is written as a
velocity component as

u =
∂ψ
∂y

, v = −
∂ψ
∂x

: ð10Þ
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Since the continuity equation is satisfied by (9) and (10),
automatically, Equations (4) and (5) are converted into the
following nondimensional form:

1 +
1
β

� �
A1 f ‴ −

1
Da

f ′ − 1
� �� �

+ A2 f f ″ − f ′
� �2

+ 1
� �

− Fr f ′ − 1
� �2

= 0 − 0:3cm,

ð11Þ
A3
Pr

θ″ + A4 f θ′ − 2f ′θ
� �

+ A1 Ec 1 +
1
β

� �

Â f ″
� �2

+
1
Da

f ′ − 1
� �2� �

+ Ec Fr f ′ − 1
� �3

= 0:

ð12Þ
With the dimensionless form of the boundary conditions

f 0ð Þ = S, f ′ 0ð Þ = λ + δ 1 +
1
β

� �
f ″ 0ð Þ, θ′ 0ð Þ = Bi θ 0ð Þ − 1½ �

f ′ ∞ð Þ = 1, θ ∞ð Þ = 0,
ð13Þ

where η is the similarity variable, λ is the velocity ratio
(stretching/shrinking) parameter where λ > 0 for stretching
and λ < 0 for shrinking of the sheet, Da is the Darcy num-
ber (porous media parameter), Fr is the Forchheimer (sec-
ond order porous resistance) parameter, Pr is the Prandtl
number, Ec is the Eckert number, S is the constant mass
flux parameter where S > 0 for suction and S < 0 for injec-
tion of the fluid, δ is the velocity slip parameter, and Bi is
the Biot number (convective parameter). These dimension-
less parameters and the variables A1, A2, A3, and A4 quan-
tities are defined as

Da =
ak1
νf

,

A1 = 1 − ϕð Þ−2:5,

A2 = 1 − ϕ + ϕ
ρs
ρf

,

Fr =
xF

ρf

ffiffiffiffiffi
k1

p ,

A3 =
ks + 2kf − 2ϕ kf − ks

À Á
ks + 2kf + ϕ kf − ks

À Á ,

Pr =
νf ρCp

À Á
f

kf
,

A4 = 1 − ϕ + ϕ
ρCp

À Á
s

ρCp

À Á
f

,

Ec =
U2

∞

Cp

À Á
f
T f − T∞
À Á ,

δ =
μf

L

ffiffiffiffiffi
a
νf

s
,

S = −
V0ffiffiffiffiffiffiffiaνf

p ,

Bi =
hf
kf

ffiffiffiffiffi
νf

a

r
,

λ = b
a

ð14Þ

Note that in our discussion, Fr , Da, Pr, Ec, and Bi
measure the pressure drop caused by fluid-solid interac-
tions to that of viscous and inertia resistance ratio, the rel-
ative effect of the permeability of the porous medium
versus its cross-sectional area, momentum diffusivity to
thermal diffusivity ratio, kinetic energy of the flow to heat
dissipation potential (enthalpy difference) ratio across the
thermal boundary layer, and internal thermal resistance
at the surface of the sheet to the boundary layer thermal
resistance ratio, respectively.

Moreover, according to [41], the pressure gradient in the
flow due to porous medium ∇P is given by

∇P = −
μ

k1
q −

CFρfffiffiffiffiffi
k1

p qj jq, ð15Þ

where q is the velocity vector, k1 is the permeability of the
porous medium m2, CF = 11/20ð1 − 11/20ðd/DeÞÞ is a
dimensionless form-drag constant, d is the diameter of
spheres of the porous medium, and De = 2wh/w + h is the
equivalent diameter of the bed (defined in terms of the
height h and width w of the bed). Thus, for our case, putting
F ≡ ρCF (kgm-3), we obtain Fr which is dimensionless. The
wall skin friction τw and heat flux qw are computed as

τw = μnf 1 +
1
β

� �
∂u
∂y

����
y=0

,

qw = −knf
∂u
∂y

����
y=0

,

ð16Þ

Table 1: Thermophysical properties of H2O, Casson’s fluid,
and Cu.

Properties H2O Casson’s fluid Cu

Density, ρ (kg.m-3) 997.1 1060 8933

Thermal conductivity, k (W.m-1.K-1) 0.613 0.505 401

Specific heat, Cp (J.kg
-1.K) 4179 3490 385
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so that physical quantities of interest include the coefficient
of the skin friction Cf , and the local Nusselt number Nu is
given by

Cf =
τw

ρf U
2
w

,

Nu =
xqw

kf T f − T∞
À Á ,

Re1/2x Cf = A1 1 +
1
β

� �
f ″ 0ð Þ,

Re−1/2x Nu = −A3 θ′ 0ð Þ,

ð17Þ

where Rex = xU∞/νf is the local Reynold number. To com-
pute the heat transfer enhancement (HTE) of the nanoparti-
cles, we use the following formula:

HTE =
Nu/

ffiffiffiffiffiffiffi
Rex

p
ϕ ≠ 0ð Þ −Nu/

ffiffiffiffiffiffiffiffi
Rex

p
ϕ = 0ð Þ

Nu/
ffiffiffiffiffiffiffi
Rex

p
ϕ = 0ð Þ × 100: ð18Þ

Fluid flow models of such kind could have dual solutions
based on the physical parameters within the problem from
the numerical result obtained. Therefore, by making a stabil-
ity analysis, we determine the solution which is stable and
physically practicable. We perform this analysis mathemati-
cally to validate the real solution among all the others. Thus,
to employ the stability analysis, Equations (4) and (5) should
be rewritten in unsteady (time dependent) case, according to
Merkin [42]. Thus, we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=U∞
dU∞
dx

+
μnf
ρnf

1 +
1
β

� �
∂2u
∂y2

−
μnf
ρnfk1

1 +
1
β

� �
u −U∞ð Þ

−
F

ρnf
ffiffiffiffiffi
k1

p u −U∞ð Þ2,

ð19Þ

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

=
knf

ρCp

À Á
nf

∂2T
∂y2

+
μnf

ρCp

À Á
nf

1 +
1
β

� �
∂u
∂y

� �2

+
μnf

ρCp

À Á
nfk1

1 +
1
β

� �
u −U∞ð Þ2

+
F

ρCp

À Á
nf

ffiffiffiffiffi
k1

p u −U∞ð Þ3,

ð20Þ

where here t is time.

Now, unsteady Equations (19) and (20) are transformed
as follows:

u = axf ′ η, τð Þ,
v = −

ffiffiffiffiffiffiffiaνf
p

f η, τð Þ,

ψ = x
ffiffiffiffiffiffiffiaνf

p
f η, τð Þ,

θ η, τð Þ = T − T∞
T f − T∞

,

η =
ffiffiffiffiffi
a
νf

s
y, τ = at,

ð21Þ

where τ is the nondimensional time variable. Using (21) in
(19) and (20), we have

1 +
1
β

� �
A1

∂3 f
∂η3

−
1
Da

∂f
∂η

− 1
� �" #

+ A2 f
∂2 f
∂η2

−
∂f
∂η

� �2
−

∂2 f
∂τ∂η

+ 1
" #

− Fr
∂f
∂η

− 1
� �2

= 0,

ð22Þ

A3
Pr

∂2θ
∂η2

+ A4 f
∂θ
∂η

−
∂f
∂η

θ

� �
+ A1 Ec 1 +

1
β

� �

Â ∂2 f
∂η2

 !2

+
1
Da

∂f
∂η

− 1
� �2

" #
+ Ec Fr

∂f
∂η

− 1
� �3

− A4
∂θ
∂τ

= 0,

ð23Þ
with the boundary conditions

f 0, τð Þ = S,

∂f
∂η

0, τð Þ = λ + δ 1 +
1
β

� �
∂2 f
∂η2

0, τð Þ,

∂θ
∂η

0, τð Þ = Bi θ 0, τð Þ − 1½ �,

∂f
∂η

∞,τð Þ⟶ 1,θ ∞,τð Þ⟶ 0:

ð24Þ

In order to test the stability of solutions of f ðηÞ = f0ðηÞ
and θðηÞ = θ0ðηÞ that satisfy boundary value problems
(11)–(13), we have

f η, τð Þ = f0 ηð Þ + e−ετF η, τð Þ
θ η, τð Þ = θ0 ηð Þ + e−ετG η, τð Þ

)
, ð25Þ

where ε is an unknown eigenvalue parameter (a small distur-
bance of growth or decay) that provides an infinite set of the
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eigenvalues ε < ε1 < ε2 < ε3 <…, and Fðη, τÞ and Gðη, τÞ
are small relative to f0ðηÞ and θ0ðηÞ, respectively. The fol-
lowing linearized problem will be obtained by substituting
(25) into (22)–(24).

1 +
1
β

� �
A1

∂3F
∂η3

+ A2 f0
∂2F
∂η2

−
A1
Da

1 +
1
β

� �
+ 2 A2 + Frð Þ ∂f0∂η

� �

Â ∂F
∂η

+ A2ε + 2Fr½ � ∂F∂η + A2
∂2 f0
∂η2

F − A2
∂2F
∂τ∂η

= 0,

ð26Þ

A3
Pr

∂2G
∂η2

+ A4 f0
∂G
∂η

+ A4 ε − 2
∂f0
∂η

� �
G + 2A1Ec 1 +

1
β

� �

Â ∂2 f0
∂η2

∂2F
∂η2

+
"
2A1Ec
Da

1 +
1
β

� �
∂f0
∂η

− 1
� �

+ 3EcFr
∂f0
∂η

− 1
� �2

− 2A4θ0

#
∂F
∂η

+ A4
∂θ0
∂η

F

− A4
∂G
∂τ

= 0,

ð27Þ
subjected to the boundary conditions

F 0, τð Þ = 0,
∂F
∂η

0, τð Þ = δ 1 +
1
β

� �
∂2F
∂η2

0, τð Þ, ∂G∂η 0, τð Þ = Bi G 0, τð Þ,

∂F
∂η

∞,τð Þ⟶ 0,G ∞,τð Þ⟶ 0:

ð28Þ

Following Weidman et al. [43], the initial growth or
decay of the solution (25) can be identified by obtaining
the steady state solution setting τ = 0 so that F = F0ðηÞ
and G =G0ðηÞ in Equations (26)–(28), where 0 < F0ðηÞ
≪ 1 and 0 < G0ðηÞ≪ 1. The stability of the solution
depends upon the sign of the smallest eigenvalue ε. If
the value of ε1 is positive, that shows the flow is stable,
and there is an initial decay. Conversely, if the value of ε
is negative, that shows the flow is unstable and illustrates
an initial growth of disturbance. The linearized eigenvalue
problem is given by

1 +
1
β

� �
A1F

‴
0 + A2 f0F0″+−

A1
Da

1 +
1
β

� �
+ 2 A2 + Frð Þf 0′

� �
F0′

+ A2ε + 2Fr + A2 f 0″F0 = 0,
ð29Þ

A3
Pr

G0″ + A4 f0G0′ + A4 ε − 2f0′ð ÞG0 + 2A1Ec 1 +
1
β

� �
f 0″F0″

+
2A1Ec
Da

1 +
1
β

� �
f 0′ − 1
� �

+ 3EcFr f 0′ − 1
� �2

− 2A4θ0

� �
F0′

+ A4θ0′F0 = 0,

ð30Þ

subjecting to boundary conditions

F0 0ð Þ = 0,

F0 0ð Þ = 0,

F0′ 0ð Þ = δ 1 +
1
β

� �
F0″ 0ð Þ,

G0′ 0ð Þ = Bi G0 0ð Þ,

F0′ ∞ð Þ⟶ 0,G0 ∞ð Þ⟶ 0:

ð31Þ

To obtain the smallest eigenvalues, there is a need to
relax one of the boundary conditions in the form of the
initial condition as suggested by Harris et al. [32]. In this
problem, F0′ð∞Þ⟶ 0 has been relaxed in the initial form
as F0″ð0Þ = 1. The smallest negative eigenvalues point out
the initial development of the disturbance, and the solu-
tion of the flow is unstable. On the other hand, the smal-
lest positive related eigenvalue value shows the fluid flow
is stable and physically realizable. Thus, the modified
boundary conditions (31) become

F0 0ð Þ = 0,

F ′ 0ð Þ = δ 1 +
1
β

� �
F0″ 0ð Þ,

G0′ 0ð Þ = Bi G0 0ð Þ,

F0″ 0ð Þ = 1,

F0′ ∞ð Þ⟶ 0,

G0 ∞ð Þ⟶ 0:

ð32Þ

Equations (29) and (30) of linear eigenvalue problem
are solved with the boundary conditions (31).

3. Numerical Method

To solve (11) and (12) along with the boundary condition
(13) numerically, we use the method of fourth-fifth order
using the shooting method with the MAPLE software. In
order to apply the solver, first, we reduce the system as a
set of equivalent ordinary differential equations of first order
using the substitutions yð1Þ = f and yð4Þ = θ as below

y 1ð Þ′ = f ′ = y 2ð Þ,

y 1ð Þ′ = f ′ = y 2ð Þ,

y 2ð Þ′ = f ″ = y 3ð Þ,
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y 3ð Þ′ = f ‴ =
1
Da

y 2ð Þ − 1ð Þ − 1
1 + 1/βð Þð Þ

Á A2
A1

y 1ð Þy 3ð Þ − y 2ð Þð Þ2 + 1
Â Ã

−
Fr

A1
y 2ð Þ − 1ð Þ2

� �
,

y 4ð Þ′ = θ′ = y 5ð Þ,

y 5ð Þ′ = θ″ = −
Pr
A3

�
A4 y 1ð Þy 5ð Þ − 2y 2ð Þy 4ð Þ½ � + A1 Ec 1 +

1
β

� �

Á y 3ð Þð Þ2 + 1
Da

y 2ð Þ − 1ð Þ2
� �

+ Ec Fr y 2ð Þ − 1ð Þ3
�
:

ð33Þ

For the boundary conditions (13),

ya 1ð Þ = S,

ya 2ð Þ = λ + δ 1 +
1
β

� �
k1,

ya 3ð Þ = k1,

yb 2ð Þ = 1,

ya 4ð Þ = k2,

ya 5ð Þ = Bi k2 − 1½ �,
yb 4ð Þ = 0:

ð34Þ

To do stability analysis, we follow the same procedures.
New substitutions are introduced to rewrite Equations (29)
and (30) and the boundary conditions (32) into first order
ordinary differential equations, by letting yð1Þ = F0, yð4Þ =
G0, zð1Þ = f0, and zð4Þ = θ0.

y 1ð Þ′ = F0′ = y 2ð Þ,
y 2ð Þ′ = F0″ = y 3ð Þ,

y 3ð Þ′ = F‴
0 =

1
A1 1 + 1/βð Þð Þ

��
A1
Da

1 +
1
β

� �
+ 2 A2 + Frð Þz 2ð Þ

− A2ε + 2Frð Þ
�
y 2ð Þ − A2 z 1ð Þy 3ð Þ + y 1ð Þz 3ð Þ½ �

�
,

y 4ð Þ′ =G0′ = y 5ð Þ,

y 5ð Þ′ = G0″ = −
Pr
A3

�
A4½ z 1ð Þy 5ð Þ + z 5ð Þy 1ð Þ + εy 4ð Þ½ �

− 2 y 2ð Þz 4ð Þ + z 2ð Þy 4ð Þ½ �� + 2A1 Ec 1 +
1
β

� �
y 3ð Þz 3ð Þ

+
2A1Ec
Da

1 +
1
β

� �
z 2ð Þ − 1ð Þ + 3Ec Fr z 2ð Þ − 1ð Þ2

� �
y 2ð Þ

�
:

ð35Þ

For the boundary conditions,

ya 1ð Þ = 0,

ya 2ð Þ = δ 1 +
1
β

� �
k1,

ya 3ð Þ = k1,

yb 2ð Þ = 0,

ya 4ð Þ = k2,

ya 5ð Þ = Bi k2,

ya 3ð Þ = 1,

yb 4ð Þ = 0,

za 1ð Þ = S,

za 2ð Þ = λ + δ 1 +
1
β

� �
l1,

za 3ð Þ = l1,

zb 2ð Þ = 1,

a 4ð Þ = l1,

za 5ð Þ = Bi l2 − 1½ �,
zb 4ð Þ = 0:

ð36Þ

To determine the unknown initial conditions k1, k2, l1,
and l2, we shoot them for arbitrary slope so that the solution
of the system of ODEs satisfies the boundary conditions at
∞, and its accuracy is checked by comparing the calculated
quantities with the provided end points. After obtaining
these values, we apply the fourth-fifth order Runge-Kutta-
Fehlberg technique to solve a system of first-order ODEs
in (33) with boundary conditions (34) and determine ε from
(35). To get the dual solutions, we take different initial
approximates for the values of k1, k2,where all profiles asymp-
totically satisfy the ∞ boundary conditions.

4. Results and Discussion

In this study, the results of the combined effects of velocity
ratio (stretching/shrinking) parameter λ, Casson’s parame-
ter (factor) β, Darcy’s number Da, Forchheimer’s (porous
medium inertia) parameter Fr , suction/injection parameter
S, velocity slip (slipperiness) parameter δ, Prandtl’s number
Pr, Eckert’s number Ec, Biot’s number Bi, and the nanopar-
ticle volume fraction ϕ on the fluid flow temperature and
velocity profiles are demonstrated using plots, and compu-
tations are made for these embedded parameters. The range
of parameters considered in the study is 0:0 ≤ ϕ ≤ 0:1, 0:1
≤ β ≤ 10, 0:1 ≤Da ≤ 20, 0:1 ≤ Fr ≤ 5, 0:02 ≤ S ≤ 0:5, 0:1 ≤δ ≤
0:5, 0:1 ≤ Ec ≤ 0:3, 0:05 ≤ Bi ≤ 0:15. Since the single phase
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nanofluid flow model under investigation is a water base
with Copper nanoparticles, the effective Prandtl number
of working nanofluid is that of pure water (i.e. Pr = 6:2)
by Shaw et al. [34] and Joshi et al. [36], whereas the univer-
sal values of parameters used in the present study are as
follows: β = 10, Pr = 6:2, ϕ = Da = Fr = S = δ = Ec = Bi = 0:1.
In addition, the occurrence of two solutions for certain
ranges of parameter variations is demonstrated for the coef-
ficient of skin friction Cf and Nusselt number (rate of heat
transfer) Nux in graphs and/or tables for diverse numerical
quantities of parameters. The existence of dual solutions
due to shrinking surface for certain ranges of parameter
variations is shown for the skin friction coefficient using
graphs and tables, and also, the variations of Nusselt’s
numbers are demonstrated in graphs for different values
of change of parameters. The governing nonlinear ordinary
differential equations, Equations (11) and (12), with the
boundary conditions (13) are solved numerically using
shooting techniques built-in Maple2018 software. The
MAPLE solver has been used widely by many researchers
to solve the boundary value problem (BVP), and this solver
is coded with a finite difference in fourth order accuracy
level. To validate this method, we compare the computa-
tional results obtained with that of the coefficient of skin
friction of preceding works given by Nazar et al. [24],
Jumana et al. [27], and Tadesse et al. [37], as presented in
Table 2. It is observed that there is a nice agreement, and
hence, the method is proper for tackling problems of the cur-
rent study. The velocity and temperature profiles as well as
skin friction and Nusselt’s number are graphically presented.

4.1. Existence of Dual Solutions due to Shrinking Sheet. In
Figures 2–4, the impacts of different values of the involving
parameters on the skin friction for shrinking parameter λ
are presented. These figures demonstrate that dual solutions
exist with upper (solid curve) and lower (dotted curve)
branches for λ > λc and no real solution for λ < λc . For
shrinking parameter λ, the critical value λc is the quantity
where the upper and lower branch solutions meet each
other. In other words, physically λc shows the extent to
which the sheet surface can shrink while processing. From
these figures, it is observed that |λc| enhances with S and δ
and decreases with increasing values of ϕ, β, Da, and Fr.
That means the interval of the shrinking parameter λ for
which the similarity solution exists widens as suction and
slipperiness of the surface parameters increase, whereas it

diminishes as the Casson factor, nanoparticle volume frac-
tion, porous medium, and porous medium inertia parame-
ters increase. On the other side of this critical value λc, no
similar solutions exist because of the boundary layer separa-
tion from the surface of the sheet, and it is not possible to get
the solution using the boundary layer approximations. In
Figure 2(a), we see that for the upper branch solution for
the shrinking parameter λ, the value of the skin friction
coefficient (surface drag force) lessened with a rise in nano-
particle volume fraction ϕ and reversed as it approached the
critical value of the shrinking parameter. In reality, the rising
nanoparticle volume fraction means that the nanoparticles
and the base fluid collide with each other, which raises
the motion of the nanofluid; as a result, the thickness
of the momentum boundary layer diminishes and increases
the surface drag force. This result agrees with the computed
and tabulated values in Table 3. For λ = 1, we always obtain
f ″ð0Þ = 0 for all values of ϕ since the fluid velocity is the same
as velocity of the stretching/shrinking surface of the sheet. In
Figure 2(b), we see that the skin friction coefficient dimin-
ishes as the Casson factor β increases for the upper branch
solution. This is due to an increment in β, which means that
the fluid loses its non-Newtonian behavior and acts like a
Newtonian type, and hence, its velocity enhances, resulting
in the reduction of shear stress. Figures 3(a) and 3(b) illus-
trate the coefficient of skin friction reduces by intensifying
values of porous medium parameter Da and porous medium
inertia parameter Fr. As demonstrated in Figure 4(a), the
coefficient of skin friction augments with increasing values
of suction parameter S for the upper branch solution, since
suction at the boundary surface retards flow of the fluid
and increases the coefficient of skin friction. Figure 4(b) also
demonstrates the skin friction for the shrinking case, and it is
observed that for the upper branch solution, the surface drag
force diminished with a rise in slipperiness parameter δ and
reversed as it approached the critical value of the shrinking
parameter. All these results in Figures 2(b)–4(b) best agree
with the numerical results in Table 4. Figure 5 demonstrates
the presence of a dual solution using the graph of local Nus-
selt’s number Nux , by taking particular numerical values of
viscous dissipation parameter Ec and convective heating
parameter Bi, to observe their impact on the process of heat
transfer and the intervals of dual solution existence, for the
shrinking sheet. It is noted from the model that the energy
and momentum equations are coupled and hence the Nusselt
number characterizes a dual solution for λc < λ < 0 in the
case of a shrinking sheet surface as displayed for particular
governing parameters in figures. In Figure 5(a), it is observed
that as viscous dissipation parameter Ec increases, the local
Nusselt number enhances for the upper branch solution
and drops for lower branch solutions, where the upper
branch solution is the one which is stable and physically real-
izable, while the lower branch solution is not. Thus, mini-
mum viscous dissipation (minimum Ec) is an acceptable
sign for the rate of heat transfer enhancement of the nano-
fluid as the literature reveals. The interval of solution widens
as the viscous dissipation Ec escalates. Again, Figure 5(b)
reveals that as convective heating parameter Bi increases,
the local Nusselt number rises for both the upper and lower

Table 2: Comparison of values of skin friction
ffiffiffiffiffiffiffi
Rex

p
Cf for varying

values of stretching/shrinking parameter λ with ϕ = 0, β =Da =∞,
Fr = S = δ = 0.

λ
Nazar et al.

[24]
Jumana et al.

[27]
Tadesse et al.

[37]
Present
result

-0.25 1.40224 — 1.402241 1.402240800

0 1.232588 1.232587 1.232588 1.232587800

0.2 1.05113 1.051129 1.051130 1.051129994

0.5 0.71329 0.713295 0.713295 0.713294956

1 0 0.000000 0 0
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branch solutions for shrinking sheet surface. That means, the
coefficient of heat transfer caused by the hot fluid beneath the
sheet is directly associated with the convective heating
parameter. However, unlike the viscous dissipation parame-
ter case, the interval of existence of the dual solution gets nar-
rowed for increasing convective heating parameters.

4.2. Velocity Profile. Figures 6 and 7 present the impacts of
different values of velocity ratio (stretching/shrinking)
parameter λ, Casson’s parameter(factor) β, Darcy’s number
(porous media) Da, Forchheimer’s (porous medium inertia)
parameter Fr , suction/injection parameter S, velocity slip
(slipperiness) parameter δ, and nanoparticle volume fraction
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Figure 2: Shrinking parameter λ versus skin friction for varying values of (a) ϕ and (b) β.
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Figure 3: Shrinking parameter λ versus skin friction for varying values of (a) Da and (b) Fr.
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ϕ on fluid velocity profile for the upper branch solution (for
the stable upper branch solution only). Figure 6(a) displays
the effect of the Casson factor β on the velocity profile. It
is revealed that initially, the velocity profile and the flow
boundary layer thickness decrease with increasing β, but
after a certain distance from the stretching sheet surface,
the velocity profile starts to enhance with increasing β. It is
observable that the fluid velocity is minimal near the sheet
surface, but it tends to be high as far away from the sheet
surface. The main cause for getting such a result is that the
augmented Casson’s factor reduces the yield stress (fluid
behaves like a Newtonian one when Casson’s factor becomes
very large) which, in turn, restraints the velocity of the Cu-
H2O-Casson nanofluid. Here, for all Casson’s factor β, f ′
ðηÞ is an increasing function of η. It is also important to
note that when the values of β indefinitely inflate

(β⟶∞), the non-Newtonian property of the Casson
fluid goes, and it acts like a Newtonian fluid flow, and
hence, the flow boundary layer thickness of the Cu-H2O-
Casson nanofluid drops, and the velocity profile increases
far from the surface of the sheet. This also happened due
to the plastic viscosity of the Casson fluid, which is
inversely proportional to the Casson factor. From the same
figure, it is observed that an increment in the velocity ratio
parameter λ resulted in the enhancement of the flow veloc-
ity profile and its boundary layer thickness. In Figure 6(b),
it is observed that diminutive velocity profiles f ′ðηÞ are
observed in response to increment in porous media param-
eter Da on the boundary layer flow of the Cu-H2O-Casson
nanofluid. This is due to the presence of more and more
porous matrix producing more and more resistant forces
that contribute to more and more retarded flow and
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Figure 4: Shrinking parameter λ versus skin friction for varying values of (a) S and (b) δ.

Table 3: The computation showing critical shrinking parameter, skin friction, and the smallest eigenvalues for both upper and lower
solutions for varying values of ϕ and λ when β = 10, Da = Fr = S = δ = 0:1 for Cu-H2O nanofluid.

Varying parameters
ffiffiffiffiffiffiffi
Rex

p
Cf ε

ϕ λc λ Lower branch Upper branch Lower branch Upper branch

-11.245 6.1226218 9.7873344 -1.8948508 0.2557403

0 -11.274 -11.250 6.2977932 9.6332684 -1.7985628 0.1584437

-11.255 6.4913428 9.4608324 -1.6915341 0.0504055

-9.610 6.4645936 9.8859367 -1.4190913 0.2465134

0.05 -9.632 -9.614 6.6359242 9.7343401 -1.3409342 0.1672097

-9.617 6.7765913 9.6084782 -1.2764123 0.1018277

-8.821 6.8970069 10.8728661 -1.4272733 0.2188636

0.1 -8.845 -8.826 7.1259643 10.6726304 -1.3390939 0.1290218

-8.831 7.3851530 10.4421769 -1.2384452 0.0267103
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shrinking of the corresponding boundary layer thickness.
This figure again describes how the porous medium inertia
parameter Fr engulfs the velocity profile f ′ðηÞ within the
flow regime. Thus, the increment in porous media inertial
resistance looms the velocity profile and the related
reduced boundary layer thickness. Figure 7(a) depicts that
intensifying the values of Cu-H2O volume fraction ϕ
increases the velocity of the flow. That is, the higher ϕ aug-
ments the velocity profile due to the spherical-shape of Cu
nanoparticle. Physically, the higher ϕ enhances the motion
of the spherical-shaped the Cu nanoparticles which dimin-
ishes the boundary layer thickness and raises the velocity
profile of the Cu-H2O-Casson nanofluid flow. The same

figure also shows that improving the value of suction S
augments the velocity of the flow, which is because suction
is dominated by slipperiness of the surface and reduces the
drag on the surface to control the separation of the bound-
ary layer. As the slipperiness parameter δ rises, the velocity
profile escalates, whereas its boundary layer thickness
diminishes as demonstrated in Figure 7(b).

4.3. Temperature Profile. The effects of different values of the
parameters: velocity ratio (stretching/shrinking) parameter λ,
Casson’s factor β, Darcy’s numberDa, Forchheimer’s (porous
medium inertia) parameter Fr, suction/injection parameter S,
velocity slip (slipperiness) parameter δ, Prandtl’s number Pr,

Table 4: The computation showing impact of parameters variation on critical shrinking parameter, skin friction, and the smallest
eigenvalues for both upper and lower solutions for Cu-H2O nanofluid when ϕ = 0:1 is fixed.

ffiffiffiffiffiffiffi
Rex

p
Cf ε

β Da Fr S δ λc λ Lower B Upper B Lower B Upper B

10 0.1 0.1 0.1 0.1 -8.845 -8.821 6.897006 10.872865 -1.427273 0.218863

5 0.1 0.1 0.1 0.1 -9.617 -9.601 9.095182 12.600703 -1.252935 0.108050

1 0.1 0.1 0.1 0.1 -16.225 -16.211 32.431338 37.553862 -1.044620 0.396915

10 0.5 0.1 0.1 0.1 -2.476 -2.440 0.428272 2.368089 -1.375845 0.027543

10 1 0.1 0.1 0.1 -1.698 -1.650 0.004414 1.765601 -1.444670 0.097651

10 0.1 1 0.1 0.1 -5.676 -5.550 2.035769 9.389230 -4.281724 1.600540

10 0.1 5 0.1 0.1 -1.747 -1.700 0.929175 3.800993 -0.491905 8.418994

10 0.1 0.1 0.3 0.1 -8.998 -8.971 8.431013 12.530511 -1.368711 0.331972

10 0.1 0.1 0.4 0.1 -9.084 -9.070 9.872623 12.811560 -1.087406 0.131775

10 0.1 0.1 0.1 0.2 -9.726 -9.712 12.336980 14.416381 -0.757477 0.349037

10 0.1 0.1 0.1 0.3 -10.850 -10.810 14.224548 16.739973 -0.870792 0.845219
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Figure 5: (a) Change in the local Nusselt’s number for shrinking sheet with Ec. (b) Change in the local Nusselt’s number for shrinking sheet
with Bi.
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Eckert’s number Ec, Biot’s number Bi, and nanoparticle vol-
ume fraction ϕ on fluid temperature profile for the upper
branch solution were demonstrated in Figures 8–10(a). In
Figure 8(a), it is observed that the temperature profiles are
belittled for enhancing values of the Casson factor β. As the
Casson factor values get higher, the yield stress strength of
Cu-H2O-Casson nanofluid weakens, which, in turn, enhances

the plastic dynamic viscosity, and therefore, the thickness of
the thermal boundary layer diminishes, for raising values of
the Casson factor β. Here, we note that the Cu-H2O-Casson
nanofluids thermal boundary layer thickness is greater than
that of the Newtonian fluid. We know that as the values of
the Casson factor get higher (β⟶∞), the Cu-H2O-Casson
nanofluids act as a Newtonian fluid. Therefore, reducing stress
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Figure 6: (a) Velocity profile with λ and β for the upper branch solution. (b) Velocity profile with Da and Fr for the upper branch solution.
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escalates the fluid flow and drops its heat transfer. The same
figure also illustrates that an increment in the velocity ratio λ
resulted in a diminishing of the temperature profile of the

Cu-H2O-Casson nanofluid flow, which shows that stretching
of the surface tends to squeeze the thermal boundary layer of
the Cu-H2O-Casson nanofluid flow. The temperature profile
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Figure 8: (a) Temperature profile with λ and β for the upper branch solution. (b) Temperature profile with Da and Fr for the upper branch
solution.
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due to the porous medium parameter Da is demonstrated in
Figure 8(b). The temperature profile falls due to an increment
inDawithin a few boundary layers of fluid from the surface of
the sheet (η < 1:13), and beyond (η > 1:13) the temperature
profile switches trend due to an increment in Da. This figure
also displays the impact of the nonlinear porous medium iner-
tia parameter Fr on the fluid temperature profile. It is
observed that an increment in the porous medium inertia
parameter produces the falling fluid temperature profile and
the thermal boundary layer. By looking at Figure 9(a), to
observe how the temperature profile behaves in dealing with
different Cu-H2O nanoparticle volume fractions ϕ, and it is
seen that as ϕ increases, the temperature profile θðηÞ and the
corresponding thermal boundary layer also increase. Since
the Cu nanoparticle has high thermal conductivity, physically,
it means increasing nanoparticle volume fraction ϕ upsurges
the temperature profile and heat transfer rate. That is, due to
enhanced thermal conductivity, Cu nanoparticles heighten
the thermal enhancement of the Casson nanofluid past the
permeable surface. The same figure reveals that augmented
fluid suction parameter S produces both a diminutive temper-
ature profile and its thermal boundary layer thickness. As a
result, when impacts of viscous dissipation overrun, for aug-
menting suction parameter S, the thermal boundary layer
thickness diminishes. The distribution of the temperature field
gets more consistent within the boundary layer of flow because
of the impact of suction. Figure 9(b) illustrates the impact of
viscous dissipation (Eckert’s number Ec) on temperature pro-
file. There is an indication that an increase in the viscous dis-
sipation parameter is highly beneficial to the growth of
temperature profile in the flow region. We know that viscosity
absorbs kinetic energy from the fluid motion and changes it

into internal energy that improves heating the fluid flow,
hence increasing the temperature profile. Moreover, the same
figure demonstrates that augmenting the convective heating
(increment in Biot number Bi) enhances the temperature pro-
file of Cu-H2O-Casson nanofluid flow. That means, the coeffi-
cient of heat transfer caused by the hot fluid beneath the sheet
is directly associated with the convective heating parameter Bi.
That is, behavior of temperature profiles due to convective
heating is higher near the boundary layer, implicating that
the fluid temperature adjacent to the sheet surface surpasses
that of the free stream fluid flow. Thus, the increasing convec-
tive heating parameter Biresulted in an increment in the con-
vective temperature profile of the fluid flow. In Figure 10(a), it
is observed that increasing sheet surface slipperiness δ reduces
both the temperature profile and the thermal boundary layer
thickness of the Cu-H2O-Casson nanofluid flow.

4.4. Rate of Heat Transfer. Figure 10(b) reveals that the
intensification in the values of the Casson factor β, porous
media parameter Da, and porous media inertia parameter
Fr resulted in the enhancement of the local Nusselt’s num-
ber for the stretching sheet. An increment in the Casson fac-
tor β raises the fluid motion due to slipperiness and drops
the thermal profile, resulting in enhanced heat transfer rate,
whereas as the porous media parameter increases, both the
fluid motion and the thermal profile diminish, which also
enhances the Nusselt number (rate of heat transfer) rate at
the stretching sheets surface. Figure 11(a) depicts that the
rise in the values of nanoparticle volume fraction ϕ resulted
in the rise of the Nusselt number Nu, which in reality means
that the rate of heat transfer at the surface of the sheet
enhances as nanoparticle volume fraction rises. In other
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Figure 10: (a) Temperature profile with δ for the upper branch solution. (b) β versus Nu for varying values of Da and Fr.
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words, the addition of the Cu-H2O nanoparticle volume
fraction produces a rise in the temperature gradient at the
sheet surface and results in the rate of heat transfer from
the surface of the sheet to the fluid. Again, it can be con-
cluded that the heat transfer properties of the Casson fluid
becomes better because of the addition of the Cu-H2O nano-
particles into it. The same figure also revealed that rising in
the values of stretching parameter λ resulted in the ascend-
ing of the Nusselt number Nu, which means as stretching
of the surface increases, the heat transfer at the surface rises.
Again, the stepping-up in the values of slip parameter δ
reduces the Nusselt number Nu, and hence, the heat transfer
rate drops, which is due to improvement in slipperiness of
the sheet surface reducing adhesion of the fluid to it, as we

see from the same figure. Figure 11(b) explains the impact
of suction parameter S, Eckert’s number Ec, and Biot’s num-
ber Bi on the Nusselt number for stretching sheet surfaces.
From this figure, it is observed that an increment in suction
parameter S boosts the processes of heat transfer rate from
the stretching sheet surface, which is due to an increase in
the suction rate that raises the Cu-H2O nanoparticle accu-
mulation on the stretching sheet surface that resulted in an
enhancement in heat transfer rate (Nusselt number Nu) of
the fluid. In other words, the minimum temperature gradi-
ent at the sheet surface is closely linked with an inverse rela-
tion to the heat transfer rate from the surface of the sheet.
This shows that higher suction parameter S resulted in a
considerably higher heat transfer rate. This figure also
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illustrates the impact of viscous dissipation on the manage-
ment of heat transfer from the surface of the sheet. It is
observed that the viscous dissipation parameter Ec raises
the heat transfer rate falls, which is due to the slipperiness
of the surface and the addition of nanoparticles, and more-
over, the flow motion increases, and hence, the temperature
gradient drops, which, in turn, results in an enhanced rate of
heat transfer. Due to convective heating of the sheet surface,
it is seen that the Nusselt number (heat transfer rate) rises as
convective parameter Bi augments, as we see from the same
figure.

4.5. Heat Transfer Enhancement. The chart in Figure 12
demonstrates how fast heat transfer is enhanced for the
increasing values of Cu-H2O nanoparticle for the Cu-H2O-
Casson nanofluid flow. For the shrinking sheet, taking 10%
of the nanoparticle volume fraction, the heat transfer rate
is boosted up to 114.5% for Cu-H2O. Generally, the heat
transfer enhancement rate drops from the shrinking sheet
towards the stretching sheet surface as observed from the
chart. Moreover, the rate of heat transfer enhancement
upsurge for working nanofluids with increasing Cu-H2O
nanoparticle volume fraction. Studies revealed that Cu-
H2O nanoparticles serve as a better coolant for industrial
and engineering usage when compared to other water-
based nanoparticles.

4.6. Numerical Analysis of Stability Test. From the computa-
tional results of this problem, the dual solution exists for
some interval of λ. Temporal stability analysis is made to
determine stable solutions among different solutions appear
due to a shrinking sheet surface. As detailed in Table 3, for
different values of Cu-H2O nanoparticle volume fraction ϕ
and velocity ratio λ, the smallest eigenvalue ε is calculated
for the temporary change of small perturbations regarding
the basic steady flow, where the values of β = 10, Da = Fr =
S = δ = 0:1 are fixed. Similar calculations were done for fixed
ϕ = 0:1 as presented in Table 4. It is noted that since the
value of the smallest eigenvalue ε is positive, the upper
branch solution for shrinking sheet surface is hydrodynam-
ically temporally stable and, hence, physically realizable.
Clearly, for the lower branch solution, the negative value of
ε revealed that it is unstable and physically unrealistic. In
addition, ε > 0 demonstrates the rate of declination of small
disturbance in the upper branch solution, whereas ε < 0 or
the lower branch solution shows the increment of the
disturbances.

5. Conclusions

A numerical investigation of boundary layer flow of Cu-
H2O-Casson nanofluid past a slippery stretching/shrinking
sheet through a Darcy-Forchheimer porous medium has
worked out to demonstrate the overall impacts of Casson’s
factor, viscous dissipation, suction/injection, convective
heating, and porous medium resistance parameters. Using
similarity transformations, the modeled boundary layer
equations are transformed into a system of ODEs, and the
MAPLE software package is used for the computation of

the numerical solutions. Stability analysis has been done to
identify stable and physically reliable solutions subjected to
small perturbations. The effects of various parameters on
the dimensionless velocity and temperature profiles, coeffi-
cient of skin friction, the rate of heat transfer, and heat trans-
fer enhancement are obtained numerically and presented in
graphs, tables, charts. The following findings are derived
from the discussions:

(i) There is a critical value of shrinking parameter λc
below which no real, dual, or unique solutions
exist. The critical value jλcj widens with increase
in suction, slipperiness of surface, and viscous dis-
sipation parameters, whereas it diminishes with
increase in Cu-H2O nanoparticle volume fraction,
Casson’s factor, porous medium, and porous
medium inertia parameters

(ii) Temporal stability analysis provided the smallest
eigenvalue ε, which revealed that only the upper
branch solution is stable and physically realizable,
whereas the lower branch solution is unstable
and not realistic

(iii) The skin friction (wall shear stress) at the sheet
surface increases as nanoparticle volume fraction
and suction parameters escalate but reduces with
increment in Casson’s factor, slipperiness of the
sheet, porous medium, and porous medium inertia
parameters

(iv) The velocity profile augments with the increment
in nanoparticle volume fraction, velocity ratio,
and suction and slipperiness parameters. However,
it decreases with increasing values of the Casson
factor, porous medium, and porous medium iner-
tia parameters for the upper branch solution

(v) Widening of the momentum boundary layer thick-
ness is observed with enhancement in porous
medium and porous medium inertia parameters,
whereas it diminishes with increment in velocity
ratio, suction, slipperiness of surface, Casson’s fac-
tor, and nanoparticle volume fraction parameters

(vi) The temperature profile and the thermal bound-
ary layer thickness rise with incremental nano-
particle volume fraction, Casson’s factor, viscous
dissipation, and convective heating, whereas they
decrease with increase in velocity ratio, suction, slip-
periness, porous medium, and porous medium iner-
tia parameters

(vii) The rate of heat transfer intensifies with the incre-
ment in Casson’s factor, porous medium, porous
medium inertia parameters, suction, velocity ratio,
nanoparticle volume fraction, and convective
heating parameters but drops with increase in
slipperiness of the surface and viscous dissipation
parameters
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(viii) As β⟶∞ (Newtonian case), the coefficient of
skin friction, temperature profile, thermal, and
momentum boundary layer thicknesses reduce,
whereas the velocity and rate of heat transfer
escalates

(ix) Increment of Cu-H2O nanoparticle volume frac-
tion into the Casson fluid boosts the heat transfer
enhancement rate higher for the shrinking sheet
surface

This present study on nanofluid heat transfer enhance-
ment is valid for Casson’s nanofluid and did not incorporate
the effects of other important factors such as nanoparticle
shape factors, hybrid nanoparticles, thermophoresis, and
Brownian motion. We envisage extending this study in
future to include other non-Newtonian nanofluids (both sin-
gle and two phase flow models) and the effects of all the
omitted factors.

Nomenclature

a, b: Real constants (s−1)
Bi: Biot number (convective parameter)
Cf : Coefficient of the skin friction
Cp: Specific heat at constant pressure of the fluid

(Jkg−1K−1)
Da: Darcy number (porous media parameter)
eij: The rate of strain tensor (s−1)
Ec: Eckert number
f : Dimensionless stream function
F: Forchheimer drag force coefficient (m−1)
Fr : Forchheimer (second order porous resistance)

parameter
hf : Convective heat transfer coefficient (Wm−2K−1)
k1: Permeability of the porous medium (m2)
kf : Thermal conductivity of the base fluid (W m−1K−1)
ks: Nanoparticles’ thermal conductivity (W m−1K−1)
knf : Nanofluids’ effective thermal conductivity (W m−1K−1)
L: Slip length coefficient (kgm−1s−2)
Nux: The local Nusselt number
Pr: Prandtl number
py: Yield stress of the fluid (Nm−2)
qw: Heat flux (Wm−2)
S: Suction/injection (mass flux) Parameter
T : Temperature of the fluid (K)
T f : Local fluid temperature (K)
T∞: Ambient temperature of the Casson nanofluid (K)
u, v: Velocity components along x, y coordinates, respec-

tively (ms−1)
U∞: Free stream velocity of the Casson fluid (ms−1)
x, y: Coordinate along the plate and the transversal,

respectively (m).

Greek Symbols

β: The non-Newtonian/Casson parameter/factor
δ: Velocity slip parameter

ε: Eigenvalue parameter
η: Similarity variable
θ: Dimensionless temperature
λ: Velocity ratio (stretching/shrinking) parameter
μB: Plastic dynamic viscosity of the Casson nanofluid

(Nm−2s)
μf : Dynamic viscocity of the base fluid (kgm−1s−2)
μnf : Effective dynamic viscosity of the Casson nano-

fluid (kgms−2)
νf : Kinematic viscocity of the base fluid (m2s−1)
π: The ði, jÞth component of deformation rate (Nm−2)
πc: Critical value of π (Nm−2)
ρf : Density of the base fluid (kgm−3)
ρs: Density of the solid nanoparticle (kgm−2)
ρnf : Effective density of the Casson nanofluid (kgm−2)
ðρCpÞnf : Effective heat capacity of the Casson Nanofluid

(Jm−3K−1)
τ: Nondimensional time variable
τij: Components of stress tensor (Nm−2)
τw: Wall skin friction (Nm−2)
ϕ: Nanoparticle volume fraction.
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