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The ATLAS EventIndex was designed to provide a global event catalogue and limited event-level metadata for ATLAS experiment
of the Large Hadron Collider (LHC) and their analysis groups and users during Run 2 (2015-2018) and has been running in
production since. The LHC Run 3, started in 2022, has seen increased data-taking and simulation production rates, with which
the current infrastructure would still cope but may be stretched to its limits by the end of Run 3. A new core storage service is
being developed in HBase/Phoenix, and there is work in progress to provide at least the same functionality as the current one
for increased data ingestion and search rates and with increasing volumes of stored data. In addition, new tools are being
developed for solving the needed access cases within the new storage. This paper describes a new tool using Spark and
implemented in Scala for accessing the big data quantities of the EventIndex project stored in HBase/Phoenix. With this tool,
we can offer data discovery capabilities at different granularities, providing Spark Dataframes that can be used or refined
within the same framework. Data analytic cases of the EventIndex project are implemented, like the search for duplicates of
events from the same or different datasets. An algorithm and implementation for the calculation of overlap matrices of events
across different datasets are presented. Our approach can be used by other higher-level tools and users, to ease access to the
data in a performant and standard way using Spark abstractions. The provided tools decouple data access from the actual data
schema, which makes it convenient to hide complexity and possible changes on the backed storage.

1. Introduction

The Large Hadron Collider (LHC) [1] is the biggest particle
accelerator built and is located at CERN, the European
Organization for Nuclear Research, on the border of Swit-
zerland and France. It is found in a circular tunnel with a
length of 27 kilometres and 100 metres underground.

ATLAS [2] is one of the four big detectors registering
particle collisions, or events, and is devoted to testing the
predictions of the standard model of particle physics and
to physics beyond the standard model and the development
of new theories to describe our universe. Collisions are pro-
duced at a rate of 40MHz, or with a bunch spacing of 25ns,
which would mean storing 60TB/s. A multilevel online trig-
ger system selects the most interesting events to effectively
reduce the data recording rate up to a manageable order of

1 kHz and the data rate of gigabytes. Data is recorded at
CERN Tier-0, and then distributed with grid technologies
to 70 computing sites worldwide. These are organized in
10 Tier-1 centres to store the RAW data, with smaller
Tier-2 and Tier-3 centres for reprocessing and analysis tasks.
In addition to real data, around three times of simulated
events with Monte Carlo production method are generated
and stored.

A catalogue of all data, real and simulated, is needed to
search for events by several criteria and to provide produc-
tion checkings and analytics insights. ATLAS EventIndex
[3, 4] was developed to provide this metadata catalogue
and was put in production during Run 2 (2015-2018), index-
ing more than 30 billion (109) events, with 1/4 real and 3/4
simulated data. In the following runs of the experiment with
run 3 (2022-2025) and run 4 (high-luminosity LHC, 2029
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onwards), it is expected an increase up to a factor 10 in the
production rate, reaching 100 billion real events and 300 bil-
lion events produced.

A new implementation of the system capable of absorb-
ing increasing data rates and able to fulfil the required use
cases is being implemented using the HBase [5] as the main
and unique storage. An Apache Phoenix [6] layer provides
SQL-like access for transactional and extraction queries.
New tools are being developed providing analytics over large
quantities of data.

This paper presents our contributions in the data access
area, adding interactive data access and analysis, which was
not possible with the previous model. We have improved
analytical use cases with the EventIndex data stored in
HBase/Phoenix, and accessing with a platform based on
Spark [7], using its abstractions and a set of analytical tools
implemented in Scala. The new tool and algorithms pre-
sented solve data access for our application use cases in areas
like data discovery, duplicate detection, and overlap calcula-
tion among datasets that are now integrated. Data discovery
capabilities produce Spark DataFrames usable by the rest of
the tools. In addition, data and results might be maintained
in cache, which was not possible before, allowing algorithm
chaining and improving overall resource usage. The new
contributed overlap calculation algorithm has computa-
tional cost O(n) with the number of events and spatial cost
O(s2) with the number of streams.

With our tools, we abstract the backend data model,
decoupling the data access from the actual data schema
and the selected technologies. This approach is very conve-
nient to hide model complexity with an accessible defined
interface for tools and users. It also masks possible changes
in the data model, which are invisible for the user as the
defined interfaces do not change.

The rest of the article is organized as follows. Section 2
shows the requirements and current use cases. Section 3
details the architecture of the proposed EventIndex analytics
platform. Section 4 discusses the implementation of the data
access layer and algorithms to solve the data discovery,
duplication detection, and event overlap calculation matrices
using Spark Abstractions. Finally, Section 5 ends with the
conclusions about the presented work.

2. Requirements and Use Cases

The main use case when the EventIndex project was started
was the selection of particular events, or event picking over a
large catalogue of event metadata.

Later, one more analytical case of the EventIndex project
was included, with the detection of particular patterns over
large quantities of data. Data discovery mechanisms are
required to provide access to selected data based on user-
defined constraints.

A group of use cases are related to data consistency
checks. ATLAS production processes can temporarily fail,
producing duplicate events with the same identifiers. Simu-
lated Monte Carlo [8] procedures are also vulnerable to gen-
erating incorrect data, so detection methods are needed.

Detection of these duplicate event data is required at differ-
ent granularities, including complete datasets or containers.

The ATLAS derivation framework [9] outputs the
selected events that are requested by physics analysis groups.
It is useful to detect the event overlaps among the derived
datasets, identifying them to optimise the procedures and
used resources.

Studies over the stored metadata information are antici-
pated. Trigger overlap studies within a dataset or among
derived datasets are valuable. The objective is to identify
the trigger chain pairs that were fired simultaneously at
event recording, which can provide useful statistics and
insights about the trigger processes.

Other use cases requiring analysis over large quantities
of data can arise in the future, so general access methods
are supported.

A new data access layer is required to leverage the back-
end data storage improvements being developed [10]. To
support data retrieval, a new SQL-like interface opens the
possibility of integration with JDBC protocol. Previous web
front-ends designed to access relational data back-ends can
be rapidly adopted. In addition, a new low-latency access
framework is needed to support the analytic use cases with
semantics expressed in higher-level languages, instead of
the restricted SQL syntax.

3. EventIndex Analytics Platform Spark

The EventIndex analytics platform provides services for
solving OLAP (online analytical processing) use cases and
obtaining insights about the data. Figure 1 shows the pro-
posed architecture which is based on Apache Spark [7], an
engine for large-scale data analytics that provides abstrac-
tions for data modelling and in-memory efficient operations.
It can be accessed interactively with command-line consoles
or web interfaces like notebooks. A programmatic interface
is also available, making it easy to run background processes
on the provided resources.

Spark interfaces natively with resource management
tools like in our case YARN [11] to provide access to the
CERN cluster, which comprises dozens of machines that
host data and computing servers.

Data storage for EventIndex is implemented in HBase
[5] to provide a unique and unified backend for all data
and use cases. HBase is a large-scale distributed key-value
storage included in the class of NoSQL big data stores. It
suits our application use case as it can scale and store peta-
bytes of data with our ingestion rate.

It works best for random access, which is perfect for the
event-picking case where we want to use low-latency access
to a particular event to get its location information. Use
cases when we need information retrieval (trigger info, prov-
enance) for particular events are served with fast HBase gets
with good performance. In addition, analytical use cases
where we need to access a range of event information for
one or several datasets (derivation or trigger overlap calcula-
tion) can be solved with scans of these data. They can be
optimised with a careful table and key design to maintain
related data near the storage, reducing access time. Hbase
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is a column-family grouped key-value store, so we can ben-
efit from dividing the event information into different fami-
lies according to the data accessed in separate use cases.
Further analytic use cases with larger amounts of data are
not foreseen but can still be achieved by running MapRe-
duce/Spark jobs on the Hbase files, as they are stored in
the Hadoop Filesystem HDFS.

Apache Phoenix [6] is a layer over HBase that enables SQL
access and provides an easy entry point for users and other
applications. Although HBase is schema-less storage, Phoenix
requires a schema and data typing to provide its SQL function-
ality. Schema versioning and dynamic late binding for the
same tables are also supported. In EventIndex, our data rarely
varies its schema, so we can benefit from Phoenix designing
the required schema and tables accordingly.

We use Apache Spark as a framework for dealing with
data in a distributed manner that provides some abstractions
that are very useful and performant.

The most important is the Spark DataFrame, which rep-
resents a set of data that might be residing on several phys-
ical nodes and that allows to apply and chain operations to
produce other DataFrames or store them in multiple back-
end storage kinds.

One important characteristic is that operations are
applied lazyly in memory, only when it is needed, so optimi-
zation can be done dynamically on chained operations. It is
failure resilient, so the computations can be reapplied auto-
matically in case a node fails.

Scala is the language that Spark was written in and is the
most supported programming language to access all Spark
APIs. It is running in the JVM (Java virtual machine), so
Java classes can be called from Scala, with the benefits of a
concise and high-level language.

Spark and Scala are used in this work to access the back-
end HBase/Phoenix storage data with the defined EventIn-
dex data model.

In the following sections, we discuss the data model
implemented on HBase/Phoenix and the data ingestion pro-

cedures that were done to support the development and
evaluation of the data access analytical tools.

3.1. Data Model. The data structures in the EventIndex
HBase storage use a defined Phoenix schema [12].

The event data resides in a big table with billions of entries
that represent all physics events produced by the ATLAS
experiment. In the ATLAS data and distributed production
model, events are stored in files (GUIDs), grouped in datasets
(TID), and datasets are grouped in containers. Therefore,
these relations are expressed using additional tables.

A logical entity-relationship model of the EventIndex
data is represented in Figure 2, with entities explained in
detail in the following subsections.

The original ATLAS dataset nomenclature [13] includes
several fields to identify them, which in general are Project,
runNumber, streamName, prodStep, dataType, and version.
Due to the grid-distributed production system, events belong-
ing to a physics container are divided into datasets that can be
referenced within the same container info and an additional
identifier (TID). The events table is linked to the dataset and
container tables by means of a constructed composite foreign
key that includes the dataset and data type identifier.

3.2. Event Table. In our schema, we have a big table that
stores all event records. A small quantity of metadata is
stored per event, with information including event identifi-
cation (for real and simulated events and some LHC condi-
tions during event recording), location information (where
to find the event in the distributed files within the grid),
and trigger information (about the conditions that flagged
and selected a particular event detected by ATLAS to be per-
manently stored) [14].

A representation of the events table can be found in
Figure 3. In this schema, every entry is defined by a row
key and by values grouped in several families.

Row key: in HBase, the best performance is obtained
when searching for data using row keys. Random access to
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Figure 1: Architecture of the EventIndex analytics platform based on Apache Spark.
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the complete key is translated into an HBase to get excellent
results. A range scan over a prefix of the key is also a common
operation. The EventIndex schema is designed to include the
most-accessed information to solve the required use cases in
the key, leaving extra information in the value. Searching by
value is internally transformed in the full HBase scan, which
has lower performance. Having billions of entries means that
keeping the key length to a minimum is important both for
performance and for total occupied volume reasons.

The row key is a 16-byte binary composed internally of
several parts that can be used for prefix search:
dspid.dstype.eventno.seq.

(i) dspid (integer: 4 bytes) is an identifier generated at
ingestion time. Takes into account internally the
dataset name, except the datatype. Therefore, data-
sets with the same (Project.runNumber.Stream-
Name, prodStep.AMITag) will share the same
dspid. This is intended to search by dspid as all dif-
ferent datatypes of a dataset will sit close in the
backend storage, making the search performant for
solving the datasets overlap the computation use
case

(ii) dstype (smallint: 2 bytes) is the dataset identifier for
the datype of the dataset name, not included in the
dspid. This identifier is internally computed using
dataTypeFormat (5 bits =32 values) and dataTy-
peGroup (11 bits = 2048 values) as defined in the
dataset nomenclature [13], for optimal usage

(iii) eventno (long: 8 bytes) is the event number

(iv) seq (short: 2 bytes) is the sequence used to dedupli-
cate event entries when the EventNumber collides.
It makes the row key unique in case of datasetName
and EventNumber duplication and is computed as
the crc16 value of (GUID:OID1-OID2) which is
unique. The GUID [15] is an identifier of the file
containing the event, and OID1-OID2 are the inter-
nal pointers within that file. The probability of key
clashing within the same dataset, involving two or
more equal computed hashes out of a group of n
(being n=2^16 with crc16 algorithm), can be calcu-
lated with what is known as the birthday problem
[16]. This probability is estimated to be low enough
in our production system to not cause problems

The values are grouped in 4 families that contain related
data and have the same general access pattern. In this way only
required data is accessed for solving the required use cases.
Family A provides the event location information (and Monte
Carlo information for simulated data) to solve event lookup
and pick use cases. family B contains the event provenance
and provides information for data lineage used in data quality
checking. The last 2 families provide trigger information that
is usually accessed separately: family C for the level 1 trigger,
and family D for the rest of the trigger levels.

The fields for each family can be found next:

(i) Family A. Event location information (and Monte
Carlo information for simulated data).

(ii) TID (integer: 4 bytes) production task identifier.
The numeric value found in the dataset name

eventno
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Figure 2: Logical entity-relationship model of the EventIndex data.
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suffix “_tidNNNNNNNN_X” for this kind of TID
dataset, or 0. This further identifies the part of the
dataset that it belongs to, for data bookkeeping
purposes

(a) sr (binary: 24 bytes) self-reference. A binary
composed of the GUID (16 bytes) file identifier
where the event is found, OID1 (4 bytes), and
OID2 (4 bytes) representing pointers inside
the file to locate the actual event

(b) mcc (integer: 4 bytes) Monte Carlo channel num-
ber. In case of simulated events, not used
otherwise

(c) mcw (float: 4 bytes) Monte Carlo weight. In case
of simulated events, not used otherwise

(iii) Family B. Event provenance provides information
about data lineage

(a) pv (binary array: 26 bytes per entry) provenance.
A binary array with one entry per element of the
data lineage in the production chain of the event
as found in the analysed file. Every entry is a 26-

byte binary composed by the dstype (2 bytes)
and the self-reference (24 bytes) as previously
presented

(iv) Family C. Level 1 (L1) trigger information [14]

(a) lb (Integer: 4 bytes). Luminosity block

(b) bcid (Integer: 4 bytes). Bunch crossing identifier

(c) lpsk (Integer: 4 bytes). L1 trigger prescaler key

(d) etime (timestamp: 16 bytes). Using the Java
Timestamp type with an internal representation
of the number of nanoseconds from the epoch

(e) id (bigint: 8 bytes). L1 trigger id

(f) tpb (smallint array) trigger before prescaler. A
variable-length array of smallint (2 bytes)
entries

(g) tap (smallint array) trigger after prescaler. A
variable-length array of smallint (2 bytes)
entries

Figure 3: Event table schema representation in Apache Phoenix grammar [12].
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(h) tav (smallint array) trigger after veto. Avariable-
length array of smallint (2 bytes) entries

(v) Family D. Level 2 (L1) and event filter (EF) trigger
information for run 1/high-level trigger (HLT)
information for run 2 onwards. [14]

(a) lb1, bcid1 (integer: 4 bytes). contains the same
values as the counterpart in family C, named
with a suffix due to a limitation in Apache
Phoenix Spark to access the same field names
in different families

(b) hpsk (integer: 4 bytes). HLT triggers prescaler
key

(c) lpH, lpt, lrs (smallint array). Level 2 (L2) phys-
ics, passthrough, and resurrected variable length
of arrays

(d) ph, pt, rs (smallint array). HLT physics, pass-
through, and resurrected variable length of arrays

3.3. Dataset Table. We are defining other tables that contain
metainformation about the events stored and grouped in
datasets, that are needed for data discovery. The dataset table
can be found in Figure 4. It caches available information at
the time of ingestion, including summary or bookkeeping
data. In addition, it can store the calculated information dur-
ing the analytical procedures as we will see later.

Figure 4: Datasets table schema representation in Apache Phoenix grammar. Represents a dataset and summarises information of the event
table.

6 Computational and Mathematical Methods



Row key is composed by all the string fields that com-
pose the dataset name [13], namely, project, streamname,
prodstep, datatype, and version. It also includes the produc-
tion task identifier (TID) for those datasets that include
them, 0 in other cases.

Dspid and dstypeid refer to the values stored in the event
table and is the way to link these two tables. As a useful side
effect, it defines a canonical dataset container, which
includes all events that share the same dspid.dstypeid [10],
grouping all dataset fields but TID.

The rest of the field are values of the entry that contain
metadata about the dataset:

(i) Caching or computed values. smk, events, events_
uniq, events_dup, files_dup, prov_seen

(ii) Booleans identifying characteristics of the dataset.
is_open, has_raw, has_trigger

(iii) Information and timestamps about the bookkeeping
of this dataset. state, state_details, state_modifica-
tion, source_path, insert_start, insert_end,
updated_at, dups_at, trigger_at

We will see the usage of many of these fields in the fol-
lowing sections.

3.4. Container Table. We will maintain in this table a repre-
sentation of a particular kind of container, grouping all
information about entries in the dataset table that share
the same dspid.dstypeid. Therefore, the structure of the table
is basically the same as the datasets table, but the key does
not include the TID. Therefore, an entry in this table repre-
sents a canonical dataset container [10], which might reflect
one or more datasets in the datasets table.

The fields of an entry represent the sum of the fields of
the related entries in the datasets table, or the calculated
values with the container (canonical dataset) granularity.

3.5. Auxiliary Tables. Other auxiliary tables that help in the
process of data identification, or during ingestion and
importing, can be seen in Figure 5.

Data types table (dstypes): store names and numerical
identifiers about the data type, distinguishing between data
type formats (type =0) and data type groups (type =1). For
every entry, we can find its “name” and its numerical “id.”
The id values will be used for building the dstype id field
in the row key and other fields in the data location and prov-
enance families.

Files table (DSGUIDs): this table relates information
about the dataset name, the contained files (GUID), and
their TID (production task identifier). It is needed because
during the data ingestion procedure (see the following sec-
tion), this data might not be available in the source, and
we need to consult it in this table to fill in the proper events
and datasets tables.

3.6. Evaluation Setup. To test the proposed data model and
query tools, the first experiments were made to fill the data
tables. The upper part of Figure 6 shows a new backend plu-
gin (PhoenixWriter) that was developed for the consumer of
the EventIndex collection system, to be able to fill the event
tables in HBase/Phoenix directly with the distributed data
collection [17].

In the right part of the figure, we are showing another
method for massive ingestion of the previous production
data stored in HDFS [18], using the proposed HBase/Phoe-
nix data model. The ingestion procedure uses MapReduce
[19] jobs to read the input production data, convert it to
Phoenix Schema, and store it in HBase/Phoenix tables.
These PhoenixImporters share code and use the same data
mangling methods with the PhoenixWriter Consumer. The
reason to use MapReduce jobs in the ingestion procedure
instead of Spark was the good performance of HDFS bulk
loading and that the development for this one-shot import
procedure was faster and easily integrated with other estab-
lished procedures. On the contrary, analytics on the data
residing in Hbase/Phoenix will be done with Spark, as it pro-
vides more versatility as we will see in the next sections.

The input data resides in the HDFS file system within
the production CERN Hadoop cluster. The output data will
be in the proposed HBase/Phoenix schema, using the events
and rest of the metatables which serve also for bookkeeping
purposes of the ingestion procedure. The procedure itself

Figure 5: Auxiliary tables representation for the dataset types (dstypes) and file GUIDs (DSGUID).
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consists of the submission of MapReduce jobs to the Hadoop
cluster, with the input data paths desired for granularity
(individual dataset, entire project). The map-only tasks
transform each event from the original format to the
HBase/Phoenix schema, writing it in the events tables.

The additional data that is not available in the original
format and is needed for the event keys (dspid, dstypeid) is
read from the metatables. This is also what happens for the
TID and GUID relations that might not be available in
HDFS consolidated data.

This data will be provided by the Data Collection task
in production, but for these tests, the data can be prefilled
or generated dynamically by this ingestion procedure. The
procedure looks for the needed entry and, if not available,
uses a database sequence table to create it for subsequent
data. The rest of the fields can be transposed directly to
the new format or computed on the flight from the origi-
nal input data.

We have implemented a checkpointing mechanism at
the dataset level, being able to stop and restart the procedure.
This procedure avoids restarting successful jobs unless an
overwrite option is configured explicitly. We are writing
bookkeeping data in the setup and cleanup MapReduce
phases. These phases update the dataset tables with informa-
tion about what data is imported (the logical dataset identi-
fier, but also referring to the physical HDFS files),
timestamps with starting and finishing times, status of the
dataset, and dataset metadata (number of events, number
of files, etcetera).

The test ingestion procedure fills the following fields:

(i) State. Inserting, done, fail, and writing state_details
in case of failure

(ii) Source path. HDFS input path

(iii) Timestamps.state_modification, insert_start, and
insert_end

(iv) Number of events inserted. Events

3.7. Massive Ingestion Test. A massive ingestion test cam-
paign was done to check the response of the backend system
and to have data for subsequent query tests. We used the
CERN Analytix production cluster, which was composed
of 39 nodes (32 Hbase region servers), with a total memory
of 18TB and 1658 vcores. It has to be noted that this is a
shared cluster of multiple projects at CERN. Clusters
included the following distributions: Hadoop 3.2.1 and
HBase 2.2.4.

Ingestion experiment was run for 1 week, with input
from several “project” areas in HDFS, with multiple MapRe-
duce jobs sent:

(i) First batch of jobs to index real data from the year
2018 datasets (6,254 YARN tasks)

(ii) Second batch jobs to index real data from the year
2017 datasets (6,796 YARN tasks)

(iii) Other jobs to index some variety of datasets

Event table was defined with the following options:
DATA_BLOCK_ENCODING= ‘FAST_DIFF’, COMPRES-
SION= ‘SNAPPY’, SALT_BUCKETS=10.

These parameters signal the table to use the default diff
encoding and Snappy compression. In addition, we use 10
salt buckets to automatically include a prefix byte hashed,
to distribute the load among regions and avoid hot spotting
when using the same or monotonically increasing keys.

During the data ingestion experiment, we were monitor-
ing several aspects of the ingestion, as we can see in Figure 7.

We can see that at point 1 (date 6/06), the write opera-
tions are evenly distributed to only 10 RS machines (the
salted table key space is originally automatically presplitted
in 10 region servers according to the configured salt bytes
boundaries to ensure load distribution among region
servers) reaching a maximum throughput of 300Kwrites/s
corresponding to 500MB/s.

Later that day (point 2, midday 6/06), it was manually
triggered to distribute some regions to the rest of the RS

COLLECTION

Data transform
+ ingestion

(PhoenixWriter)

Data transform
+ ingestion

(PhoenixImporter)

HBase
+ Phoenix

HDFS
consolidated

data

Controller

CERN

STORAGE

Object
store

Messaging

Figure 6: Architecture for the evaluation setup. Green hexagons represent data stores, and pink rectangles represent processes.
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machines, to further distribute the load among all region
servers and reach up to 550Kwrites/s and 1GB/s.

The manual intervention was needed to avoid the slow
start when there are no presplits. We have learned that we
can avoid the slow start by applying several presplits, and
then leaving HBase to continue automatically.

It seems that there is no direct answer for the optimal
number of regions for a given load. The accepted recom-
mendation is to start with a number of split multiples of
the number of region servers. Then HBase automated split-
ting will do the next split by itself, with no slow start.

Point 3 (9/06) signals where the first batch of jobs to
index data 18 datasets (6,254 tasks) are finishing, although
the bigger datasets are still running. At this point, the batch
of data 17 jobs are started.

At point 4 (midday 10/06), we killed all tasks and
restarted them. It reduced the number of writes to about
200Kwrites/s but maintained the performance of 500MB/s.

At point 5 (afternoon 12/06), there was no change at
the job side, but the queue configuration was changed by
the CERN cluster managers. A dedicated YARN queue
was created for EventIndex with complete access to a
maximum of 1 k vcores and using up to 4TB of memory.
At this point, the performance was raised to 300 Kwrites/s
and 750MB/s.

Results show that the big majority of datasets were
imported correctly, and in particular, there were no failures
with corrupted data or bad records. There was also no prob-
lem in converting the previous data format to the new Phoe-
nix schema. There were, however, some issues related to the
job management inside the cluster. Some tasks are killed by
YARN (container preempted by the scheduler), due to the
priorities configured in the cluster. This is no problem for
our procedure since, as we said, we have this into account
in our bookkeeping, and already correctly finished tasks
(all dataset events are written correctly in HBase) will not
be written again. There is no data integrity problem writing
the same data because restarting stops tasks, as the event
keys are the same and the results will be idempotent. Yet this
restarting means many CPU hours lost for rewriting the
same data.

We also spotted an issue for tasks running over 24 hours.
Tasks can run much longer without problem writing all data,
but when closing the connection, the internal JDBC driver
loses the last batch of data (order of 100 events). We tried
to configure the relevant configuration option without suc-
cess (set phoenix.client.connection.max.duration >24H),
and the investigations led to a problem in the JDBC usage
in the Phoenix implementation, which was reported to the
developers.
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Figure 7: System load metrics over the duration of the experiment. Upper panel shows the write operations; the lower panel shows volume
of received data.
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The final result and the measured resource usage on the
cluster were the following:

(i) 2,347 HBase regions (continuous, sorted set of rows
that are stored together), using the 10 buckets (prefix
byte hashed in the key) originally configured

(ii) max resources: 1000 vcores, up to 977 concurrent
YARN containers (where the application is run),
and~4TB of memory in total (20% of the
cluster)

The output and results of the experiment on the events
table:

(i) 7,941 datasets written

(ii) 70 billion events

(iii) Volume size of 22TB. Distribution of the data in
families:

(A) Event location: 1.89TB

(B) Event provenance: 2.38TB

(C) L1 trigger: 9.25TB

(D) L2 and HLT physics trigger: 8.41TB

(iv) 117 kHz mean insertion rate (periods with less
activity due to some jobs finishing tasks, some hours
off among insertions,…)

We can observe that the larger volume of data is occu-
pied by the trigger information, followed by the provenance
and event location information.

In the following sections, we will detail the implemented
access data algorithms and the evaluation done using this
ingested data.

4. Data Access and Analytic Algorithms

4.1. EventIndex Data Discovery. As we have seen in the data
model, the EventIndex data resides in a big table linked to
the dataset and container tables by means of a constructed
composite key. To find the relevant event data for resolving
defined use cases, or making any analytical study, we need a
set of tools that can find the event data. This can be done by
searching for any of the identification fields, or by any other
fields that represent summary data for every dataset and
container, including

(i) Number of total, unique, and duplicate events

(ii) Number of total files (GUIDs) and that contains
duplicates (dataset granularity)

(iii) Data collection bookkeeping info: status of the data-
set and date of updated information

(iv) Metadata about related info from the related events,
basically if it contains raw data, trigger, and prove-
nance details

We have produced relevant tools to look up data of inter-
est that can be used later for further use cases. In particular, the
higher entry functions are findDatasets() and findCanonical()
that access the related tables and produce a Spark DataFrame
with results that can be consulted and refined to all Spark
operations. These data entities are defined on a schema with
named columns that, in this case, reflect the underlying data
schema of the backend HBase/Phoenix tables, making them
available to the rest of operations.

The incarnation of the data is done with a lazy evalua-
tion policy, so the results are only available when actions
are called. Another advantage when modelling the data with
Spark DataFrames is the possibility to apply Spark SQL func-
tions, which allow the usage of SQL queries.

Some examples of the functionality are shown next. In
the example in Figure 8, we show our tool working with
the interactive spark shell, and we observe that we only
need to import the “Util” class of the “eventindex.anali-
tycs.spark” package to access the described functions.
When calling, findCanonical() will produce the Spark
DataFrame. The generic “count” function will give us the
number of entries of the underlying data table, so in this
example, there are 1132 container datasets. We can use
the groupBy() function by the “project” named column,
and then count and show how many datasets are available
by project. Results are returned fast in less than a second,
as it accesses only the summary dataset and container
tables, orders of magnitude smaller compared with the
event table.

In Figure 9, we intend to find datasets from a container
dataset:

“mc15_13TeV.700316.Sh_2211_Wenu_maxHTpTV2.-
deriv.DAOD_TRUTH1.e.

8338_e7400_p3401”, so we apply the findDatasets
(expression) function to the appropriate container name.
We obtain a Spark DataFrame as a result, where we can
count the number of entries to check the number of datasets
included in this container (38). In addition, we can see sev-
eral fields for each dataset, including:

(i) The dataset name (common for all datasets in a
container but the suffix “_tidnnnnnnn”, where
nnnnnnn is a production system task number
(7 digits on left zero filling), then the dataset
contains only data made by the production task
nnnnnn

(ii) the numeric production system task number just
mentioned (TID)

(iii) The number of files (files) and files affected with
duplicates (files_dup)

(iv) The number of unique event identifiers (events_
uniq) and duplicate (events_dup) events

Therefore, the number of unique and duplicate events
and the files that contain duplicates are not available at the
dataset level either, so will have to be calculated with the
functions defined in the following subsections.
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4.2. Duplicate Calculation. There is a need to detect event
duplication at different granularities, starting from files
(GUID) containing duplicates but also at a higher level. The
EventIndex Distributed Data Collection can detect duplicates
at the file (GUID) level when indexing the input GUID files
[4], so this information is conveyed and it is available in the
data backend since the first ingestion. However, this is not

the case on the dataset or container level, where we have to
apply analytic tools to check for event duplicates.

Our tool provides a set of functions to detect duplicates
at several granularities. It also expands the functionality of
the Spark DataFrames containing events, providing custom
transformation functions related to the calculation of
duplicates.

Figure 8: Data discovery functions. DataFrame building from the canonical datasets table.

Figure 9: Data discovery functions. Search datasets with expressions.
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As defined in the previous sections, the following func-
tions are provided and can be used to calculate the missing
values in the defined dataset and container tables:

(i) events(): number of event entries

(ii) events_dup(): number of events with duplication

(iii) events_uniq(): number of unique events
(identifiers)

(iv) files(): number of files (GUIDs) seen

(v) files_dup(): number of files with duplicates

In Figure 10, we show an example where we apply the
previous duplicate calculation function to a mc16_13 TeV
canonical container dataset with the name “mc16_
13TeV.451926.MadGraphPythia8EvtGen_
A14NNPDF23LO_X280tohh_bbtautau_hadhad.deriv.-
DAOD_HIGG4D3.e8353_e5984_a875_r9364_r9315_
p3978” but can be applied similarly to standard datasets.

First, we import the Spark eventindex package as usual,
and then we find the canonical container and store it in
the canonicalDF Spark DataFrame. Then, we apply the
transformation to get the events for that canonical container,
obtaining them in the eventsDF Spark DataFrame.

The subsequent functions are applied in that DataFrame
to obtain the number of total events (128,077), the number
of events with duplication (27,805), the number of unique
event identifiers (94256), the total number of files (5), and
the number of files affected with duplicates (4).

These calculated values can be stored in the related tables
by the user, or by any automated higher-level tool.

4.3. Evaluation. A Spark application using these functions
was implemented to be submitted automatically to the pro-
duction system and to be applied with different granularities
including a dataset with all datatypes (specifying only its
dspid), a canonical dataset (additionally specifying its dsty-

peid), and only a production dataset belonging to a canonical
dataset (additionally specifying its TID).

This program calculates the number of event records,
unique event identifiers, duplicated event identifiers, the
number of files that contain duplicated event identifiers (in
the context of the granularity calculated), and a list of files
(GUIDs) with duplicated event identifiers and the number
of that event records within that file. Result of this program
is a summary JSON file with these variables, with the final
object of filling in the missing values in the datasets and
canonical dataset container metatables.

We measured the performance of this program on the
same examples, datasets (identified by dspid) with one or
more derivations, corresponding to one or more datatypes.
The size of these samples in the number of events varies
from 200 k, 1M, 20M, and 100M and contains 1 to 7 deri-
vations (datatypes). We have chosen this set of examples as
they contain duplicates, although we have also tested the
base cases for samples when there are no duplicates.

The procedure measures the time from the start of the
main Scala process to the end of the calculations. Therefore,
it does not include the interactive or background setup times
in case the application is sent to be executed in a YARN clus-
ter, but only real data access and computation time.

A Spark application consists of a driver process that ana-
lyzes and distributes the work to a set of executor processes
running in the cluster.

We submitted the same application for the same samples
several times, to measure variability in cluster utilisation and
other variables. The cluster configuration makes it possible
to distribute the load among 4 Spark executors initially,
but that automatically scales up to 32 executors.

We can see the results in Figure 11, and we observe that
even with a nonexistent dspid (so 0 event sample). The pro-
cedure has to check the event table, and it takes a baseline
time of 113 seconds. When applying to a 200 k dataset with-
out any duplicates, the procedure time takes 150 seconds as
a median (ranges from 117 to 216 s). When finding dupli-
cates, a 200 k dataset time is 150 seconds as a median as well.

Figure 10: Duplicate event calculation. An events DataFrame implements custom transformation functions related to the calculation of
duplicates.
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Time ranges from 112 to 171 seconds, detecting from hun-
dreds to 24 k duplicates in 54 files. Overall, the mean rate
for 200 k event datasets is a rate of 1.5 k events/s.

The 1M event datasets take from 171 to 314 seconds (3-
6 k events/s). The 20M event datasets take from 347 to 564
seconds (35-57 k events/s). In all of these samples, the num-
ber of detected duplicates and files containing duplicates
varies without determining a clear weight on the resulting
processing times. Samples of the same size with more dupli-
cated events and number of affected files can yield better
results, making the size of the sample the determinant vari-
able to predict the processing time.

Bigger datasets with their derivations comprising about
100M events take 869-884 seconds (120 k events/s). Again,
there is not much difference on the processing time attribut-
able to the number of duplicates detected (8 to 23 million)
and affected files (500 to 200 files). The load is distributed
among 4 executors initially, and it scales up to 32 executors
automatically, as defined by the cluster configuration.

It has to be noted that in case of a high number of
affected files, the detailed list might occupy a nonnegligible
amount of space (530 Mbyte JSON files with details of
~4M events duplicated on 422 files). The time of producing
the output summary file is not shown here. In particular, in
this sample, it was about 60 seconds for collecting the output
of the driver process and writing the file. This time can be
decreased if the output is written directly to the Spark exec-
utors in a distributed manner.

4.4. Helper Functions. Our tool also provides some addi-
tional helper functions:

(i) withColumnGUID(). adds a new DataFrame col-
umn with a decoded GUID file (from the SelfRefer-
ence field)

(ii) groupByGuid(). groups the entries by file (GUID),
effectively calculating the number of event entries
per file

(iii) groupByEventno(). # entries per event number
identifier

In Figure 12, we first apply the function “groupByE-
ventno()” to the eventsDF dataframe. We obtain in the
first column a list of event identifiers (event number or
eventno), and in the second column, the number of entries
(count) of that event identifier in the dataset. The example
shows the first 20 rows, and we can observe that some
event identifiers have a count of 2 (i.e., evento = 11619),
so this means that this event identifier has 2 entries and
therefore is a duplicated event. We could refine even more
this result DataFrame, for example, by applying a “where
count ≥2” clause to obtain only the event identifiers that
have duplicates.

The bottom part of the figure shows the “groupBy-
Guid()” function applied to the same dataframe, which
results in the files (identified by GUID) in the first column,
and the number of event entries (count) that contain each
of the files in the second column.

Function withColumnGUID() is internally used by
groupByGuid, but it can also be used if there is the need to
obtain the GUID identifiers for other calculations or statis-
tics, as they are not directly available in the backend tables
and have to be decoded from the “self-reference” field.

Trigger is encoded with fields in the events table as
an array of shorts. The Apache Phoenix Spark connector
was incorrectly interpreting this data type, making access
impossible from Spark and therefore from our tool.
Some modifications and integration tests were developed
to solve this issue in the Phoenix Spark connector, and
they were submitted to the Apache Phoenix project
and adopted [20].

4.5. Overlap Calculation. One of the use cases of the ATLAS
EventIndex is the calculation of event overlap matrices
among the derivations of a dataset. The reason is that an
event is reprocessed and stored in several formats (several
output files along the time). In particular, for the derivation
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Figure 11: Duplicate events for a dataset sample calculation rate. The horizontal axis shows the size of the sample of events in a logarithmic
scale. The vertical axis shows the rate of processed events per second in a logarithmic scale.
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framework; currently, there are n streams being produced
which will be spread among several trains (processing jobs)
and will end in n files.

Therefore, 1 input file, n output files, the event overlap
between these needs to be monitored.

We wish to determine how many and which events end
up in each stream. For a number of datasets. The provided
tool function calculateOverlaps() calculates the values
needed to build the matrix for all derivations of a given data-
set with its identifier.

Figure 13 shows the execution of the function over the
DAODs derived from the AOD dataset: “data18_
13TeV.00350144.physics_Main.merge.AOD.f933_m1960”.

For reference, DAOD (Derived AOD) datasets have the
following names:

data18_13TeV:data18_13TeV.00350144.physics_Main.-
deriv.DAOD_BPHY1.f933_m1960_p3553.

data18_13TeV:data18_13TeV.00350144.physics_Main.-
deriv.DAOD_BPHY4.f933_m1960_p3553.

data18_13TeV:data18_13TeV.00350144.physics_Main.-
deriv.DAOD_BPHY5.f933_m1960_p3553.

…

They comprise 83 datasets summing up around 500M
events. The execution of our algorithm results in a Spark
DataFrame that can be shown in Figure 13.

The result dataframe shows an entry for every pair of
derived streams that contain overlapped events. Therefore,
for N-derived streams, we would have an N X N matrix,
but we have to bear in mind that the events overlapping in
a pair of streams (i,j) will hold the same results as the pair
of streams (j,i), so we will have a symmetric matrix. In addi-
tion, the elements of the leading diagonal (i,i) that contains
the values of one stream against itself will be always the same
(ratio = 1 as all events are by definition the same events_
stream1_only = events_stream2_only =0, and events_both-
streams will equal the total number of events in the stream).
Therefore, instead of N ×N elements, we will have to explic-
itly calculate only the n n − 1 /2 elements in the upper right
(or lower left), which are the independent entries of the
matrix.

In this example, the results on the screen show the first
20 rows or entries of the result overlapsDF DataFrame that
contains 83 ∗ 83 − 1 /2 = 3403 entries.

As an example, if we take the first entry, the (EXOT2,
TAUP1) streams will produce the same results as (TAUP1,
EXOT2) as the overlapped events in both streams are the
same, and so the rest of the values. In this case, we see that
there are 13349380 events that are only in EXOT2 (events_
stream1_only) and 3320739 events in TAUP1 (events_
stream2_only). Then there are 99177 events that are in both
streams, so this is the number of overlapped events or the
intersection of both streams. We calculate the ratio
(0.005914…) which represents the events that are in both
streams, to the sum of total events. This is calculated as the
intersection (events_both_stream) over the union (events_
stream1_only+events_stream2_only+events_both_streams).

This DataFrame can as well be stored in an output file, or
in another Phoenix Table, like in the following example. We
have stored the results in another table DATASETS_OVER-
LAPS with the same schema as the overlaps DataFrame.

We have previously seen in our data model that millions
of events reside in a big events table, with a row per event
entry. We will apply the algorithm only to the needed data,
namely, the event entries stored for every derived dataset
that we are taking into account.

In Algorithm 1, we show the pseudocode for the overlap
calculation algorithm that has 4 main steps:

Step 1. For every event record, select the event identifier
(eventnumber), and the stream (datatype).

(a) The result of this step is a set of (EventId, stream).
This set might contain several entries with the same
Event Id

Step 2. Group the streams by the event identifier

(a) Result of this step is a set of (EventId, EventStreams),
where EventStreams is a set (Stream1, Stream2, …
StreamN). The number of elements of this set of

Figure 12: Helper functions to group by event number and by file
(GUID).
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Figure 13: Overlap event calculation for a set of 83 datasets with 500M events.

// Step 1
method map1 (events)

for all x in events do
emit(x.EventId, x.Stream)

// Step 2
method reduce1 ( eventId, Stream [s1, s2, ...])

EventStreams <= new AssociativeArray
for all stream in [s1, s2, ...] do
EventStreams <= stream

emit (EventId, EventStreams)
// Step 3
AllStreamsList <= new List(s1, s2, .., sn)
method map2 (EventId, EventStreams)

numStreams = length(AllStreamsList)
for i in 1 to numStreams do
for j in i+1 to numStreams do

streamI <= AllStreamsList[i]
streamJ <= AllStreamsList[j]
isInI <= true if EventStreams{streamI} exists
isInJ <= true if EventStreams{streamJ} exists
if isInI or isInJ do
emit (pair(streamI, streamJ), pair(isInI, isInJ))

// Step 4
method reduce2 (Pair(StreamI, StreamJ), Pair(isInI, isInJ) [p1, p2, ...])

events_stream1_only <= 0
events_stream2_only <= 0
events_both_streams <= 0
ratio <= 0
for all p(i, j) in [p1, p2, ...] do
case (true, false) : events_stream1_only <= events_stream1_only + 1
case (false, true) : events_stream2_only <= events_stream2_only + 1
case (true, true) : events_both_streams <= events_both + 1

ratio <= events_both_streams /
(events_stream1_only + events_stream2_only + events_both_streams)

emit (pair(StreamI, StreamJ), events_stream1_only,
events_stream2_only, events_both_streams, ratio))

Algorithm 1: Overlap calculation algorithm pseudocode.
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streams corresponds to the number of event entries
of a particular event identifier

Step 3. For every event identifier, build all pairs of streams
(i,j) that might contain this particular event, signalling where
it is found

(a) Result of this step is a set of tuples [(StreamI,
StreamJ), (is_in_I, is_in_J)], where is_in_X is a bool-
ean that signals that this event entry is found in that
stream. Values emitted might be:

(1) (false, false): not found in any, so this value is not
emitted at all and will not be found in the set of
tuples

(2) (true, false): the event entry is found in StreamI
but not in StreamJ

(3) (false, true): the event entry is found in StreamJ
but not in StreamI

(4) (true, true): the event entry is found both in
StreamI and StreamJ, so this is an overlap

(b) It has to be noted that we have to build pairs of
streams not only from the EventStreams set in Step
2 (as will contain only the overlaps) but to travel
all possible pairs of streams (i,j). With s streams, this
means as much as s ∗ s − 1 /2 entries. This counts
the events that might be in one but not in the other
stream. As stated, if both i and j streams are not
found in the EventStreams set considered in this
step, then the (false,false) value is not emitted, reduc-
ing the potential s ∗ s − 1 /2 values emitted per
entry generated from the previous step

Step 4. Group the tuples by pairs of streams, counting the
number of previously generated values

(a) Result is a set of Tuples [(StreamI, StreamJ), (events_
stream1_only, events_stream2_only, events_both-
streams, ratio)]

(b) The set contains an entry per (StreamI, StreamJ) pair
possibility, with as many as s ∗ s − 1 /2 entries

(c) When grouping by pair (StreamI, StreamJ), the
values (is_in_I, is_in_J) previously emitted are
counted in the mentioned variables:

(1) (true, false) sum 1 to events_stream1_only

(2) (false, true) sum 1 to events_stream2_only

(3) (true, true) sum 1 to events_both_streams

(4) ratio is calculated as the intersection over the
union, so ratio = events_both_streams/(events_
stream1_only + events_stream2_only + events_
both_streams)

The result of Step 4 is what we find in the output of
the example shown before, the set of unique entries of
the matrix that represents the possible S × S overlaps of
the S-derived streams of the analyzed dataset.

The implementation of the algorithm is done in Scala
language and using Spark abstractions and functions. First,
we are reading the events from the source (Events HBase
tables with Phoenix Schema) that are from the streams of
interest, in this case, all streams (dstypeid) found in the
canonical container table for a particular dataset by its data-
set identifier (dspid).

Since all data share the dspid which is the key prefix (see
Section 3.1), we assure the locality of the data. In addition,
all events from a stream datatype will share the dstypeid,
that is, the next data in the key prefix, so they will be
together in disk and not spread, also assuring the locality
of the data.

Step 1 of the algorithm is achieved with a map() trans-
formation, retrieving only the fields of interest of every event
entry, namely, the event identifier (eventnumber or eventno)
and the stream (dstypeid).

In Step 2, we apply the aggregateByKey() transforma-
tion which is much more efficient in the Spark Scala
implementation as it can be applied in parallel in different
partitions where the data is instead of moving the data as
in groupByKey(). We want the result of the aggregation to
be a set of values, that is a different type than the values
that are strings (the sum of strings is a concatenation of
the string), so we use this function instead of
reduceByKey().

The backend data is organized into all streams (dstypeid)
of a dataset (dspid) to be consecutive in the HBase row key
space and therefore in the storage (disks). We can benefit
that most of these calculations are done in the same machine
and in memory in particular, without too much data shuf-
fling across the region servers of the cluster. It is, however,
possible that for big datasets and lots of derivation streams,
their data expands along several region servers. In this case,
the aggregateByKey() transformation will shuffle the data to
aggregate by the event identifier.

In Step 3, we use the flatMap() transformation to the Data-
Frame result of Step 2 which has an entry per event identifier,
into the set of tuples that identify pairs of streams and where in
that pair the event entry is found (as boolean pairs described in
the algorithm). This flatMap() transformation applies a cus-
tom eventsStreamsPairMapper() function to every original
entry (event identifier) for that purpose.

The last Step 4 applies again an aggregateByKey() trans-
formation to reduce the previous results by pairs of streams.
The first parameter of aggregateByKey() will be the com-
biner function for merging values within a partition, taking
the boolean pairs, and converting them to tuples (events_
stream1_only, events_stream2_only, events_both_streams,
ratio). Ratio is not computed in this combiner function, yet
it is emitted as 0. Yet the summatories of the events are done
at the partition level.

The second parameter of aggregateByKey() will be the
reducer function to group a pair of tuples produced by the
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previous function and applied when merging values between
partitions. In this case, the output is another tuple summing
the 3 first values and computing the ratio as the intersection
over the union (events_both_streams/(events_stream1_only
+ events_stream2_only + events_both_streams)).

Due to a feature in the Spark Scala implementation, this
reducer function is not applied when all data is in a single
partition, so the ratio will not be computed correctly. In this
case, there will be another step to explicitly compute the
ratio when producing the final results.

The last part of the implementation deals with showing
user-friendly values in the result DataFrame, which implies
converting the dstypeid to the user-friendly stream names
stored in the dstypes tables.

4.6. Evaluation. We have tested the algorithm on several
datasets and derivation streams. The most common data
currently has few stream derivations (s < 10), with datasets

with size n that range from thousands to millions of events.
Only one dataset sample contains 83 derivations.

The sizes of the problem (n) of the dataset of the samples
tested are 200 k, 1M, 20M, 100M, and 500M. These events
are divided in a number (s) of streams, which are 1, 2, 5, 6, 7,
and83 (unique case).

Figure 14 shows the overlap calculation time depending
on the size of the dataset on the x-axis and the number of
streams (in lines with different colours).

For dataset samples up to 200 k events, the overlap pro-
cedure cost from 15 seconds for a dataset with just 1 stream.
Therefore, this is the baseline as no matrix elements are cal-
culated. Then, it takes 27 seconds for 2 streams and 40 sec-
onds for 6 streams.

For dataset samples of 1M events, it takes from 43 to 67
seconds. A 6 stream sample takes 43 seconds, the same as a
200 k dataset, so in this case this might be an issue in the for-
mer calculations.
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Figure 15: Overlap calculation rate. Horizontal axis represents the size of the problem in events in logarithmic scale; the vertical axis
represents the rate of events processed per second, in logarithmic scale.
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For bigger datasets, they rise almost linearly, and there
are only a few samples in our system for datasets bigger than
108, but it is worth testing as these cases are interesting for
the final users. There is only one sample with 83 streams
and 500M events that has multiple overlaps.

In general, series converge to the baseline case with 1
stream when there are no overlaps showing that the main
factor affecting performance is the dataset size.

The number of streams affects how Steps 2–4 of the
algorithms are applied, increasing the number of tempo-
rary results and affecting how many comparisons are to
be made. The number of computations performed is n ∗
s ∗ s − 1 /2 , where n is the number of events and s

is the number of streams.
As we can see also in Figure 14, the cost is dominated by

the size of the problem n, while the cost of computing the
s ∗ s − 1 /2 pairs per entry takes smaller time compared
with the n term.

A quadratic term dominates a linear one. Nevertheless,
in this case, the quadratic one is of much less magnitude,
so in the algorithm cost, the dominant term is n, and the
temporal cost is O n .

The intermediate data produced is at most the number of
computations n ∗ s ∗ s − 1 /2 in Step 3 of the algorithm
presented. However, this data is constantly reduced per spark
partition at Step 4. Thus, the final space cost is O s2 .

Figure 15 shows the overlap calculation rate. For datasets
of 20M events, processing takes 368-483 seconds and yields
a processing rate of about 50 k events/s. Again, datasets with
higher number of streams might yield better results, reveal-
ing again the preponderance of the (event) size factor.

100M event baseline dataset with just 1 stream takes 445
seconds and yields a performance of 240 k events/s proc-
essed. Then datasets with more streams and overlap process-
ing take 579-643 seconds, with a mean 160 k events/s
processed. The biggest 500 million events sample yields a
performance of 380 k events/s.

5. Conclusions

We have presented a framework and a set of analytical tools
using Spark abstractions and implemented in a Scala pack-
age. With it, we are accessing billions of event records in
an HBase data backend. An Apache Phoenix layer provides
schema enforcement and SQL capabilities to access the data.
With our tools, we abstract the backend data model, decou-
pling the data access from the actual data schema and used
technologies. This approach is very convenient to hide
model complexity with an accessible defined interface. It also
masks changes in the data model, which are invisible for the
user as the defined interfaces do not change.

The package can be used interactively within a
command-line spark-shell session. It can also be used with
batch standalone Spark jobs, as we have shown when evalu-
ating our tool algorithms.

We have shown that our data model is defined in a big
events table with data organized in 4 families, and other
metatables for data discovery and bookkeeping. For the eval-
uation, we have used dataset samples of EventIndex produc-

tion data that were already available in HDFS, and we have
imported it in our HBase/Phoenix system. We have used a
MapReduce approach bulk importing campaign that
allowed us to ingest 70 billion events from almost 8,000
datasets in a week, with a mean rate of 117 kHz (events/s).
Eventually, our event table occupied 22TB in the CERN
HBase cluster.

The tool and algorithms presented solve data access for
our application use cases in areas like data discovery, dupli-
cate detection, and overlap calculation. Data discovery capa-
bilities produce Spark DataFrames usable by the rest of the
tools. They are also using custom helper functions to access
the encoded fields of the data model. During the process of
development, some limitations in the Apache Phoenix Spark
connector were solved and contributed back to the
community.

An overlap calculation algorithm was presented with the
computational cost O(n) with the number of events and spa-
tial cost O(s2) with the number of streams. Implemented in
Scala and using Spark abstractions, it translates automati-
cally to scans over the HBase key, which is fast and perfor-
mant. All data for the derivation of a dataset are adjacent
in the key space, and therefore storage, reducing input/out-
put operations. The algorithm scales automatically within
the Spark cluster up to 32 processes, yielding a performance
of 380 k events processed per second for a 500M event
dataset.

The duplication detection case accesses the event table
key and family A (event location) data. It is slower compared
with the overlap case due to the access of different values in a
data family and not only the HBase key, yielding a perfor-
mance of 120 k events per second for 100M events, com-
pared with 150 k events/second for the same size overlap
calculation.

The processing rates show a penalization for smaller
datasets that are due to the setup of HBase data streams,
dominating the accounted time. We obtain better rates for
bigger dataset sizes, so one possibility is to increment spark
job granularity when possible, for example, calculating fea-
tures at the container level, instead of its constituent
datasets.

The presented framework approach solves the analytic
use cases of the ATLAS EventIndex project in a performant
manner, providing convenient data access paths which will
be exploited starting with the LHC Run 3 (2022-2025).
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