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In this paper, we present a technique to improve the convergence of the biconjugate gradient stabilized (BiCGStab) method. This
method was developed by Van der Vorst for solving nonsymmetric linear systems with a single right-hand side. The global and
block versions of the BiCGStab method have been proposed for solving nonsymmetric linear systems with multiple right-hand
sides. Using orthogonal projectors to minimize the residual norm in each step, we get an enhancement of the convergence of
each version of the BiCGStab method. The considered methods are BiCGStab, global BiCGStab, and block BiCGStab methods,
noted, respectively, as Gl-BiCGStab and Bl-BiCGStab. To show the performance of our enhanced algorithms, we compare
them with the standard, global, and block versions of the well-known generalized minimal residual method (GMRES).

1. Introduction

The aim of the BiCGStab method studied in this paper is to
solve the following nonsymmetric linear system

Ax = b, 1

where A is a nonsingular matrix in ℝN×N and the vectors b
and x are in ℝN . Problems such as (1) occur in most appli-
cations of scientific computing, engineering applications,
and Navier-Stokes equations in computational fluid dynam-
ics and structural mechanic computations based on finite
element analysis. If the order N of the matrix A is small,
we can solve (1) using direct methods, but if N is large, direct
methods can be prohibitively expensive both in terms of
memory and time. So, iterative methods become appealing.
These methods include the Krylov subspace methods. It is
true that current methods give us interesting computational
performance, but it is important to realize that there is no
single method that can solve every linear system with desir-
able accuracy. Because it all depends on the conditioning
number of the problem matrix A and some characteristics
of the matrix, i.e., its symmetric and whether it is positive

definite or not. Many experiments are given in the recent
book [1] to show this remark. However, a number of factors
can influence the choice of the method, including the condi-
tioning of the matrix A and the number of nonzero values.
In literature, there are many problems of linear systems with
a sparse matrix which are obtained from real applications
(heat transfer, fluid flow, mass transport, etc.) by using a
numerical strategy for solving partial differential equations
(finite difference, finite volume, and finite element methods)
[2, 3]. The difference between all the existing methods for
solving linear systems is in the level of accuracy, turnaround
time, and storage. For system (1) with a symmetric positive
definite matrix, we use the conjugate gradient method
(CG). If A is a symmetric matrix, we usually use the MIN-
RES. Finally, the nonsymmetric case can be solved using
GMRES, developed as the most popular and the most opti-
mal in terms of precision but suffers from storage problems.
The nonsymmetric case can also be solved using some short-
recurrence Krylov subspace methods. We find for example
the BiCG, CGS, and BiCGStab methods. These methods
are derived from the extension of the CG in the nonsymmet-
ric case. In this work, we focus on the nonsymmetric case,
especially on the BiCGStab method as the most stable

Hindawi
Computational and Mathematical Methods
Volume 2023, Article ID 8078760, 9 pages
https://doi.org/10.1155/2023/8078760

https://orcid.org/0009-0001-4502-444X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/8078760


method compared with the BiCG and CGS methods. For
more details about all the Krylov subspace methods, see [4]
and the current book [1].

The BiCGStab method has been developed in [5] for
solving (1). The global version of the BiCGStab method
has been given in [6], and the block version of this method
has been given in [7] for solving linear systems with several
right-hand sides. Using orthogonal projectors and a tech-
nique given in [8, 9] to improve the convergence of the
IDR method [10, 11], and some Krylov methods (BiCG
and CGS), we give an enhancement of the convergence of
the BiCGStab method.

The rest of this paper is organized as follows: In the next
section, we recall the algorithm of the BiCGStab method [5].
Then, we propose an improvement in the convergence of
this algorithm using orthogonal projectors. A partial and full
improvement of the BiCGStab method is proposed and will
be called PEnha-BiCGStab(k) and FEnha-BiCGStab, respec-
tively. In Section 3, we focus on the solution of linear sys-
tems with multiple right-hand sides. We will recall the
global version of the BiCGStab [6], which will be called the
global BiCGStab (Gl-BiCGStab) method. We will also
propose two improvements to this method, partial and full
improvements, which will be called partial and full enhance-
ments of the global BiCGStab and denoted by PEnha-Gl-
BiCGStab(k) and FEnha-Gl-BiCGStab, respectively. In
Section 4, we will recall the block version of the BiCGStab
(Bl-BiCGStab) method. We will also propose two improve-
ments to this method, partial and full improvements, which
will be called partial and full enhancements of the block
BiCGStab and denoted by PEnha-Bl-BiCGStab(k) and
FEnha-Bl-BiCGStab, respectively.

In Section 5, we will present some numerical experi-
ments to compare the proposed algorithms with the well-
known GMRES [12], the global GMRES (Gl-GMRES) [13],
and the block GMRES (Bl-GMRES) [14] methods.

Throughout this article, all vectors and matrices are
assumed to be real, and the following notation is used. First,
MT represents the transpose of any matrix M. For two vec-
tors x and y in ℝN , the inner product is x, y 2 = xTy, with
x 2 = x, x 2 the Euclidean norm. In the block and global
cases, we consider two matrices X and Y in ℝN×m. The inner
product is defined by X, Y F = Tr XTY , where Tr Z
denotes the trace of a square matrix Z. Moreover, the associ-
ated norm is the Frobenius norm noted F . We denote by
I the identity matrix of order N .

2. BiCGStab Method and Its Enhancement

The biconjugate gradient stabilized (BiCGStab) algorithm
has been developed for solving nonsymmetric linear systems
(1). This algorithm has been given from the conjugate gradi-
ent squared (CGS) algorithm of Sonneveld [15], which is
obtained from the biconjugate gradient (BiCG) algorithm
(see [4, 16]). This last algorithm was obtained by using the
Lanczos biorthogonalization (see [4, 16]). All these methods
are Krylov subspace methods for solving linear systems. So,
in this section, we give some theoretical background and

some preliminary results. For an initial guess x0, we associate
a residual vector r0 = b − Ax0

Definition 1. We define the Krylov subspace of order k asso-
ciated to the matrix A and vector r0 by

K s
k A, r0 = Span r0, Ar0,⋯, Ak−1r0 2

Classical Krylov subspace methods compute the approx-
imate solution xk and its corresponding residual rk = b − Axk
such that

xk − x0 ∈K
s
k A, r0 , and rk =Φk A r0 for k = 1,⋯,m, 3

where Φk is a polynomial of degree k. Let

ψm ξ = σ0 + σ1ξ+⋯+σmξ
m = 〠

m

i=0
σiξ

i, withψm 0 = 1 4

be the minimal polynomial of the matrix A with respect to
the vector r0, i.e.,

ψm A r0 = 〠
m

i=0
σiA

i r0 = 0,

m =min k such that 〠
k

i=0
σiA

ir0 = 0, with σ0 = 1

5

If the considered method converges after m iterations,
the polynomial matrix Φk A can be written as follows:

Φk A = ϕk A ψk A 6

The way in which the coefficients of these two polyno-
mials are calculated gives us the different variants of the Kry-
lov subspace methods. For example, in the GMRES method

ϕk A = I,

ψk A = I −WkW
†
k,

7

with Wk = Ar0, A2r0,⋯, Akr0 and W†
k = WT

kWk
−1
WT

k is
the pseudoinverse of the matrix Wk. The BiCG method is
obtained if we consider the following choice:

ϕk A = I,

ψk A = pk A = I −Wk W
T
kWk

−1
W

T
k ,

8

with W = r0, ATr0,⋯, AT k−1
r0 .

We remark that Hk = I −WkW
†
k is an orthogonal projec-

tor. Then, the associated residual vector of the GMRES
method is defined by an orthogonal projector, hence the
optimal property of this method.
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The CGS method is developed to avoid the calculation of
the transpose of the matrix A in the BiCG method, and then
the residual associated to the CGS method is given as follows:

rCGSk = p2k A r0 9

The CGS algorithm is based on squaring the residual poly-
nomial, and, in cases of irregular convergence, this may lead to
a substantial buildup of rounding errors or possibly even over-
flow. The BiCGStab algorithm is a variation of the CGS
method which was developed to remedy this difficulty. Instead
of seeking a method which delivers a residual vector of the
form (9), BiCGStab produces iterates whose residual vectors
are of the form

rBiCGStabk =Ψk A pk A r0, 10

in which, as before, pk A is the residual polynomial asso-
ciated with the BiCG algorithm and Ψk A is a new polyno-
mial which is defined recursively at each step with the goal
of “stabilizing” or “smoothing” the convergence behavior of
the original algorithm. Specifically, Ψk A is defined by the
simple recurrence

Ψk+1 A = I − ωkA Ψk A , 11

with ωk is determined by minimizing the norm of the
residual. Based on this fact of minimization, our idea of
improving the convergence of the BiCGStab method comes
from the fact that we can give another form to these polyno-
mials to improve convergence, using only the data that we
have to keep the same storage and computation time.

The BiCGStab method is summarized by the following
algorithm.

We will propose an improvement to the convergence of
the BiCGStab method. Two enhancements of this method
are studied: the first one will be called partial enhancement,
denoted by PEnha-BiCGStab(k), and the second one will be
called full enhancement, denoted by FEnha-BiCGStab. We
propose to improve the convergence of the BiCGStab
method by using the following well-known result.

Proposition 2. Consider the orthogonal projector

Ql = I −Z lZ
†
l , 12

where the rectangular matrix Zl is a full rank matrix in ℝN×l

and

Z†
l = ZT

l Zl
−1
ZT
l 13

is its pseudoinverse (Moore-Penrose) (for more details of the
pseudoinverse, see [17]). Applying the projector Ql to any vec-
tor r ∈ℝN , we obtain a new vector, which we denote by

rEnha =Qlr 14

Then, we have

rEnha
2
≤ r 2 15

The proof of this proposition is given in [4] page 38.
To improve the convergence of an iterative method for

solving linear systems, it is necessary to minimize and
decrease the norm of its residual in as few iterations as pos-
sible. Then, by invoking Proposition 2 with the residual vec-
tor ri, we obtain an improvement in the accuracy and
stability of the BiCGStab algorithm. Thus, we will apply an
orthogonal projector Qk to the residual of this method to
obtain a new residual with a smaller norm. Furthermore,
to avoid a storage problem, we use the k pairs of vectors
already calculated in the BiCGStab method to construct
the orthogonal projector.

The partial enhancement of the convergence of the
BiCGStab method (PEnha-BiCGStab(k)) is given by choos-
ing Zk equal to the k last pairs of vectors vi, ti , and by add-
ing to line 10 in Algorithm 1 the following instructions

(1) Z1 = pi−k+1, si−k+1, pi−k+2, si−k+2,⋯, pi, si
(2) Zk = AZ1 = vi−k+1, ti−k+1, vi−k+2, ti−k+2,⋯, vi, ti
(3) Z = Z†

kri

(4) xPEnhai = xi + Z1Z

(5) rPEnhai = ri − ZkZ

The full enhancement of the convergence of the BiCG-
Stab (FEnha-BiCGStab) method is defined by choosing Z

equal to the all last pairs of vectors

v0, t0, v1, t1,⋯, vi, ti , 16

and by adding to line 10 in Algorithm 1 the following
instructions

(1) Z1 = p0, s0, p1, s1,⋯, pi, si
(2) Z = AZ1 = v0, t0, v1, t1,⋯, vi, ti
(3) Z2 = Z†ri

(4) xFEnhai = xi + Z1Z2

(5) rFEnhai = ri − ZZ2

3. Global BiCGStab Method and
Its Enhancement

In this section, we consider the solution of large and sparse
nonsymmetric systems with multiple right-hand sides of
the form

AX = B, 17
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where the coefficient matrix A is a nonsingular real
matrix of order N ,

X = x1 x2 ⋯ xm ,

B = b1 b2 ⋯ bm ∈ℝN×m,
18

with m≪N . One class of solvers for solving problem (17)
are the global methods, which are based on the use of a
global projection process onto a matrix (global) Krylov sub-
space, including global the FOM and GMRES methods [13],
global BCG and BiCGStab methods [10], and global Hessen-
berg and CMRH methods [18].

The other class is that of block solvers which are much
more efficient when the matrix A is relatively dense. The first
block solvers are the block conjugate gradient (Bl-CG) and
block biconjugate gradient (Bl-BiCG) methods proposed in
[19];for nonsymmetric problems, the block generalized
minimal residual (Bl-GMRES) algorithm [14], the block qua-
siminimum residual (Bl-QMR) algorithm [20], the block
BiCGStab (Bl-BiCGStab) algorithm [10], and the block Lanc-
zos method [7] have been developed.

In what follows, we recall the global biconjugate gradient
stabilized (Gl-BiCGStab) algorithm.

We will propose an improvement of the convergence of
the Gl-BiCGStab method. Two enhancements of this
method are studied: the first one will be called partial global
enhancement, denoted by PEnha-Gl-BiCGStab(k), and the
second one will be called full global enhancement, denoted
by FEnha-Gl-BiCGStab. We propose to improve the conver-
gence of the Gl-BiCGStab method by using the following
well-known result.

Proposition 3. Consider the orthogonal projector

Ql = I −Z lZ
†
l , 19

where the rectangular matrix Z l is a full rank matrix in
ℝN×m and

Z†
l = ZT

l Z l
−1
ZT

l 20

is its pseudoinverse (Moore-Penrose) (for more details of the
pseudoinverse, see [17]). Applying the projectorQl to any matrix
R ∈ℝN×m, we obtain a new residual, which we denote by

REnha =QlR 21

Then, we have

REnha
F
≤ R F 22

The proof of this proposition is similar to that of the prop-
osition in the standard case. By invoking Proposition 3 with the
residual matrix Ri, we obtain an improvement of the conver-
gence Gl-BiCGStab algorithm. Thus, we will apply an orthogo-
nal projector Qk to the residual of this method and then to
minimize its norm. To avoid a storage problem, we use the k
pairs ofmatrices already calculated in the Gl-BiCGStabmethod
to construct the orthogonal projector.

The partial enhancement of the convergence of the Gl-
BiCGStab method (PEnha-Gl-BiCGStab(k)) is given by
choosing Zk equal to the k last pairs of matrices Vi, Ti and
by adding to line 10 in Algorithm 2 the following instructions

(1) Z1 = Pi−k+1, Si−k+1, Pi−k+2, Si−k+2,⋯, Pi, Si
(2) Zk = AZ1 = Vi−k+1, Ti−k+1, Vi−k+2, Ti−k+2,⋯, Vi, Ti

(3) Z2 =Z†
kRi

(4) XPEnha
i = Xi +Z1Z2

(5) RPEnha
i = Ri −ZkZ2

The full enhancement of the convergence of the Gl-
BiCGStab (FEnha-Gl-BiCGStab) method is defined by
choosing Zl equal to the all last pairs of matrices

P0, S0, P1, S1,⋯, Pi, Si , 23

and by adding to line 10 in Algorithm 1 the following
instructions

(1) Z1 = P0, S0, P1, S1,⋯, Pi, Si
(2) Z = AZ1 = V0, T0, V1, T1,⋯, Vi, Ti

(3) Z2 =Z†Ri

(4) XFEnha
i = Xi +Z1Z2

(5) RFEnha
i = Ri −ZZ2

4. Block BiCGStab Method and
Its Enhancement

As for the Gl-BiCGStab method, we will propose an improve-
ment of the convergence of the block BiCGStab method by
applying Proposition 3. Two enhancements of this method
are proposed: the first one will be called the block partial
enhancement, denoted by PEnha-Bl-BiCGStab(k), and the

1. x0 ∈ℝN guess initial vector;
2. r0 = b − Ax0, p0 = r0, r0 = r0;
3. for i = 0, 1, 2⋯ ;
4. vi = Api;
5. αi = <r0, ri>2/<r0, vi>2;
6. si = ri − αivi;
7. ti = Asi;
8. ωi = <ti, si>2/<ti, ti>2;
9. xi+1 = xi + αipi + ωisi;
10. ri+1 = si − ωiti;
11. βi = − <r0, ti>2/<r0, vi>2;
12. pi+1 = ri+1 + βi pi − ωivi ;
13. end for.

Algorithm 1: Biconjugate gradient stabilized (BiCGStab) [5].

4 Computational and Mathematical Methods



second one will be called block full enhancement, denoted by
FEnha-Bl-BiCGStab.

First, let us recall the block version of BiCGStab (Bl-
BiCGStab).

By invoking Proposition 3 with the residual vector Ri, we
obtain an improvement of the Bl-BiCGStab algorithm. Thus,
we will apply an orthogonal projector Qk to the residual of
this method. To avoid a storage problem, we use the k pairs
of matrices already calculated in the Bl-BiCGStab method to
construct the orthogonal projector.

The partial enhancement of the convergence of the Bl-
BiCGStab method (PEnha-Bl-BiCGStab(k)) is given by
choosing Zk equal to the k last pairs of matrices Pi, Si
and by adding to line 10 in Algorithm 3 the following
instructions

(1) Zk = Pi−k+1, Si−k+1, Pi−k+2, Si−k+2,⋯, Pi, Si
(2) Z1 = AZk

(3) Z2 =Z1†Ri

(4) XPEnha
i = Xi +ZkZ2

(5) RPEnha
i = Ri −Z1Z2

Remark that Z1 = AZk is given by Algorithm3.

Z1 = AZk = A Pi−k+1, Si−k+1, Pi−k+2, Si−k+2,⋯, Pi, Si
= Vi−k+1, Ti−k+1, Vi−k+2, Ti−k+2,⋯,Vi, Ti

24

The full enhancement of the convergence of the Bl-
BiCGStab (FEnha-Bl-BiCGStab) method is defined by
choosing Z l equal to the all last pairs of matrices

P0, S0, P1, S1,⋯, Pi, Si , 25

and by adding to line 10 in Algorithm 3 the following
instructions

(1) Z = P0, S0, P1, S1,⋯, Pi, Si

(2) Z1 = AZ

(3) Z2 =Z1†Ri

(4) XFEnha
i = Xi +ZZ2

(5) RFEnha
i = Ri −Z1Z2

We notice that at each iteration, we compute two matri-
ces Pi and Si. The choice of the matrix Zi is crucial because
we have 2km vectors in each matrix for the partial enhance-
ment instead of 2k like in the standard case. Then, the con-
vergence is clear in these two cases. In other words, if the
number of vectors that we use to construct the orthogonal
projector is large, we obtain a clearer improvement in accu-
racy and stability, and then the convergence will be faster.

5. Numerical Examples

In this section, we consider the following convection-
diffusion equation

−Δu − α ∇u − βu = f , inΩ,

u = 0, on ∂Ω,
26

where Ω = 0, 1 3 and α = αx, αy, αz
T ∈ℝ3. The discre-

tization of this equation is done via centered finite differ-
ences with the standard 7-point stencil in three
dimensions. (For more details about the 7-point stencil, see
[21].) The obtained matrix is sparse. Then, we have used
an example where the existing methods converge. We have
shown numerically that the new methods give an improve-
ment to this convergence. That is what we have shown the-
oretically. For all the examples, we choose α = 0 5,0 5,0 5 T ,
β = 5, and

Nx = 30,

Ny = 20,

Nz = 20

27

The order of the system is N =Nx ×Ny ×Nz = 12 000.

1. X0 ∈ℝN×m guess initial matrix;
2. R0 = B − AX0, P0 = R0, R0 = R0;
3. for i = 0, 1, 2⋯ ;
4. Vi = APi;
5. αi = <R0, Ri>F/<R0, Vi>F ;
6. Si = Ri − αiVi;
7. Ti = ASi;
8. ωi = <Ti, Si>F/<Ti, Ti>F ;
9. Xi+1 = Xi + αiPi + ωiSi;
10. Ri+1 = Si − ωiTi;
11. βi = − <R0, Ti>F/<R0,Vi>F ;
12. Pi+1 = Ri+1 + βi Pi − ωiVi ;
13. end for.

Algorithm 2: Global biconjugate gradient stabilized (Gl-BiCGStab) [6].
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In general, to compare two iterative methods in terms of
convergence accuracy and stability, we need to compare the his-
tory of the norm of the residual and error vectors. Numerically,
sometimes, even if the residual norm gives calculation results,
the error norm does not. That is why it is necessary to check this
also for the new methods too. We define the residual norm
rk 2 and the error norm ek 2 in the standard case as follows:

rk 2 = rk, rk = rTk rk,

ek 2 = xk − xtrue 2 = xk − xtrue T xk − xtrue

28

For the global and block case, we use the following formulas:

Rk F = Rk, Rk F = trace RT
k Rk ,

Ek F = Xk − Xtrue F = Xk − Xtrue, Xk − Xtrue F

= trace Xk − Xtrue T Xk − Xtrue

29

Wewould also compare the execution time of each method,
but in this case, the difference between the improved and unim-
proved methods is negligible (see Tables 1–3). To minimize the
norm of the residual, we have used the matrices and vectors
already computed at each iteration.

To illustrate the efficiency of our technique, we compare
the BiCGStab and its enhancement methods for systems
with single right-hand sides, given by Algorithm 1, with
the GMRES methods. Then, we apply the classical BiCGStab
and the new enhanced BiCGStab(k) (partial and full
enhancements of BiCGStab), denoted by PEnha-BiCG-
Stab(k) and FEnha-BiCGStab for k = 5 and k = 12, we give
the curves of residual norms and error norms. For these
methods, the right-hand b of the system is chosen as follows:

xtrue = rand N , 1 , b = Axs, 30

where xs is the solution of the considered system, and the
rand function creates a random N-vector for xs, with coeffi-
cients uniformly distributed in [0, 1], and the initial guess
was taken to be zero. In this case, the tests were stopped as
soon as rn / b ≤ 10−10. Figures 1 and 2 illustrate the com-
parison of these algorithms for residual and error norms,
respectively. Remark that the function randn can be also

1. X0 ∈ℝN×m guess initial matrix;
2. R0 = B − AX0, P0 = R0, R0 = R0;
3. for i = 0, 1, 2⋯ ;
4. Vi = APi;

5. αi = R
T
0Vi

−1
R
T
0 Ri ;

6. Si = Ri −Viαi;
7. Ti = ASi;
8. ωi = <Ti, Si>F/<Ti, Ti>F ;
9. Xi+1 = Xi + αiPi + ωiSi;
10. Ri+1 = Si − ωiTi;

11. βi = − R
T
0Vi

−1
R
T
0 Ti ;

12. Pi+1 = Ri+1 + Pi − ωiVi βi;
13. end for.

Algorithm 3: Block biconjugate gradient stabilized (Bl-BiCGStab) [10].

Table 1: Comparison of CPU time in the standard case.

Method CPU time (s)

BiCGStab 5 01 × 10−1

PEnha-BiCGStab(5) 5 48 × 10−1

PEnha-BiCGStab(12) 6 15 × 10−1

FEnha-BiCGStab 7 45 × 10−1

GMRES 5 89 × 10−1

Table 2: Comparison of CPU time in the global case.

Method CPU time (s)

Gl-BiCGStab 3 69 × 100

PEnha-Gl-BiCGStab(5) 5 69 × 100

PEnha-Gl-BiCGStab(12) 7 36 × 100

FEnha-Gl-BiCGStab 8 05 × 100

GMRES 1 46 × 100

Table 3: Comparison of CPU time in the block case.

Method CPU time (s)

Bl-BiCGStab 1 90 × 100

PEnha-Bl-BiCGStab(5) 4 01 × 100

PEnha-Bl-BiCGStab(12) 7 01 × 100

FEnha-Bl-BiCGStab 8 25 × 100

GMRES 5 80 × 10−1
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used, which creates a random matrix or vector with real ran-
dom coefficients.

For global and block methods, the right hand B of (17) is
chosen as follows:

XS = rand N ,m B = AXS, 31

the initial guess matrix equal to zeros N ,m . The tests were
stopped as soon as

Rn F/ B F ≤ 10−10 32

For the global case, we compare the global BiCGStab
(Gl-BiCGStab) and its enhancements, partial enhancement
of global BiCGStab(k) (PEnha-Gl-BiCGStab(k)), and full
enhancement of global BiCGStab (FEnha-Gl-BiCGStab) for
k = 5, k = 12, and for m = 6, with the Gl-GMRES method.
Figures 3 and 4 give this comparison of residual and error
norms, respectively.

For the block case, we compare the block BiCGStab
(Bl-BiCGStab) and its enhancements, partial enhancement
of block BiCGStab(s) (PEnha-Bl-BiCGStab(k)), and full
enhancement of block BiCGStab (FEnha-Bl-BiCGStab) for
k = 5, k = 12, and for m = 6, with the Bl-GMRES method.
Figures 5 and 6 show this comparison of residual and error
norms, respectively.

5.1. BiCGStab Method. From the curves of Figures 1 and 2,
we remark that the residual norm and the error norm of
the enhanced algorithms decrease quickly compared with
the existing methods. Furthermore, for k = 12, the conver-
gence is clearly faster than the case when k = 5.

5.2. Global BiCGStab Method. In Figures 3 and 4, we observe
that the enhanced solvers FEnha-Gl-BiCGStab and PEnha-
Gl-BiCGStab(k) give the best result. In this example, we
can remark also that for k = 12, the PEnha-Gl-BiCGStab(k)
is faster. A slight improvement of stability is also observed.
For k = 5, the enhanced method is still better than the
Gl-BiCGStab and Gl-GMRES methods.

5.3. Block BiCGStab Method. The curves clearly show that
the accuracy of the block-enhanced methods is better than
that of the Bl-BiCGStab and Bl-GMRES. And this is totally
normal, as we have in the global and block cases, km vectors
to construct an orthogonal projector. The convergence is
faster as the number of vectors increases. Hence, the
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Figure 1: The comparison between residual norms of BiCGStab, its
enhancements, and GMRES methods for k = 5 and k = 12.
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Figure 2: The comparison between error norms of BiCGStab, its
enhancements, and GMRES methods for k = 5 and k = 12.
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importance of choosing matrices Zi for constructing the
orthogonal projectors in the global and block cases. The
main aim of this paper is to improve the convergence of
the BiCGStab method in terms of accuracy and stability
while keeping the same storage properties and computation
time. Tables show that when using this technique, the
difference in computation time is negligible between the
BiCGStab method and the improved BiCGStab method in
all three cases. Here, we have also included the GMRES
method as the most optimal, to show that even though we
lose a little in terms of computation time, we still get a signif-
icant improvement in accuracy. So, in Tables 1–3, we focus

on the comparison between the BiCGStab method and its
improved version.

6. Conclusion

In this paper, we proposed a new technique to improve the
convergence behavior of the BiCGStab method for the stan-
dard, global, and block cases. Using orthogonal projectors,
we have proposed an enhancement of the convergence of
the BiCGStab method. The orthogonal projectors are con-
structed using vectors and matrices already computed in
each method to avoid storage problems and then keep the
advantage of storage of BiCGStab in all cases. Numerically,
we see that for all three cases, the enhanced algorithms of
BiCGStab are more efficient, and they converge faster than
the BiCGStab and GMRES methods with negligible defer-
ence to the turnaround time.
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