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This paper deals with the situation of multiple random choices along with multiple objective functions of the transportation
problem. Due to the uncertainty in the environment, the choices of the cost coefficients are considered multichoice random
parameters. The other parameters (supply and demand) are replaced by random variables with Gaussian distributions, and
each multichoice parameter alternative is treated as a random variable. In this paper, the Newton divided difference
interpolation technique is used to convert the multichoice parameter into a single choice in the objective function. Then, the
chance-constrained method is applied to transform the probabilistic constraints into deterministic constraints. Due to the
consideration of multichoices in the objective function, the expectation minimization model is used to get the deterministic
form. Moreover, the fuzzy programming approach with the membership function is utilized to convert the multiobjective
function into a single-objective function. A case study is also illustrated for a better understanding of the methodology.

1. Introduction

An important application of the linear programming prob-
lem is the classical transportation problem, in which a
homogeneous product is moved from one warehouse to
another according to the product’s availability and demand.

In real-life applications, there are numerous situations
where decision-makers have to choose one among multiple
choices. This kind of problem is recognized as a multichoice
programming problem. To solve the multichoice programming
problem, Chang [1] introduced the concept of binary variables
to tackle the multichoice aspiration level for each objective set
by the decision-maker. Subsequently, he also revised his model
for multichoice programming problems in which binary vari-
ables are replaced with continuous variables [2].

Later, Mahapatra et al. [3] established a model for multi-
choice stochastic transportation problems with extreme
value distributions utilizing binary variables. Quddoos
et al. [4] considered a multichoice stochastic transportation
problem where the cost coefficient of the objective function
is of the multichoice type, and the random availability and

demand of products are to follow a general form of distribu-
tion. Roy [5] presented the Lagrange interpolation polyno-
mial (LIP) to convert the multichoice parameter into a
single choice to deal with the circumstances of the multi-
choice parameter in the transportation problem. Pradhan
and Biswal [6] proposed a linear programming model in
which each multichoice parameter alternative was treated
as a random variable, and they employed several forms of
optimization models (V-model, fractile criterion model,
probability maximization model, and E-model).

In today’s highly competitive market, parameters are not
always fixed; they fluctuate by nature. Stochastic program-
ming deals with problems where the deterministic parame-
ters of the transportation problem are replaced by random
variables. Roy [7] proposed a problem in which the supply
parameter is considered a random variable that follows the
logistic distribution. Many researchers have proposed differ-
ent models for multichoice stochastic transportation prob-
lems [8–10]. Li et al. [11] proposed a quasilinear stochastic
programming model with reliability coefficients that is based
on the expectation and the variance. This programming was
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used to analyze the performance of the stochastic transpor-
tation problem, indicating that the model is both operable
and interpretable.

To deal with the imprecise situation, Zadeh [12] introduced
the concept of fuzzy theory, which has been applied to various
fields because of its dubious parameters. Kaufmann and Gupta
[13] were the first to investigate the use of a fuzzy transportation
problem in decision-making. By using the fuzzy membership
function, Abd El-Wahed [14] determined the optimal compro-
mise solution for the multiobjective transportation problem.
Gani and Razak [15] presented a model for a two-stage cost-
minimizing fuzzy transportation problem in which the param-
eters (supply and demand) are considered as fuzzy numbers.
Rani and Gulati [16] considered a fully fuzzy multiobjective,
multi-item, solid transportation problem in which the convey-
ance constraints are considered along with the other con-
straints of the classical transportation problem. Using the
fuzzy programming technique, the fuzzy optimal compromise
solution is presented. Ebrahimnejad [17] formulated a trans-
portation problem in which the transportation cost, supplies,
and demand are considered as interval-valued trapezoidal
fuzzy numbers and also proposed a fuzzy linear programming
approach for solving the same problem. Using signed distance
ranking, the author made a comparison with the interval value
fuzzy number and obtained the same results for both types of
fuzzy numbers. Ojha et al. [18] considered transportation
problems involving fuzzy stochastic costs within budget con-
straints. To obtain the deterministic problem of the defined
problem, they used two different approaches (the α-cut of
the fuzzy numbers and the credibility measure) as well as a
genetic algorithm to solve the deterministic problem.

Acharya et al. [19] have identified a computational strat-
egy for solving the fuzzy stochastic transportation problem.
To convert stochastic transportation problems into determin-
istic problems, a strategy that includes conventional random-
ness is applied. Agrawal and Ganesh [20] dealt with the
solution of the fuzzy fractional transportation problem in
which the parameters of the transportation problem, supply
and demand, are stochastic in nature and considered as fuzzy
random variables that follow exponential distributions with
fuzzy means and fuzzy variances. Mahapatra et al. [21] utilize
fuzzy programming to turn a multiobjective function into a
single-objective function. Because of its numerous applica-
tions, Maity and Kumar Roy [22] developed a model for solv-
ing multiobjective transportation problems with multichoice
demand, and by using a fuzzy membership function, multiob-
jective problems are converted into a single objective. Kundu
et al. [23] modeled a multiobjective multiitem solid transpor-
tation problem in which the coefficients for the objectives
and the constraints are fuzzy numbers. To derive the crisp
value, the expected values of the objective functions and the
concept of the minimum fuzzy number are considered. For
compromise solutions to objectives, fuzzy programming tech-
niques and the global criterionmethod are used. Roy et al. [24]
proposed a multiobjective transportation problem in an intui-
tionistic fuzzy environment in which all the parameters of the
transportation problem are considered as intuitionistic fuzzy
numbers. Two approaches to finding the optimal solution to
the proposed problem are applied: intuitionistic fuzzy pro-

gramming and goal programming. When telemedicine-based
healthcare systems were required, Pal et al. [25] used the par-
ticle swarm optimization (PSO) algorithm and sparse PSO to
store and transfer ECG recordings.

Based on the above literature, many studies have been car-
ried out on the multichoice transportation problems with sup-
ply and demand parameters considered as random variables
with different types of distributions. Roy [5] proposed the
LIP to convert multiple choices into single choices. The exist-
ing approaches have their own limitations in converting mul-
tichoice into single-choice, probabilistic into deterministic,
and multiobjective into a single objective. In this paper, a mul-
tiobjective transportation problem with multichoice random
parameters is proposed in which the parameters, supply and
demand, are treated as random variables that follow Gaussian
distributions with known means and variances. The objective
function’s decision variable coefficients are multichoice
parameters, and each alternative of the multichoice parame-
ters is assumed to be a random variable with a Gaussian distri-
bution. To find the solution to the proposed problem, the
Newton divided difference interpolation polynomial (NDDIP)
is used to obtain the optimal choice of the multichoice param-
eters. This technique was not used earlier in converting the
multichoice parameters into single-choice ones. The main
advantage of the NDDIP is that (i) the formula can be modi-
fied without affecting its previous formulation by adding
another choice for the multichoice parameter at any step of
the process; and (ii) the computation is simple, easy to under-
stand, and takes less time to compute.

This paper is organized as follows: Section 2 contains the
mathematical model of the problem, Section 3 describes the
methodology, which includes the transformation technique
and the fuzzy programming approach; a case study is presented
in Section 4, and the concluding remarks are in Section 5.
Table 1 represents the nomenclature which is used in this paper.

2. Problem Formulation

A multiobjective stochastic transportation problem is con-
sidered with a multichoice random parameter in which the
product is shipped from various source locations to several
destinations. In real-life applications, the decision depends
on uncertainty; therefore, it makes sense that each alterna-
tive of the multichoice parameter is assumed as a random
variable. The supply and demand are also assumed to be
random variables due to certain factors, for example, the
condition of the market, fluctuation in the availability
and demand for the product, and variation in the price
of the product. Hence, the mathematical model of a multi-
objective transportation problem, in which the coefficients
of the decision variables in the objective function are of
the multichoice type and each alternative of the multi-
choice parameter is taken as a random variable, can be
formulated as follows:

min Z = 〠
m

r=1
〠
n

s=1
C1
rs, C2

rs,⋯,Cp
rs

È É
yrs, ð1Þ
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subject to (s.t.)

P 〠
n

s=1
yrs ≤wr

 !
≥ 1 − λwr

r = 1, 2,⋯,m, ð2Þ

P 〠
m

r=1
yrs ≥ ds

 !
≥ 1 − δds s = 1, 2,⋯, n, ð3Þ

yrs ≥ 0, r = 1, 2,⋯,m, s = 1, 2,⋯, n, ð4Þ
where yrs (decision variable) denotes the number of units
that should be transferred from m number of warehouses
to n number of destination locations. These numbers are
assumed to be deterministic.

The coefficients Ck
rs, ðk = 1, 2,⋯,pÞ of the decision vari-

ables yrs are treated as independent random variables, and
the other parameters supply wrðr = 1, 2,⋯,mÞ and demand
dsðs = 1, 2,⋯,nÞ are also treated as random variables that fol-
low Gaussian distributions with known means and vari-
ances. Because the parameters are random, the constraints
(2) and (3) are probabilistic in nature, with their aspiration
level λwr

and δds (0 < λwr
, δds < 1), respectively.

3. Solution Methodology

3.1. NDDIP for Multichoice Parameters. The objective func-
tions contain multichoice random parameters that are
assumed to be independent random variables. To transform
the multichoice parameters into a single choice, the NDDIP
is used.

Introducing an integer variable ð0, 1,⋯,p − 1Þ, for each
choice ðC1

rs, C2
rs,⋯,Cp

rsÞ, the interpolation polynomial is
formed. If there are p number of choices for a parameter,
each integer variable takes p number of nodes. Table 2 shows
the considered multichoice parameter and, in Table 3, the
divided difference (DD) table.

Using Tables 2 and 3, the interpolation polynomial is
written as

FCrs
vrs ; C1

rs, C2
rs,⋯,Cp

rs

À Á
= f v0rs
Â Ã

+ vrs − v0rs
À Á

Á f v0rs, v1rs
Â Ã

+ vrs − v0rs
À Á

vrs − v1rs
À Á

Á f v0rs, v1rs, v2rs
Â Ã

+⋯+ vrs − v0rs
À Á

Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
Á f v0rs, v1rs,⋯,vp−1rs

Â Ã
:

ð5Þ

After replacing the coefficients of the decision variables
by their interpolation polynomial, the objective function is

min Z = 〠
m

r=1
〠
n

s=1
f v0rs
Â Ã

+ vrs − v0rs
À Á

f v0rs, v1rs
Â ÃÈ

+ vrs − v0rs
À Á

vrs − v1rs
À Á

f v0rs, v1rs, v2rs
Â Ã

+⋯+ vrs − v0rs
À Á

Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
f v0rs, v1rs,⋯,vp−1rs

Â Ãgyrs:
ð6Þ

Applying the NDDIP, the objective function is as follows:

min Z = 〠
m

r=1
〠
n

s=1
C1
rs + vrs − v0rs
À Á

C2
rs − C1

rs

À Á
+⋯+ vrs − v0rs

À Á8<
:

Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
〠
p

i=1

Ci
rsQp−1

i≠j+1,j=0 vi−1rs − vjrs
� �

0
@

1
A
9=
;yrs:

ð7Þ

3.2. ExpectationMinimizationModel (E-Model). The E-model
can be used when the decision-maker wishes to minimize
the expected value of the objective function. The expected
value of the random variable is considered in place of the
random variable. The coefficients Ci

rs, ði = 1, 2,⋯,pÞ of the

Table 1: Nomenclature.

Z Objective function.

r Index of source locations.

s Index of destinations.

Crs
Transportation cost per unit from rth source

locations to sth destination.

Ci
rs

Multichoice transportation cost per unit
from rth source locations to sth destination.

f Crs The function of interpolating polynomial choices Crs.

p Number of choices for the multichoice parameter.

wr Random availability of the product at rth source location.

λwr Aspiration level for source constraints.

ds Random requirement of the product at sth destination.

δds Aspiration level for destination constraints.

yrs
Number of units of the product that should be

shipped from rth source locations to sth destination.

P Probability.

Table 2: For multichoice parameter.

Nodes vkrs 0 1 ⋯ p − 1
f Crs

vrsð Þ C1
rs C2

rs ⋯ Cp
rs

Table 3: Divided difference table.

vkrs f Crs
vkrs
À Á

First DD Second DD Third DD

0 C1
rs

f v0rs, v1rs
Â Ã

1 C2
rs f v0rs, v1rs, v2rs

Â Ã
f v1rs, v2rs
Â Ã

f v0rs, v1rs, v2rs, v3rs
Â Ã

2 C3
rs f v1rs, v2rs, v3rs

Â Ã
f v2rs, v3rs
Â Ã

3 C4
rs
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decision variables yrs are treated as independent random
variables with mean μiCrs

and variance σ2Crs
. The deterministic

objective function with the expected value of the random
variables is as follows:

min Z = 〠
m

r=1
〠
n

s=1
E C1

rs + vrs − v0rs
À Á

C2
rs − C1

rs

À Á
+⋯+ vrs − v0rs

À Á
8><
>:

Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
〠
p

i=1

Ci
rsQp−1

i≠j+1, j=0 vi−1rs − vjrs
� �

0
B@

1
CA
9>=
>;yrs

= 〠
m

r=1
〠
n

s=1
E C1

rs

À Á
+ vrs − v0rs
À Á

E C2
rs

À Á
− E C1

rs

À ÁÀ Á
+⋯+ vrs − v0rs

À Á
8><
>:

Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
〠
p

i=1

E Ci
rs

À Á
Qp−1

i≠j+1, j=0 vi−1rs − vjrs
� �

0
B@

1
CA
9>=
>;yrs:

ð8Þ

Therefore,

min Z = μ1Crs
+ vrs − v0rs
À Á

μ2Crs
− μ1Crs

� �
+⋯+ vrs − v0rs

À Á
8><
>:
Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
〠
p

i=1

μiCrsQp−1
i≠j+1, j=0 vi−1rs − vjrs

� �
0
B@

1
CA
9>=
>;yrs:

ð9Þ

3.3. Chance Constraints with Gaussian Distributions. As the
constraints (2) and (3) of the defined problem are prob-
abilistic in nature, therefore, we can not apply the usual
solution procedure for solving the mathematical problem.
The parameters supply wrðr = 1, 2,⋯,mÞ and demand ds
ðs = 1, 2,⋯,nÞ are random variables that follow Gaussian
distributions with known means and variances. In order
to fix the notations, we adopt the following notations:
wr ~Nðμwr

, σ2
wr
Þ and ds ~Nðμds , σ2dsÞ.

For every r = 1, 2,⋯,m, consider the constraint (2):

P 〠
n

s=1
yrs ≤wr

 !
≥ 1 − λwr

= P wr ≤ 〠
n

s=1
yrs

 !

≤ λwr
= P

wr − μwr

σwr

≤
∑n

s=1yrs − μwr

σwr

 !

≤ λwr
= P ζr ≤

∑n
s=1yrs − μwr

σwr

 !
≤ λwr

,

ð10Þ

where wr − μwr
/σwr

= ζr . Here, ζr is a standard Gaussian-
distributed random variable with mean zero and unit vari-
ance. Therefore, the equation holds if and only if

ϕ
∑n

s=1yrs − μwr

σwr

 !
≤ ϕ −kλwr

� �
, ð11Þ

where ϕ is the cumulative density function of the standard
Gaussian random variable, and kλwr is such that ϕð−kλwr Þ =
λwr

. By the increasing and bijectivity properties of ϕ, the
constraint can be rewritten as

∑n
s=1yrs − μwr

σwr

≤ −kλwr : ð12Þ

On simplifying, we get

〠
n

s=1
yrs ≤ μwr

− kλwr σwr
, r = 1, 2,⋯,m: ð13Þ

Thus, (13) represents the deterministic constraint of
probabilistic constraint (2).

Consider the probabilistic constraint (3).
For every s = 1, 2,⋯, n, we have

P 〠
m

r=1
yrs ≥ ds

 !
≥ 1 − δds : ð14Þ

Applying the same procedure, we get

= P ds ≤ 〠
m

r=1
yrs

 !
≥ 1 − δds = P ηs ≤

∑m
r=1yrs − μds

σds

 !
≥ 1 − δds ,

ð15Þ

where ds − μds /σds = ηs. Here, ηs is the standard Gaussian
distributed random variable with mean zero and unit vari-
ance. Therefore, the considered equation holds if and only if

ϕ
∑m

r=1yrs − μds
σds

 !
≥ ϕ gδds

� �
, ð16Þ

where ϕ is the cumulative density function of the standard
Gaussian random variable and gδds

is such that ϕðgδds Þ =
1 − δds . The constraint can be rewritten as

∑m
r=1yrs − μds

σds
≥ gδds

: ð17Þ

On simplifying, we obtain

〠
m

r=1
yrs ≥ μds + gδds

σds s = 1, 2,⋯, n: ð18Þ

Here, (18) represents the deterministic constraint of
probabilistic constraint (3).

Using the methodology given in Subsections 3.1, 3.2, and
3.3 and Equations (9), (13), and (18), the deterministic
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mathematical model of the proposed problem is

min Z = μ1Crs
+ vrs − v0rs
À Á

μ2Crs
− μ1Crs

� �
+⋯+ vrs − v0rs

À Á
8><
>:
Á vrs − v1rs
À Á

⋯ vrs − vp−1rs

À Á
〠
p

i=1

μiCrsQp−1
i≠j+1, j=0 vi−1rs − vjrs

� �
0
B@

1
CA
9>=
>;yrs,

ð19Þ

s.t.

〠
n

s=1
yrs ≤ μwr

− kλwrσwr
, r = 1, 2,⋯,m,

〠
m

r=1
yrs ≥ μds + gδds

σds
s = 1, 2,⋯, n,

〠
m

r=1
μwr

− kλwrσwr

� �
≥ 〠

n

s=1
μds + gδds

σds

� �
,

zrs ≥ 0, 0 ≤ vrs ≤ p − 1r = 1, 2,⋯,ms = 1, 2,⋯, n:

ð20Þ

3.4. Fuzzy Programming Approach. To convert the multiob-
jective function into the single objective function, the fuzzy
programming approach [26] and then the single objective
function are solved with the constraints to get the compro-
mise solution to the said problem. The steps for applying
the fuzzy programming approach are as follows:

Step 1: firstly, convert the multichoice random parameter
to its deterministic form using the NDDIP, which is dis-
cussed in Subsection 3.1

Step 2: consider only one objective at a time and ignore
the others. Then, determine the values for that objective
function, and it will be repeated for all objectives

Step 3: construct a payoffmatrix for every objective func-
tion at different solutions, which were obtained in Step 2, say

  Z1 Z2 ⋯ Zt

y1

y2

⋮

yt

Z1 y1ð Þ Z2 y1ð Þ ⋯ Zt y1ð Þ
Z1 y2ð Þ Z2 y2ð Þ ⋯ Zt y2ð Þ
⋮ ⋮ ⋱ ⋮

Z1 ytð Þ Z2 ytð Þ ⋯ Zt ytð Þ

0
BBBBB@

1
CCCCCA

, ð21Þ

where yt = ðyt11, yt12,⋯,ytrsÞ is the solution vector for tth objec-
tive function.

Step 4: construct a membership function for every
objective function. Let lt and ut denote the lower and
upper bounds, respectively, corresponding to the tth objec-
tive function. Then, the membership function for tth

objective function is

μ Zt yð Þð Þ =

0, if Zt yð Þ ≥ ut ,
ut − Zt yð Þ
ut − lt

, if lt < Zt yð Þ < ut ,

1, if Zt yð Þ ≤ lt :

8>>>><
>>>>:

ð22Þ

Step 5: now, using the membership function ðμðZtðyÞÞÞ,
the transformed single objective deterministic problem can
be stated asmaxη, s.t. η ≤ μðZtðyÞÞ, and along with determin-
istic constraints

Step 6: Solve the deterministic single objective model and
find the compromise solution

4. A Case Study

A food product production company wants to transfer its
products from its plants to vendors with the least possible
transportation cost and time. A product is transferred from
3 different plants (w1, w2, and w3) to 4 different vendors
(d1, d2, d3, and d4) based on the requirement and availability
of the product. Due to certain factors, such as weather con-
ditions, the expectations of the market, and the sale of the
product, supply and demand are never fixed. They are
uncertain in nature. Therefore, supply and demand are
treated as independent random variables that follow Gauss-
ian distributions with known means and variances. The
values of their means, variances, and aspiration levels are
given in Tables 4 and 5, respectively.

The cost and duration of transportation are affected by a
variety of factors, such as mode of transportation, road col-
lection tax, road condition, and fluctuations in fuel prices,
among others. These are multichoice random parameters
with Gaussian distributions in terms of mean and variance.
The problem has two objective functions (transportation
cost and transportation time), and they will be held simulta-
neously. The values for the cost and time random parame-
ters are given in Tables 6 and 7, respectively.

Using the methodology and the data, the mathematical
formulation of the said problem is as follows:

Cost objective function:

min Z1 = 9 − 2v11 + 3v11 v11 − 1ð Þf gy11
+ 12 − 2v12 + 2:5v12 v12 − 1ð Þf gy12
+ 10 − 2v13 + 1:5v13 v13 − 1ð Þf gy13
+ 15 − 3v14 + 2v14 v14 − 1ð Þf gy14
+ 14 − 4v21 + 0:5v21 v21 − 1ð Þf gy21
+ 6 + v22 + 1:5v22 v22 − 1ð Þf gy22
+ 15 − 4v23 + 2:5v23 v23 − 1ð Þf gy23
+ 16 − 2v24 − 2:5v24 v24 − 1ð Þf gy24
+ 20 − 2v31 + 0:5v31 v31 − 1ð Þf gy31
+ 13 − 3v32 + v32 v32 − 1ð Þf gy32
+ 7 + v33 + 0:5v33 v33 − 1ð Þf gy33
+ 6 + 5v34 − 4v34 v34 − 1ð Þf gy34:

ð23Þ
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Time objective function:

min Z2 = 4 − 2u11f gy11 + 7 − 3u12 + 2u12 u12 − 1ð Þf gy12
+ 6 − u13 + 1:5u13 u13 − 1ð Þf gy13
+ 8 − u14 + u14 u14 − 1ð Þf gy14
+ 9 − 4u21 + 1:5u21 u21 − 1ð Þf gy21
+ 4 + 2u22 − 0:5u22 u22 − 1ð Þf gy22
+ 10 − 3u23 + 2:5u23 u23 − 1ð Þf gy23
+ 11 − 4u24 − 5u24 u24 − 1ð Þf gy24
+ 15 − 3u31 + 3:5u31 u31 − 1ð Þf gy31
+ 9 − 2u32 − 0:5u32 u32 − 1ð Þf gy32
+ 3 + 3u33 − 2u33 u33 − 1ð Þf gy33
+ 4 + 3u34 − 2:5u34 u34 − 1ð Þf gy34,

ð24Þ

s.t.

y11 + y12 + y13 + y14 ≤ 8:84, ð25Þ

y21 + y22 + y23 + y24 ≤ 12:03, ð26Þ
y31 + y32 + y33 + y34 ≤ 15:2, ð27Þ
y11 + y21 + y31 ≥ 11:02, ð28Þ
y12 + y22 + y32 ≥ 7:94, ð29Þ
y13 + y23 + y33 ≥ 8:26, ð30Þ
y14 + y24 + y34 ≥ 5:5, ð31Þ

yrs ≥ 0 r = 1, 2, 3, s = 1, 2, 3, 4, ð32Þ
0 ≤ vrs ≤ 2, vrs ∈ℤ r = 1, 2, 3, s = 1, 2, 3, 4, ð33Þ

0 ≤ urs ≤ 2, urs ∈ℤ r = 1, 2, 3, s = 1, 2, 3, 4: ð34Þ
Solving the objective 1, {(23)} along with the constraints

(25)–(33), the ideal solution of the model is

y1 = 7, 0, 1, 0, 4, 0, 8, 0, 0, 0, 0, 8, 6ð Þ, ð35Þ

and for the objective 2, {(24)} with the constraints (25)–(32)
and (34), then the ideal solution is

y2 = 7, 0, 1, 0, 4, 8, 0, 0, 0, 0, 8, 6ð Þ: ð36Þ

Using the obtained solution, we formulated a payoff
matrix that is shown below:

  Z1 Z2

y1

y2

225 115
253 101:

 !
: ð37Þ

The membership function for each objective has been

Table 4: For supply: mean, variance, and their aspiration level.

Mean μwr

� �
Variance σ2wr

� �
Probabilities λwr

À Á
μw1

= 13 σ2w1
= 3 λw1

= 0:01

μw2
= 13 σ2w2

= 2 λw2
= 0:02

μw3
= 13 σ2w3

= 7 λw3
= 0:03

Table 5: For demand: mean, variance, and their aspiration level.

Mean μds

� �
Variance σ2ds

� �
Probabilities δds

À Á
μd1 = 7 σ2d1 = 5 δd1 = 0:04

μd2 = 5 σ2d2 = 3 δd2 = 0:05

μd3 = 6 σ2d3 = 2 δd3 = 0:06

μd4 = 4 σ2d4 = 1 δd4 = 0:07

Table 6: For cost random parameters.

c111 ~N 9, 3ð Þ c211 ~N 7, 2ð Þ c311 ~N 11, 4ð Þ
c112 ~N 12, 6ð Þ c212 ~N 10, 3ð Þ c312 ~N 13, 6ð Þ
c113 ~N 10, 5ð Þ c213 ~N 8, 2ð Þ c313 ~N 9, 3ð Þ
c114 ~N 15, 7ð Þ c214 ~N 12, 5ð Þ c314 ~N 13, 4ð Þ
c121 ~N 14, 2ð Þ c221 ~N 10, 3ð Þ c321 ~N 7, 2ð Þ
c122 ~N 6, 1ð Þ c222 ~N 7, 4ð Þ c322 ~N 11, 4ð Þ
c123 ~N 15, 8ð Þ c223 ~N 11, 4ð Þ c323 ~N 12, 5ð Þ
c124 ~N 16, 7ð Þ c224 ~N 18, 10ð Þ c324 ~N 15, 7ð Þ
c131 ~N 20, 11ð Þ c231 ~N 18, 9ð Þ c331 ~N 17, 4ð Þ
c132 ~N 13, 5ð Þ c232 ~N 10, 4ð Þ c332 ~N 9, 4ð Þ
c133 ~N 7, 3ð Þ c233 ~N 8, 2ð Þ c333 ~N 10, 3ð Þ
c134 ~N 6, 1ð Þ c234 ~N 11, 4ð Þ c334 ~N 8, 3ð Þ

Table 7: For time random parameters.

t111 ~N 4, 1ð Þ t211 ~N 6, 2ð Þ t311 ~N 8, 3ð Þ
t112 ~N 7, 2ð Þ t212 ~N 4, 1ð Þ t312 ~N 5, 2ð Þ
t113 ~N 6, 3ð Þ t213 ~N 5, 3ð Þ t313 ~N 7, 4ð Þ
t114 ~N 8, 3ð Þ t214 ~N 7, 3ð Þ t314 ~N 8, 2ð Þ
t121 ~N 9, 3ð Þ t221 ~N 5, 1ð Þ t321 ~N 4, 1ð Þ
t122 ~N 4, 3ð Þ t222 ~N 6, 2ð Þ t322 ~N 7, 4ð Þ
t123 ~N 10, 5ð Þ t223 ~N 7, 2ð Þ t323 ~N 9, 3ð Þ
t124 ~N 11, 5ð Þ t224 ~N 15, 8ð Þ t324 ~N 9, 4ð Þ
t131 ~N 15, 7ð Þ t231 ~N 12, 5ð Þ t331 ~N 16, 9ð Þ
t132 ~N 9, 3ð Þ t232 ~N 7, 2ð Þ t332 ~N 4, 1ð Þ
t133 ~N 3, 1ð Þ t233 ~N 6, 2ð Þ t333 ~N 5, 2ð Þ
t134 ~N 4, 1ð Þ t234 ~N 7, 4ð Þ t334 ~N 5, 3ð Þ
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formulated using a payoff matrix:

μ Z1 yð Þð Þ =

0, if Z1 yð Þ ≥ 253,
253 − Z1 yð Þ
253 − 225 , if 225 < Z1 yð Þ < 253,

1, if Z1 yð Þ ≤ 225,

0
BBB@

μ Z2 yð Þð Þ =

0, if Z2 yð Þ ≥ 115,
115 − Z2 yð Þ
115 − 101 , if 101 < Z2 yð Þ < 115,

1, if Z2 yð Þ ≤ 101:

0
BBB@

ð38Þ

Using the fuzzy programming approach (described in
Subsection 3.4), multiobjective functions are converted into
single objectives. The nonlinear problem can be stated as

max η
s.t.

28η ≤ 9 − 2v11 + 3v11 v11 − 1ð Þð Þy11 + 12 − 2v12 + 2:5v12 v12 − 1ð Þð Þy12
+ 10 − 2v13 + 1:5v13 v13 − 1ð Þð Þy13 + 15 − 3v14 + 2v14 v14 − 1ð Þð Þy14
+ 14 − 4v21 + 0:5v21 v21 − 1ð Þð Þy21 + 6 + v22 + 1:5v22 v22 − 1ð Þð Þy22
+ 15 − 4v23 + 2:5v23 v23 − 1ð Þð Þy23 + 16 − 2v24 − 2:5v24 v24 − 1ð Þð Þy24
+ 20 − 2v31 + 0:5v31 v31 − 1ð Þð Þy31 + 13 − 3v32 + v32 v32 − 1ð Þð Þy32
+ 7 + v33 + 0:5v33 v33 − 1ð Þð Þy33 + 6 + 5v34 − 4v34 v34 − 1ð Þð Þy34,

14η ≤ 4 − 2u11ð Þy11 + 7 − 3u12 + 2u12 u12 − 1ð Þð Þy12
+ 6 − u13 + 1:5u13 u13 − 1ð Þð Þy13 + 8 − u14 + u14 u14 − 1ð Þð Þy14
+ 9 − 4u21 + 1:5u21 u21 − 1ð Þð Þy21 + 4 + 2u22 − 0:5u22 u22 − 1ð Þð Þy22
+ 10 − 3u23 + 2:5u23 u23 − 1ð Þð Þy23 + 11 − 4u24 − 5u24 u24 − 1ð Þð Þy24
+ 15 − 3u31 + 3:5u31 u31 − 1ð Þð Þy31 + 9 − 2u32 − 0:5u32 u32 − 1ð Þð Þy32
+ 3 + 3u33 − 2u33 u33 − 1ð Þð Þy33 + 4 + 3u34 − 2:5u34 u34 − 1ð Þð Þy34,

ð39Þ

and (25)–(34).
The aforementioned nonlinear deterministic model is

solved using LINGO 11.0 software. We obtain the following
solution for each objective with aspiration level η = 1: y11 = 8,
y21 = 3, y22 = 8, v24 = 1, y33 = 5, and y34 = 5, and the rest of
the decision variables are zero. It shows that the number of
units transported from 1st plant to 1st vendor is 8 units; from
2nd plant to 1st, 2nd and 4th vendors are 3, 8, and 1 units,
respectively; similarly, from 3rd plant to 3rd, 4th vendors are
5 and 5 units, respectively, for both the objectives (minimum
transportation cost and least transporting time). The
obtained total transportation cost is ðZ1 =Þ197 units; the
total transportation time is ðZ2 =Þ87 units.

5. Conclusion

In this paper, a probabilistic mathematical model for multi-
objective, multichoice random transportation problems was
developed. The chance-constrained technique was used to
convert probabilistic constraints to deterministic con-
straints. The E-model was applied to the deterministic form
of the objective function because the coefficients of the
objective function are considered multichoice random
parameters, and if the expected value of the objective func-

tion is optimized, the entire objective can be optimized. Also,
in the objective functions, multichoice parameters were
replaced with the interpolation polynomial obtained by the
Newton divided difference interpolation. The defined prob-
lem contains multiple objectives, so a fuzzy programming
approach was used to transform the multiobjective function
into a single objective. Finally, a nonlinear deterministic pro-
gramming problem has been solved, and the solution
obtained for multiple objectives simultaneously satisfies all
the objectives.

Real-world problems involving transportation, such as
lowering maintenance costs in a business environment,
logistic management, production planning, and supply chain
management, are the applications of the proposed
methodology.
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