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Several standard distributions can be used to model lifetime data. Nevertheless, a number of these datasets from diverse fields such
as engineering, finance, the environment, biological sciences, and others may not fit the standard distributions. As a result, there is
a need to develop new distributions that incorporate a high degree of skewness and kurtosis while improving the degree of
goodness-of-fit in empirical distributions. In this study, by applying the T-X method, we proposed a new flexible generated
family, the Ramos-Louzada Generator (RL-G) with some relevant statistical properties such as quantile function, raw
moments, incomplete moments, measures of inequality, entropy, mean and median deviations, and the reliability parameter.
The RL-G family has the ability to model “right,” “left,” and “symmetric” data as well as different shapes of the hazard
function. The maximum likelihood estimation (MLE) method has been used to estimate the parameters of the RL-G. The
asymptotic performance of the MLE is assessed by simulation analysis. Finally, the flexibility of the RL-G family is
demonstrated through the application of three real complete datasets from rainfall, breaking stress of carbon fibers, and
survival times of hypertension patients, and it is evident that the RL-Weibull, which is a special case of the RL-G family,
outperformed its submodels and other distributions.

1. Introduction

Choosing an appropriate statistical distribution for modeling
and analyzing data is critical in order to draw more accurate
conclusions. Many statistical distributions have been proposed
to match different data forms over the years. Using conven-
tional distributions for fitting these datasets may produce
erroneous findings. As a result, there is a clear need for
modifications to the standard distributions. The literature on
probability distribution methods contains various extensions
and generalizations of continuous, discrete, symmetric, and
asymmetric distributions. Regarding the main methods of
generating probability distributions and classes of probability
distributions, Lee et al. [1] stated that the transformation tech-
nique, differential equation technique, and quantile method
are three groups of methods developed prior to 1980, and
those proposed after 1980 may be categorized as combination

methods because these techniques attempt to develop new
distributions through the combination of existing ones or by
adding additional parameters to an existing distribution.
Several studies have proposed using different generated classes
to increase the number of parameters in distributions. The
resulting distributions have found application in modeling
data across various fields of study, such as environmental
sciences, economics, and engineering. Some popular genera-
tors available in the literature include the exponentiated
generated family by [2], the Marshall-Olkin-G by [3], the
Kumaraswamy-G by [4], Beta-G by [5], Weibull-X by [6],
Weibull-G by [7], the Lomax generator proposed by [8], the
Topp-Leone generated family introduced by [9], the Lindley
generator by [10], the Chen-G class by [11], the Burr III
Topp-Leone-G by [12], the odd Burr-III family by [13],
Marshall-Olkin Burr X family by [14], the Topp-Leone odd
Lindley-G family by [15], and many others.
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In [16], the Ramos-Louzada (RL) distribution, a one-
parameter continuous distribution, was introduced for
modeling lifetime data. The study demonstrated that the RL
distribution performs better than some well-known lifetime
distributions such as Lindley and exponential distributions.
However, the RL distribution is limited to right-skewed life-
time data with an increasing failure rate. Therefore, it is essen-
tial to propose an extension or generalization of the RL to
introduce flexibility in modeling different lifetime data with
“symmetric” and “asymmetric” shapes and “monotonic” and
“non-monotonic” failure rate functions. [17] produced the
generalized Ramos-Louzada (GRL) distribution, which is the
first extension of the RL distribution. In [18], the discrete RL
distribution was developed and proposed. This study adopts
the T-X method introduced by [19] to develop the Ramos-
Louzada Generator (RL-G), which is capable of producing
new distributions that are extensions or generalizations of
the RL distribution. Therefore, for any continuous random
variable, by applying the T-X method defined in (1), the
cumulative distribution function (CDF) of random variable
X can be expressed using the RL-G.

F x, ω =
Z G x,ϵ

c
r t ; θ dt, x ∈ℝ, 1

where ω = θ, ϵ is a parameter vector, r t ; θ is the PDF
generator of a random variable T, Z G x, ϵ is an expression
that depends on the CDF of the random variable X, and c is
a real number.

The remaining part of the study is structured in the fol-
lowing manner: In Section 2, the CDF, PDF, and hazard rate
function of the RL-G family of distributions are presented.
Section 3 presents the mixture representation of the RL-G
density functions. In Section 4, we have derived the statisti-
cal properties of the RL-G family. Parameter estimation for
the proposed family of distributions is discussed in Section
5. Some special distributions of the RL-G family are dis-
cussed in Section 6. Section 7 presents Monte Carlo simula-
tion analysis on the asymptotic performance of the MLE.
Applications of the proposed distribution to three real data-
sets to demonstrate its flexibility and usefulness are captured
in Section 8, while Section 9 presents the conclusion of
the study.

2. The Ramos-Louzada Generated
Family of Distributions

Given that equations (2) and (3) represent the CDF and PDF
of the RL distribution,

R t ; θ = 1 − θ2 + t − θ

θ θ − 1 e−t/θ, 2

r t ; θ = θ2 + t − 2θ
θ2 θ − 1

e−t/θ, 3

t > 0, θ ≥ 2 4

LetG x ; ϵ represents the CDF of the baseline distribution
and ϵ be a vector of parameters associated with the CDF. The
proposed RL-G densities are obtained by using the T-X
approach in (1) and letting Z G x, ϵ = − log 1 −G x, ϵ ,
x > 0,thus

FRL−G x, θ, ϵ =
−log 1−G x,ϵ

0
r t dt = R t −log 1−G x;ϵ

0

5

Substituting (2) and (3) into the above relation, we obtain
the following:

FRL−G x, θ, ϵ =
−log 1−G x,ϵ

0

θ2 + t − 2θ
θ2 θ − 1

e−t/θ dt

= 1 − θ2 + t − θ

θ θ − 1 e−t/θ
−log 1−G x;ϵ

0

6

Hence, the CDF of the proposed RL-G is expressed as

FRL−G x, θ, ϵ = 1 − 1 − log 1 −G x ; ϵ
θ θ − 1 1 −G x ; ϵ 1/θ, x

> 0, θ ≥ 2
7

The proposed RL-G family PDF is derived by finding the
derivative of (7), thus

f RL−G x ; θ, ϵ = g x, ϵ 1 −G x ; ϵ 1/θ −1

θ2 θ − 1
θ2 − 2θ − log 1 −G x ; ϵ

8

From which the survival and hazard functions are, respec-
tively, obtained by

SRL−G x ; θ, ϵ = 1 − FRL−G x, θ, ϵ

= 1 − log 1 − G x ; ϵ
θ θ − 1 1 − G x ; ϵ 1/θ,

hRL−G x ; θ, ϵ = f RL−G x ; θ, ϵ
SRL−G x ; θ, ϵ

= g x, ϵ θ2 − 2θ − log 1 −G x ; ϵ
θ 1 −G x ; ϵ θ θ − 1 − log 1 − G x ; ϵ

9

Some basic motivations obtained when using RL-G densi-
ties are as follows:

(i) The properties of the baseline densities are
enhanced

(ii) An extended form of the baseline model is gener-
ated with the introduction of extra parameter(s).
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(iii) The kurtosis of the resulting distributions is more
flexible compared to the baseline model

(iv) Special models with various forms of the hazard rate
function are defined

Proposition 1. The RL-G family is a valid PDF, which suf-
fices that

(i) 0 ≤ FRL−G x, θ, ϵ ≤ 1,

(ii) ∞
0 f RL−G x ; θ, ϵ = 1, for all x > 0

The proof of this proposition is shown in the appendix.

3. RL-G Family in Mixture Representation

This form of representation plays a very important role in
deriving some statistical properties of the RL-G densities.
Using the following generalized binomial series and the
power series expansions on (8) where z < 1, t > 0 is a real
noninteger

1 − z t = 〠
∞

a=0

t

a
−1 aza,

log 1 − z = −〠
∞

b=0

zb+1

b + 1

10

The pdf of the RL-G family, that is (8), now becomes

f RL−G x ; θ, ϵ = θ2 − 2θ g x ; ϵ
θ2 θ − 1

〠
∞

a=0

1
θ
− 1

a
−1 aG x ; ϵ a

+ g x ; ϵ
θ2 θ − 1

〠
∞

a=0
〠
∞

b=0

1
θ
− 1

a

−1 a

b + 1 G x ; ϵ a+b+1

11

Multiplying the first term of the last equation by a + 1/
a + 1 , the second term by a + b + 2 / a + b + 2 and rear-
ranging, thus

f RL−G x ; θ, ϵ = 〠
∞

a=0

1
θ
− 1

a
−1 a θ2 − 2θ a + 1 g x ; ϵ G x ; ϵ a

θ2 θ − 1 a + 1

+ 〠
∞

a=0
〠
∞

b=0

1
θ
− 1

a
−1 a a + b + 2 g x ; ϵ G x ; ϵ a+b+1

θ2 θ − 1 b + 1 a + b + 2
,

12

f RL−G x ; θ, ϵ = 〠
∞

a=0
ηaha+1 x + 〠

∞

a,b=0
κa,bha+b+2 x , 13

where

ηa =
1
θ
− 1
a

−1 a θ2 − 2θ
θ2 θ − 1 a + 1

,

κa,b =
1
θ
− 1
a

−1 a

θ2 θ − 1 b + 1 a + b + 2
,

ha+1 x = a + 1 g x ; ϵ G x ; ϵ a,

ha+b+2 x = a + b + 2 g x ; ϵ G x ; ϵ a+b+1

14

Thus, (13) represents an infinite linear combination of
exp-G densities of the baseline density. The linear represen-
tation form of the RL-G facilitates the derivation of other
statistical properties of the RL-G density. Integrating (13)
with respect to x produces the corresponding linear repre-
sentation form of the CDF of the RL-G family.

FRL−G x ; θ, ϵ = 〠
∞

a=0
ηaHa+1 x + 〠

∞

a,b=0
κa,bHa+b+2 x , 15

where Ha+1 x =G x ; ϵ a+1, Ha+b+2 x =G x ; ϵ a+b+2, and
a + 1, a + b + 2 are power parameters of the exponentiated-
G distributions Ha+1 x and Ha+b+2 x , respectively.

4. Some Relevant Statistical Properties of the
RL-G Family

In this section, we have derived some relevant statistical
properties of the RL-G family. These include the quantile
function, the raw (noncentral) moments, measures of
inequality, the entropy measure, mean and median devia-
tions, and the reliability parameter.

4.1. The Quantile Function. By definition, the quantile func-
tion Q p of the RL-G family is FRL−G Q p ; θ, ϵ = p, where
0 ≤ p ≤ 1 Now from (7), we have 1 − 1 − log 1 −G Q p ;
ϵ /θ θ − 1 1 −G Q p ; ϵ 1/θ = p, if we let 1 − G Q p ;
ϵ = y, solving for y gives; y = W − θ − 1 1 − p e− θ−1 /
− θ − 1 1 − p −θ, where the negative branch of the Lambert
function, is denoted by W ; see [20].

But 1 −G Q p ; ϵ = y; and hence, the RL-G family
quantile function Q p is represented as

Q p = G−1 1 − W − θ − 1 1 − p e− θ−1

− θ − 1 1 − p

−θ

, 16

where the baseline distribution G x ; ϵ has its inverse
denoted as G−1 .

4.2. Moments. In statistical analysis, the kurtosis, mean,
skewness, and variance are measures that can be computed
using the noncentral moments of a distribution.
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If X ~ RL −G random variable, then the rth moment is
defined as follows:

μ′r =
∞

0
xr f RL−G x ; θ, ϵ dx 17

Substituting (13) into the above definition and simplify-
ing, the rth noncentral moments can be expressed as

μ′r = 〠
∞

a=0
ηa

∗
∞

0
xrg x ; ϵ G x ; ϵ adx

+ 〠
∞

a,b=0
κa,b

∗
∞

0
xrg x ; ϵ G x ; ϵ a+b+1dx,

18

which can be simplified as

μ′r = 〠
∞

a=0
ηa

∗ℓr,a + 〠
∞

a,b=0
κa,b

∗ℓr,a+b+1, 19

where ηa
∗ = ηa a + 1 and κa,b

∗ = κa,b a + b + 2 :

ℓr,a =
∞

0
xrg x ; ϵ G x ; ϵ adx,

ℓr,a+b+1 =
∞

0
xrg x ; ϵ G x ; ϵ a+b+1dx

20

Alternatively, (18) can be expressed in terms of the
baseline quantile function, supposed G x ; ϵ = z in (18),
then G−1 x ; ϵ =Q z = x, , dz = g x ; ϵ dx.

As x⟶ 0, z⟶ 0 and as x⟶∞, z⟶ 1.
From (18), we have the rth noncentral moments

expressed as

μ′r = 〠
∞

a=0
ηa

∗
1

0
Qr z zadz + 〠

∞

a,b=0
κa,b

∗
1

0
Qr z za+b+1dz 21

4.3. Incomplete Moment. This statistical property plays an
essential role in the computation of the mean and medium
deviations, inequality and entropy measures, and residual
life of a random variable.

The RL-G family rth incomplete moment is defined as
mr t = t

0x
r f RL−G x ; θ, ϵ dx.

Setting (13) into the definition, we obtain the following:

mr t = 〠
∞

a=0
ηa

∗ζr,a + 〠
∞

a,b=0
κa,b

∗ζr,a+b+1, 22

where ζr,a = t
0x

rg x ; ϵ G x ; ϵ adx, ζr,a+b+1 = t
0x

rg x ; ϵ G

x ; ϵ a+b+1dx, ηa
∗, and κa,b

∗ are defined in (18).
Alternatively, the rth incomplete moment is expressed in

terms of the baseline quantile function. Supposed G x ; ϵ
= z in (22), then G−1 x ; ϵ =Q z = x, dz = g x ; ϵ dx. As
x⟶ 0, z⟶ 0 and as x⟶ t, z⟶G t ; ϵ . From (22),
we have the rth incomplete moments expressed as

mr t = 〠
∞

a=0
ηa

∗δr,a + 〠
∞

a,b=0
κa,b

∗δr,a+b+1, 23

where δr,a = G t;ϵ
0 Qr z zadz, δr,a+b+1 = G t;ϵ

0 Qr z za+b+1dz,
ηa

∗, and κa,b
∗ as defined before.

4.4. Measures of Inequality. The Bonferroni and Lorenz
curves are two of the most commonly used measures of
inequality that are applied in various fields such as insur-
ance, demography, reliability engineering, and economics.

By definition, the Lorenz curve LF x of the RL-G family is
defined by LF x = 1/E X t

0xf RL−G x ; θ, ϵ dx, where E X is

the mean and t
0xf RL−G x ; θ, ϵ dx is the first incomplete

moment of the RL-G family obtained by setting r = 1 into
the incomplete moment’s expression, that is;

t

0
xf RL−G x ; θ, ϵ dx = 〠

∞

a=0
ηa

∗ζ1,a + 〠
∞

a,b=0
κa,b

∗ζ1,a+b+1 24

Substituting into the definition for LF x produces;

LF x = 1
E X

〠
∞

a=0
ηa

∗ζ1,a + 〠
∞

a,b=0
κa,b

∗ζ1,a+b+1 , 25

where ζ1,a = t
0xg x ; ϵ G x ; ϵ adx and ζ1,a+b+1 = t

0xg x ; ϵ
G x ; ϵ a+b+1dx. By definition, the Bonferroni curve BF x of
the RL-G family is;

BF x = LF x
FRL−G x ; θ, ϵ

= 1
E X FRL−G x ; θ, ϵ

t

0
xf RL−G x ; θ, ϵ dxBF x

= 1
E X FRL−G x ; θ, ϵ 〠

∞

a=0
ηa

∗ζ1,a + 〠
∞

a,b=0
κa,b

∗ζ1,a+b+1

26

4.5. Mean and Median Deviations. The mean deviation
denoted by π1 for RL-G random variable is defined by

π1 =
∞

0
x − μ f RL−G x ; θ, ϵ dx

= 2μFRL−G μ ; θ, ϵ − 2
μ

0
xf RL−G x ; θ, ϵ dx,

27

where μ
0xf RL−G x ; θ, ϵ dx is the first incomplete moment.

Hence, the mean deviation μ is

π1 = 2μFRL−G μ ; θ, ϵ − 2 〠
∞

a=0
ηa

∗ζ1,a + 〠
∞

a,b=0
κa,b

∗ζ1,a+b+1 ,

28
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where ζ1,a = μ
0xg x ; ϵ G x ; ϵ adx, ζ1,a+b+1 = μ

0xg x ; ϵ G

x ; ϵ a+b+1dx, ηa
∗, and κa,b

∗ as defined before.
The median deviation about the median M denoted by

π2 for RL-G random variable is defined by π2 = ∞
0 x −M

f RL−G x ; θ, ϵ dx = μ − 2 M
0 xf RL−G x ; θ, ϵ dx.

Hence, the medium deviation about the median is
expressed as

π2 = μ − 2 〠
∞

a=0
ηa

∗ζ1,a + 〠
∞

a,b=0
κa,b

∗ζ1,a+b+1 , 29

where ζ1,a = M
0 xg x ; ϵ G x ; ϵ adx and ζ1,a+b+1 = M

0 xg x ;
ϵ G x ; ϵ a+b+1dx, ηa

∗, and κa,b
∗ as defined before.

4.6. Entropy Measure. The randomness in the RL-G random
variable is measured by using the following measures of
entropy: Renyi [21], Shannon [22], Havrda and Charvat
[23], and Tsallis [24].

The RL-G family has the Renyi entropy denoted by IR γ
and is defined by

IR γ = 1
1 − γ

log
∞

0
f γRL−G x ; θ, ϵ dx, 30

where γ > 0, γ ≠ 1.
Substituting the density of the RL-G into the above def-

inition and applying the generalized binomial expansion, the

following expression is obtained:

IR γ = 1
1 − γ

log
∞

0

g x, ϵ γ

θ2γ θ − 1 γ
〠
∞

a=0

γ

θ
− γ

a
−1 i G x ; ϵ a

× 〠
∞

b=0

γ

b
θ2 − 2θ γ−b −log 1 − G x ; ϵ γ

31

Applying the following log power series expansion in the
last expression

−log 1 −G x ; ϵ γ = γ〠
∞

d=0

d − γ

d
〠
d

c=0

−1 c+dPc,d
γ − c

d

c
G x ; ϵ γ+c,

32

where the constants Pk,l are obtained recursively by using
the following relation:

Pc,d =
1
d
〠
d

z=0

−1 z z c + 1 − l
z + 1 Pc,d−z ,

Pc,0 = 1
33

And after simplifying, we obtain the Renyi entropy as;

The RL-G family Shannon entropy is defined by;

IX = E −log f RL−G x ; θ, ϵ 35

By setting (13) into the above definition, IX is obtained
as;

IX = E −log 〠
∞

a=0
ηaha+1 x + 〠

∞

a,b=0
κa,bha+b+2 x , 36

where ηa, κa,b, ha+1 x , and ha+b+2 x are defined in (13).

The Havrda and Charvat entropy for the RL-G family is
represented by;

I γ = 1
21−γ − 1

∞

0
f γRL−G x ; θ, ϵ dx − 1 , 37

where γ > 0 and γ ≠ 1, and the expression in the integral is
similar to the one used in Renyi entropy. Thus, the Havrda
and Charvat entropy for the RL-G family can be expressed:

IR γ = 1
1 − γ

log

1
θ2γ θ − 1 γ

〠
∞

a=0
〠
∞

b=0
〠
∞

d=0
〠
d

c=0

γ

θ
− γ

a

γ

b

d − γ

d

d

c

−1 a+c+d θ2 − 2θ γ−b
γPc,d

γ − c

×
∞

0
g x, ϵ γ G x ; ϵ a+γ+cdx

34

I γ = 1
21−γ − 1

1
θ2γ θ − 1 γ

〠
∞

a=0
〠
∞

b=0
〠
∞

d=0
〠
d

c=0

γ

θ
− γ

a

γ

b

d − γ

d

d

c

−1 a+c+d θ2 − 2θ γ−b
γPc,d

γ − c

×
∞

0
g x, ϵ γ G x ; ϵ a+γ+cdx

− 1 38
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The Tsallis’s generalized entropy for RL-G random var-
iable is obtained by using the following formula:

IT γ = 1
1 − γ

1 −
∞

0
f γRL−G x ; θ, ϵ dx , 39

where γ > 0 and γ ≠ 1, from which we obtain

4.7. Reliability Parameter. Let X1 ~ RL −G x, θ1, ϵ and X2
~ RL −G x, θ1, ϵ ; X2 and X1 are strength and stress ran-
dom variables. The stress-strength reliability parameter of
RL-G family of distribution is defined by

R = P X2 < X1 =
∞

0
f RL−G x ; θ1, ϵ FRL−G x ; θ2, ϵ dx

= 1 −
∞

0
f RL−G x ; θ1, ϵ SRL−G x ; θ2, ϵ dx

= 1 −
∞

0

g x, ϵ 1 − G x ; ϵ 1/θ1 + 1/θ2 −1

θ21 θ1 − 1
θ21 − 2θ1 − log 1 − G x ; ϵ

× 1 − log 1 − G x ; ϵ
θ2 θ2 − 1 dx

41

The simplified result from the last expression is

R = 1 − θ21 − 2θ1
θ21 θ1 − 1

∞

0
g x, ϵ 1 − G x ; ϵ 1/θ1 + 1/θ2 −1dx

+ θ21 − 2θ1
θ21 θ1 − 1 θ2 θ2 − 1

∞

0
g x, ϵ

1 − G x ; ϵ 1/θ1 + 1/θ2 −1 log 1 − G x ; ϵ dx

+ 1
θ21 θ1 − 1

∞

0
g x, ϵ 1 − G x ; ϵ 1/θ1 + 1/θ2 −1 log 1 −G x ; ϵ dx

−
1

θ21 θ1 − 1 θ2 θ2 − 1
∞

0
g x, ϵ 1 − G x ; ϵ 1/θ1 + 1/θ2 −1

log 1 − G x ; ϵ 2dx

42

Evaluating each of the integrals and using the general-
ized binomial series expansion, the result of [25] for a power
series raised to a positive integer n;

log 1 − G x ; ϵ 2 = −〠
∞

b=0

G x ; ϵ b+1

b + 1

2

= 〠
∞

c=0
b2,c G x ; ϵ c+2,

43

where b2,0 = a20 and for any integer

c ≥ 1, b2,c =
1
ca0

〠
c

b=1
3b − c acb2,c−b,

ac =
1

b + 1

44

The reliability parameter after simplification is expressed
as

R = 1 − θ21 − 2θ1
θ21 θ1 − 1

θ1θ2
θ1 + θ2

−
1

θ2 θ2 − 1 〠
∞

a=0
〠
∞

b=0

−1 a+1

b + 1 a + b + 2
1
θ1

+ 1
θ2

− 1

a

+ 1
θ21 θ1 − 1

〠
∞

a=0
〠
∞

b=0

−1 a+1

b + 1 a + b + 2

1
θ1

+ 1
θ2

− 1

a

−
1

θ2 θ2 − 1 〠
∞

a=0
〠
∞

c=0
−1 a

1
θ1

+ 1
θ2

− 1

a

b2,c
a + c + 3

45

5. Maximum Likelihood Estimation of the
RL-G Family

Suppose the RL-G family has a random sample of size n
given by x1, x2,⋯, xn, then the log-likelihood function for
the parameter vector is given by

ℓ Ξ = 〠
n

i=1
logg xi ; ϵ + 1

θ
− 1 〠

n

i=1
log 1 −G xi, ϵ

− 2n log θ − n log θ − 1

+ 〠
n

i=1
log θ2 − 2θ − log 1 −G xi, ϵ

46

IT γ = 1
1 − γ

1 −

1
θ2γ θ − 1 γ

〠
∞

a=0
〠
∞

b=0
〠
∞

d=0
〠
d

c=0

γ

θ
− γ

a

γ

b

d − γ

d

d

c

−1 a+c+d θ2 − 2θ γ−b
γPc,d

γ − c

×
∞

0
g x, ϵ γ G x ; ϵ a+γ+cdx

40

6 Computational and Mathematical Methods



Taking derivatives with respect to θ and ϵ

∂ℓ Ξ

∂θ
= −

1
θ2

〠
n

i=1
log 1 −G xi, ϵ −

2n
θ

−
n

θ − 1

+ 2θ − 2 〠
n

i=1

1
θ2 − 2θ − log 1 − G xi, ϵ

,

∂ℓ Ξ

∂ϵ = 〠
n

i=1

1
g xi ; ϵ

∂g xi ; ϵ
∂ϵ

−
1
θ
− 1 〠

n

i=1

1
1 −G xi, ϵ

∂G xi ; ϵ
∂ϵ

+ 〠
n

i=1

1
θ2 − 2θ − log 1 −G xi, ϵ 1 − G xi, ϵ

∂G xi ; ϵ
∂ϵ

47

By using numerical techniques, the above equations are
set to zero and simultaneously solved to obtain the maxi-
mum likelihood estimates.

6. Special Distributions of the RL-G Family

In this section, two special members of the RL-G family, the
Ramos-Louzada Weibull (RLW) distribution and the Ramos-
Louzada Kumaraswamy (RLKum) distribution, are derived,
and the flexibility of these distributions is illustrated by display-
ing plots of their hazard rate and density functions at some
parameter values. Simulation analysis and applications to real
datasets of the RLW distribution are studied in the latter
section.

(1) Assuming the distribution for the baseline is the
Weibull, whose CDF and PDF are, respectively,
given by G x, α, β = 1 − e−αx

β
and g x, α, β = α

βxβ−1e−αx
β
, x > 0, α > 0, β > 0, α, and β are scale

and shape parameters, respectively. The Ramos-
Louzada Weibull (RLW) distribution is obtained by
substituting G x, α, β and g x, α, β into equations
(7) and (8). Thus, the CDF and PDF of the new
RLW distribution are, respectively, obtained below:

FRLW x, θ, α, β = 1 − 1 + αxβ

θ θ − 1 e− αxβ/θ ,

f RLW x, θ, α, β = αβxβ−1 θ2 − 2θ + αxβ e− αxβ/θ

θ2 θ − 1
48

The hazard rate function is expressed as

hRLW x, θ, α, β = αxβ θ2 − 2θ + αxβ

θ θ θ − 1 + αxβ
49

Figures 1 and 2, respectively, display the plots of the PDF
and hazard rate function of the RLW distribution with
various selections of parameter values. From Figure 1, the

RLW distribution can take several forms, such as “left-skewed,”
almost “symmetric,” “reversed J-shapes,” and “right-skewed,”
and plots of the hazard rate function in Figure 2 illustrate
various forms, such as “increasing,” “decreasing,” “J-shape,”
and “reversed J-shape.”

Submodels of the RLW distribution are as follows:

(i) When α = β = 1, we have the RL distribution given
in (2)

(ii) When α = 1, the Generalized RL distribution pro-
posed by [17] is obtained. The GRL density function
is expressed as

FGRL x, θ, 1, β = 1 − 1 + xβ

θ θ − 1 e− xβ/θ 50

(iii) When β = 1, we obtain the Ramos-Louzada Expo-
nential (RLE) distribution. Its density is defined by

FRLE x, θ, β, α = 1 − 1 + αx
θ θ − 1 e− αx/θ 51

(iv) When β = 2, we obtain the Ramos-Louzada Raleigh
(RLR) density defined by

FRLR x, θ, α, 2 = 1 − 1 + αx2

θ θ − 1 e− αx2/θ 52

(2) Supposed that the baseline is the Kumaraswamy
distribution whose density is defined as G x = 1 −
1 − xβ

α
, and g x = αβxβ−1 1 − xβ

α−1
, 0 < x < 1,

α > 0β > 0, β, and α are, respectively, shape and scale
parameters, and equations (53), (54), and (55),
respectively, express the CDF, PDF, and failure rate
function of the RLKum distribution:

FRLKum x, θ, β, α = 1 − 1 − α log 1 − xβ

θ θ − 1 1 − xβ
α/θ
,

53

f RLKum x, θ, β, α = αβxβ−1

θ2 θ − 1
1 − xβ

α/θ −1

θ2 − 2θ − α log 1 − xβ ,
54
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hRLKum x, θ, β, α = αβxβ−1 θ2 − 2θ − α log 1 − xβ

θ 1 − xβ θ θ − 1 − α log 1 − xβ

55

Figures 3 and 4, respectively, display plots of the RLKum
PDF and hazard rate function at various selections of
parameter values. From Figure 3, the RLKum distribution
can take various forms, such as a “reversed J-shape,” a
“left-skewed” distribution, or a “J-shape.” The hazard rate
function plots in Figure 4 illustrate various shapes such as
“decreasing,” “increasing,” “J-shape,” “bathtub,” and
“inverted bathtub.” Thus, the RLKum distribution is capable
of modeling data with “non-monotonic” and “monotonic”
hazard rate functions.

7. Monte Carlo Simulation

In this section, simulation analysis with sample sizes,
n = 50, 150, 200, 500, 800, 1000, was performed to evaluate
the properties of the ML estimators for the RLW distri-
bution parameters by examining the average estimates
(AV), the average bias (AB), and the root mean square
(RMSE) for the estimated parameters. The analysis was
repeated for N = 1500 times, with initial parameter values:
(I) α = 2 6, β = 1 5, and θ = 2 1; and (II) α = 1 6, β = 0 5,
and θ = 2 1. The random number generation is produced
by solving the CDF of the RLW with the uniroot function
in R software, and the estimations are obtained with the
optim function in the same software. The AB, RMSE,
and AV were estimated using the following expressions:
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Figure 2: Plots of the hazard rate function of the RLW distribution for different parameter values.
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Figure 1: Plots of the PDF of the RLW distribution for different parameter values.
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RMSE = 1/N ∑N
i=1 ω i − ω 2, AB = 1/N ∑N

i=1 ω i − ω ,

and Av = 1/N ∑N
i=1ω i, where ω = α, β, θ.

Table 1 displays the simulated results of AB, RMSE, and
AV for the parameter values of the RLW distribution. It can
be observed that, in all cases, the AB and RMSE decrease to
zero with increasing sample size. Furthermore, the AV of the
estimators is quite close to the actual values. Hence, the
maximum likelihood estimation and their asymptotic results
perform well in estimating the RLW parameters. Similarly,
alternative parameter choices can yield similar results.

8. Application

Application to three datasets of the RLW distribution is
demonstrated in this section. The goodness-of-fit via
Cramer-von Mises distance values (CVM), the Anderson-

Darling statistic (AD), the Kolmogorov-Smirnov statistics
(KS), and model selection criteria such as Bayesian informa-
tion criteria (BIC), consistent Akaike information criteria
(CAIC), and Akaike information criteria (AIC) of the RLW
distribution, its nested models, and some other competing
distributions were compared. In the first two applications,
the RLW distribution was compared with its submodels,
Nakagami (NAK) by [26]), inverse Weibull (INW) by [27],
Nadarajah and Haghighi (NH) by [28], and modified
extended Chen (MEC) by [29]. In the third application,
the following nonnested models were used: Marshall-Olkin
exponential (MOEx) by [3], generalized exponential (GE)
by [30], and generalized inverse Weibull (GIW) by [31].

The CDF of the nonnested models are given below:

(i) Generalized Inverse Weibull: F x = e −θ α/x β , x
> 0, α > 0, β > 0
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Figure 4: Plots of the RLKum hazard rate function for arbitrary parameter values.
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Figure 3: PDF plots of the RLKum distribution for different parameter values.
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(ii) Inverse Weibull: F x = e− −1/θ 1/x−α β

x > 0, α > 0,
β > 0, θ > 0

(iii) Nadarajah and Haghighi distribution: F x = 1 −
e 1− 1+αx β

(iv) Nakagami distribution: F x = γ α, α/β x2 /Γ α ,
x > 0, α > 0, β > 0

(v) Modified extended Chen distribution: F x =
θ ex

−β − 1 + 1 −α, x > 0, α, β > 0 θ > 0

(vi) Generalized exponential: F x = 1 − e−αx β, x > 0,
α > 0, β > 0

(vii) Marshall-Olkin exponential: F x = 1 − αe−βx/
1 − 1 − α e−βx , x > 0, α > 0, β > 0

8.1. Dataset 1: Rainfall Data. The information displays the
highest annual average monthly rainfall (in inches) that
was seen in Ghana’s Ashanti region between 1989 and
2019. The dataset can be found in [32]. The dataset contains
the following:
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Figure 5: Plots of the TTT transform for the rainfall data.

Table 1: Simulated results of AB, RMSE, and AV for RLW distribution.

α = 2 6, β = 1 5, θ = 2 1 α = 1 6, β = 0 5, θ = 2 1
Parameter n AB RMSE Av AB RMSE Av

α

50 3.7878 7.4370 55.7878 -2.3974 2.6659 29.6026

150 1.8761 3.2108 18.7104 -0.8261 2.2767 15.1739

200 0.6427 2.1650 13.6427 -0.4792 0.8368 7.5208

500 0.4377 1.0995 8.6610 -0.0795 0.7929 3.1205

800 0.1487 0.9620 2.7123 -0.0899 0.3987 1.9100

1000 0.0775 0.0916 2.6776 -0.0853 0.2577 1.5146

β

50 7.4123 2.0823 37.4123 2.450 0.6921 12.4500

150 3.9078 1.2336 11.5419 1.1450 0.4379 6.1449

200 1.4904 0.8109 8.9904 0.5004 0.2696 3.0004

500 0.5422 0.4669 2.0312 0.1513 0.1348 1.1513

800 0.2271 0.2854 1.6795 0.0807 0.0915 0.7057

1000 0.0839 0.0381 1.6839 0.0609 0.0787 0.5609

θ

50 27.1127 13.5530 69.1127 23.7908 12.8938 65.7908

150 10.0151 7.2365 20.4318 13.5720 11.1659 34.5720

200 6.1930 5.6416 16.6930 5.9125 5.0713 16.4125

500 2.5672 3.5417 7.8732 2.1320 4.2120 6.3320

800 0.9231 1.5608 3.5199 0.9522 2.3619 3.5773

1000 0.0697 0.1241 2.1697 0.6582 1.6670 2.7583
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12.469, 7.079, 11.929, 11.370, 12.906, 8, 7.394, 7.063,
12.213, 9.654, 8.327, 7.228, 10.689, 10.413, 10.039, 8.984,
10.508, 7.614, 12.165, 11.201, 8.988, 8.594, 10.961, 8.350,
9.882, 11.720, 10.272, 9.311, 8.854, 9.819, and 11.863. A graph-
ical representation of the dataset using the hazard function is
displayed in Figure 5. The total test on time (TTT) plot indi-
cates that the curve has an increasing hazard rate.

Table 2 shows the ML estimates, standard errors, and
p values of the parameters of the fitted distributions for the
rainfall data. Two parameters of the RLW are statistically sig-

nificant at the 5% significance level, except for the INW. The
GRL, RL, NAK, and NH have all their estimated parameters
statistically significant at the 5% significance level.

From Table 3, a better fit is provided by the RLW to the
rainfall data compared to its submodels and the nonnested
models because it has the maximum value of log-likelihood
ℓ and the smallest CVM, AD, AIC, CAIC, and BIC. A close
competitive model to the RLW is the NAK.

From the likelihood ratio test (LRT) results in Table 4, it
is obvious that significant differences exist between RLW

Table 2: ML estimates, p values, and standard errors of parameters for the rainfall data.

Distribution Parameter Estimate Standard error z-value p value

RLW

α 0.021088 0.047615 0.44289 0.6578

β 6.55145 0.92802 7.0596 <2 2 × 10−12

θ 1 0 × 105 3 2035 × 10−8 3 12 × 1012 <2 2 × 10−16

GRL
α 4.89283 0.073309 66.7426 <2 2 × 10−16

θ 1 0 × 105 3 0244 × 10−7 3 31 × 1011 <2 2 × 10−16

RL θ 8.3350 1.8249 4.5674 <0.0001

NAK
α 100.3082 6.2502 16.0488 <2 2 × 10−16

β 8.93087 2.0694 4.3157 <0.0001

MEC

α 156.9674 132.3598 1.1859 0.2357

β 4.6075 0.4665 9.8764 <2 2 × 10−16

θ 155.7753 135.3867 1.1506 0.2499

INW

α 3.8818 1.8358 2.1145 0.0345

β 3.1846 1.2936 2.4619 0.0138

θ 0.0064 0.0209 0.3067 0.7591

NH
α 3 5585 × 10−3 4 155 × 10−4 8.5642 <2 2 × 10−16

β 22.700 6 595 × 10−8 3 442 × 108 <2 2 × 10−16

Table 3: Information criteria and goodness-of-fit statistics.

Model ℓ CVM AD KS AIC CAIC BIC

RLW -60.7947 0.0500 0.4276 0.1063 127.5894 128.5125 131.1914

GRL -62.9598 0.0598 0.5801 0.1329 129.1957 129.6401 132.0637

RL -101.6749 2.1434 10.0240 0.5220 205.3499 205.4928 206.7839

NAK -60.8008 0.0558 0.4369 0.0902 128.4296 128.9616 131.4060

MEC ‘-64.7592 0.1100 0.8852 0.1699 135.5185 136.4416 139.8205

INW -64.8004 0.1446 0.9720 0.1370 135.6009 136,5240 139.9029

NH -92.2319 2.3334 10.6640 0.5308 188.4639 188.9083 191.3319

Table 4: LRT statistics for the rainfall data.

Model Hypotheses LRT Critical value

GRL H0 β = 1 vrsH1 H0 is false 4.3302 3.841

RL H0 α = β = 1 vrsH1 H0 is false 81.7604 5.991
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Figure 6: Fitted PDFs vs. histogram of the maximum annual rainfall data.
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Figure 7: Empirical vs. fitted CDFs for the maximum annual rainfall data.
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Figure 8: Plots of the TTT transform for the data.
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and its submodels based on the LRT test since their LRT
statistics values are, respectively, greater than the critical
values at the 5% level of significance.

The graphs of the fitted PDFs versus the histogram of the
data are displayed in Figure 6, and the fitted CDFs versus the
empirical data are displayed in Figure 7. It is noted that the
plots of the densities of the RLW depict the empirical density
and CDF of the maximum annual rainfall data more closely
than the other models.

8.2. Dataset 2: Hypertension Data. This dataset shows the
survival periods in years before the development of
hypertension for 119 patients randomly selected from the
Bolgatanga Regional Hospital in Ghana’s Upper East region.
The dataset is in [33], and it has the following items:

71, 5, 39, 62, 52,71, 38, 56, 35, 69,34,71,66,70, 52, 37, 35,
71, 73, 19, 74, 74, 75, 51, 76,49, 19, 76, 78, 76, 76, 49, 47, 48,
48, 46, 46, 46, 41, 40, 43, 45, 47, 47, 44, 45, 46, 42, 43, 42, 20,
28, 26, 60, 27, 24, 29, 60, 25, 60, 69, 36, 69, 69, 68, 68, 67, 67,

Table 5: ML estimates, p values, and standard errors of parameters for the data.

Distribution Parameter Estimate Standard error z-value p value

RLW

α 2 73 × 10−2 3 4093 × 10−2 0.8006 0.4064

β 3.7015 0.2894 12.7903 <2 × 10−16

θ 100000 1 9966 × 10−8 5 009 × 1012 <2 × 10−16

GRL
α 1.7531 2 1340 × 10−2 82.149 <2 × 10−16

θ 1 098 × 103 5 0791 × 10−6 1 9882 × 108 <2 × 10−16

RL θ 51.3680 4.8074 10.685 <2 × 10−16

NAK
α 1840.4489 123.0302 14.9593 <2 × 10−16

β 1.4171 0.2182 6.4948 8.31510−11

MEC

α 3.9728 0.7949 4.9978 <0.001
β 1.7714 0.0837 21.1678 <2 × 10−16

θ 197.938 71.1715 2.7811 0.005417

INW

α -4.6592 1.8744 -2.4857 0.01293

β 1.5767 0.1538 10.2547 <2 × 10−16

θ 0.00254 0.0016 1.5530 0.12043

NH
α 2 7387 × 10−3 1 7333 × 10−4 1.5801 <2 × 10−16

β 5.6071 9 0352 × 10−8 6 2058 × 107 <2 × 10−16

Table 6: Information criteria and goodness-of-fit statistics.

Model ℓ CVM AD KS AIC CAIC BIC

RLW -502.8805 0.0896 1.2456 0.073658 1011.761 1011.9697 1020.099

GRL -538.491 3.3364 16.124 0.27391 1080.759 1080.8624 1086.317

RL -590.1535 5.2102 0.36118 0.36118 1182.307 1182.3412 1185.086

NAK -541.4105 7.7603 40.551 0.38797 1086.821 1086.9244 1092.379

MEC -564.8485 2.1847 12.104 0.2873 1135.697 1135.9057 1144.035

INW -575.887 2.5781 14.001 0.31293 1157.774 1157.9827 1166.112

NH -562.205 5.4959 25.963 0.3626 1128.41 1128.5134 1133.968

Table 7: LRT statistics for the hypertension data.

Model Hypotheses LRT Critical value

GRL H0 β = 1 vrsH1 H0 is false 71.221 3.841

RL H0 α = β = 1 vrsH1 H0 is false 174.546 5.991
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67, 52, 35, 66, 55, 66, 61, 61, 64, 64, 65, 65, 63, 63, 62, 39, 62,
62, 62, 59, 59, 59, 58, 58, 58, 18, 57, 57, 56, 56, 37, 53, 53, 53,
53, 54, 54, 66, 17, 50, 75, 51, 38, 52, 66, 4, 52, 55, 19, 58, and
73. Figure 8 shows a graphic depiction of the dataset using
the hazard function. The RLW distribution can therefore
be used to represent the curve because the TTT plot shows
that the hazard rate is growing.

The parameter estimates for the fitted models for the
hypertension data are shown in Table 5, along with their stan-
dard errors and p values. In addition, the estimated parameters
for the GRL, RL, and NHmodels are all statistically significant
at the 5% level of significance. Two other estimated parameters
of the RLW are also significant at this level. Based on Table 6,
the RLWdistribution offers a better match to the hypertension

data compared to its nestedmodels and the other distributions
since it has the least CVM, AD, KS, AIC, and CAIC as well as
the highest log-likelihood value.

It is clear from Table 7’s likelihood ratio test (LRT)
results that there are significant differences between RLW
and its submodels based on the LRT test, as each of their
LRT statistical values exceeds the critical values at the 5%
level of significance.

Figures 9 and 10, respectively, are graphs showing the
fitted PDFs against the data’s histogram and the fitted CDFs
against the empirical data. It should be observed that the
RLW plots of densities more accurately represent the
empirical density and CDF of the hypertension data than
the other models.
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Figure 9: Fitted PDFs vs. histogram of the hypertension data.
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Figure 10: Empirical vs. fitted CDFs of the hypertension data.
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Figure 11: TTT transform plot of the carbon fiber data.

Table 8: ML estimates, standard errors, and p values of parameters for the carbon fiber data.

Model Parameter Estimate Standard error z-value p value

RLW

α 2.8205 0.7956 3.5451 <0.001
β 2.7922 0.2141 13.0441 <0.001

θ 56.4575 0.0390 1448.397 <0.001

GRL
β̂ 2.7880 0.2162 12.8956 <0.001

θ 19.2252 5.8102 3.3089 <0.001

RLRa
α 151.5764 14.9180 10.1610 <0.001
θ 1194.8486 1.8909 631.901 <0.001

GE
α 1.0132 0.0875 11.5824 <0.001
β 7.7883 1.4962 5.2054 <0.001

INW

α -1.6811 0.6092 -2.7595 <0.01
β 3.8282 0.7188 5.3257 <0.001

θ 0.0066 0.0103 0.6404 0.5219

GIW

α̂ 0.5217 0.0433 12.0440 <0.001
β̂ 1.7690 0.1119 15.8060 <0.001
θ̂ 9.764 0.0013 7464.547 <0.001

Table 9: Information criteria and goodness-of-fit statistics.

Model ℓ CVM AD KS AIC CAIC BIC

RLW -141.5308 0.06334 0.4179 0.0605 289.0615 289.3089 296.8770

GRL -141.5417 0.06340 0.4195 0.0607 289.1934 289.3159 296.2937

RLRa -149.5009 0.6340 3.5460 0.1383 303.0018 303.1242 308.2121

GE –146.1823 0.2292 1.2246 0.1077 296.3646 296.4870 301.5749

INW -154.1823 0.3876 2.4332 0.1286 314.3646 314.6120 322.1801

GIW -173.1440 0.8875 5.3496 0.1777 352.2879 352.5353 360.1034
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8.3. Dataset 3: Carbon Fiber Data. The third application of
the RLW with other competing models and its submodels
is demonstrated in this section with the breaking stress of
carbon fibers. It consists of the breaking stress of 50mm-
long carbon fibers. The dataset is in [34], and it includes
the following:

3.70, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42,
2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 3.75, 2.43,

2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20,
3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,
2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, 0.98,
2.76, 4.91, 3.68, 1.84, 1.59, 3.19, 1.57, 0.81, 5.56, 1.73, 1.59,
2.00, 1.22, 1.12, 1.71, 2.17, 1.17, 5.08, 2.48, 1.18, 3.51, 2.17,
1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70,
2.03, 1.80, 1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05,
and 3.65

Table 10: Likelihood ratio test statistics for the carbon fiber data.

Model Hypotheses LRT Critical value

GRL H0 β = 1 vrsH1 H0 is false 0.0218 3.841

RLRa H0 β = 2 vrsH1 H0 is false 7.9701 3.841

x

D
en

sit
y

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

Histogram
RLW
GRL
RLRa

GE
INW
GIW

Figure 12: Fitted PDFs vs. histogram of the carbon fiber data.
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Figure 13: Empirical vs. fitted CDFs of the carbon fiber data.
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A graphical representation of the dataset using the
hazard function is displayed in Figure 11. The plot of the TTT
indicates that the curve has an increasing hazard rate and hence
can be modeled using the RLW distribution and the other
competing models.

Table 8 exhibits the maximum likelihood estimates,
standard errors, and p values of the parameters of the fitted
models for the carbon fiber data. The estimated parameters
of the RLW and the other distributions are significant at
the 5% level of significance, except for one parameter of
the INW. From Table 9, the RLW distribution provides a
better fit to the carbon fiber data compared to its nested
models and the other distributions because it has the smal-
lest CVM, AD, KS, AIC, and CAIC and the greatest value
of the log-likelihood.

The LRT results of Table 10 indicate that there is no sig-
nificant difference between the RLW and the GRL distribu-
tion since the LRT statistics values are less than the critical
values at the 5% level of significance. On the other hand,
there is a significant difference between the RLW and the
RLRa distribution.

The histogram of the data against the PDFs of the fitted
models and the fitted CDFs vs. the empirical carbon fiber
data are, respectively, exhibited in Figures 12 and 13. It is
observed from the plots that the RLW densities depict the
empirical density and CDF of the carbon fiber data more
closely than the other models.

9. Conclusion

In reality, the lack of developed family of distributions based
on the RL distribution in the scientific literature served as
motivation for our study. In this paper, a new family of dis-
tributions, the RL-G family, with its statistical properties
such as the quantile function, the raw moments, the incom-
plete moments, measures of inequality, entropy, mean and
median deviations, and the reliability parameter, is studied.
The parameters of the proposed generator were estimated
using the ML estimation method. The RLW and the RLKum
are two special members of the RL-G family. The outcome of
the simulation analysis indicates that the ML estimation
method and its asymptotic properties performed quite well.
Applications of the RLW from the RL-G family were carried
out on three complete real datasets, and it is evident that the
RLW outperformed its submodels and other distributions.
As a result, the newly suggested family of distributions has
a broader range of applications in a variety of areas. Despite
the RL-G model’s numerous advantages, such as flexibility,
generalization of the RL distribution, and the ability to
provide superior fits to the dataset in comparison to other
compared models available in the literature, it cannot be
employed for assessing discrete datasets, and expressions of
its estimators are difficult to reduce to a simple, closed-form.

Appendix

A. Proof of Proposition

A.1. Proof

(i) From the CDF of the RL-G family in (7), as x⟶ 0,
G x ; ϵ ⟶ 0 and FRL−G x, θ, ϵ ⟶ 1 − 1 − log 1
− 0 /θ θ − 1 1 − 0 1/θ ⟶ 0, and as x⟶∞,
G x ; ϵ ⟶ 1 and FRL−G x, θ, ϵ ⟶ 1 − 1 − log 1
− 1 /θ θ − 1 1 − 1 1/θ thus FRL−G x, θ, ϵ ⟶ 1.

Hence, 0 ≤ FRL−G x, θ, ϵ ≤ 1, for all x > 0

(ii) Demonstrating that the integration over the support
0,∞ is 1, that is

∞

0
f RL−G x ; θ, ϵ dx =

∞

0

g x, ϵ 1 −G x ; ϵ 1/θ −1

θ2 θ − 1
θ2 − 2θ − log 1 −G x ; ϵ dx

A 1

Let y = −log 1 −G x ; ϵ ⇒ 1 − G x ; ϵ = e−y, as x
⟶ 0, y⟶ 0 and

as x⟶∞,y⟶∞, dy
dx

= g x, ϵ
1 −G x ; ϵ , dx = 1 −G x ; ϵ dy

g x, ϵ
A 2

Thus

∞

0
f RL−G x ; θ, ϵ dx =

∞

0

g x, ϵ 1 − G x ; ϵ 1/θ −1

θ2 θ − 1

θ2 − 2θ − y 1 −G x ; ϵ dy
g x, ϵ

=
∞

0

θ2 − 2θ − y e− y/θ

θ2 θ − 1
dy = 1

A 3

The function in the integral is the PDF of the RL distri-
bution. Thus, from the above discussions, the RL-G family is
a legitimate PDF for the continuous random variable X.
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