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The data on SARS-CoV-2 (COVID-19) in South Africa show seasonal transmission patterns to date, with the peaks having
occurred in winter and summer since the outbreaks began. The transmission dynamics have mainly been driven by variations
in environmental factors and virus evolution, and the two are at the center of driving the different waves of the disease. It is
thus important to understand the role of seasonality in the transmission dynamics of COVID-19. In this paper, a
compartmental model with a time-dependent transmission rate is formulated and the stabilities of the steady states analyzed.
We note that if R0 < 1, the disease-free equilibrium is globally asymptotically stable, and the disease completely dies out; and
when R0 > 1, the system admits a positive periodic solution, and the disease is uniformly or periodically persistent. The model
is fitted to data on new cases in South Africa for the first four waves. The model results indicate the need to consider
seasonality in the transmission dynamics of COVID-19 and its importance in modeling fluctuations in the data for new cases.
The potential impact of seasonality in the transmission patterns of COVID-19 and the public health implications is discussed.

1. Introduction

COVID-19 is an infectious disease caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). The
disease was first identified in December 2019 in Wuhan,
the capital of Hubei, China, and has spread globally, result-
ing in the ongoing 2020 pandemic outbreak according to
Worldometer [1]. It has caused substantial mortality and a
major strain on healthcare systems according to Li et al.
[2] and WHO [3]. At the opposite extreme, many countries
lack the testing and public health resources to mount similar
responses to the COVID-19 pandemic, which could result in
the unhindered spread and catastrophic outbreaks. The dis-
ease has spread globally, and the virus has affected over 500
million people and caused the death of more than 6 million
people as of April 2022.

Pharmaceutical interventions available are vaccinations
and antiviral medicines according to Bugos [4]. Nonphar-
maceutical interventions such as social distancing, intensive
testing, and isolation of cases according to Diagne et al. [5]

have been the mainstay in the control and management of
COVID-19 in many African countries. The COVID-19 vac-
cines primarily prevent the development of severe disease
that leads to hospitalization but not necessarily infection.
That means vaccines do not block people from transmitting
the pathogen to others. As a result, social distancing has
quickly become an important consideration in mathematical
modeling according to Kissler et al. [6], Matrajt and Leung
[7], and Tuite et al. [8]. Social distancing is maintaining a
physical distance between people and reducing the number
of times people come into close contact with each other. It
usually involves keeping a certain distance from others (dis-
tances specified differ from country to country and can
change with time) and avoiding gathering together in large
groups according to Anderson et al. [9]. It minimizes the
probability that an uninfected person will come into physical
contact with an infected person, thus suppressing the disease
transmission, resulting in fewer hospitalizations and deaths.

Studies done on social distancing show that the adoption
of relaxed social distancing measures reduces the number of
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infected cases but does not shorten the duration of the epi-
demic waves. Increasing social distancing could reduce the
number of COVID-19 new cases by 30% according to
Makanda [10]. Researchers believe that social distancing
offers more advantages than drawbacks since it can serve
as a nonpharmacological tool to reduce the disease’s prolif-
eration rate.

Data on COVID-19 cases have shown trends of seasonal
variations. Environmental factors and other climatic factors
are often seasonal and could significantly affect disease
dynamics according to Keeling et al. [11] and London and
Yorke [12]. Seasonal cycles are ubiquitous features of influ-
enza and other respiratory viral infections, particularly in
temperate climates according to Martinez [13]. Like any
other respiratory viral infection, COVID-19 has been found
to exhibit some form of seasonality according to Chowdhury
et al. [14] and Cai et al. [15]. The outcome of the research
according to Chowdhury et al. [14] and Cai et al. [15] sug-
gests that transmissibility of the COVID-19 can be affected
by several meteorological factors, such as temperature and
humidity. These conditions are probably favorable for the
survival of the virus in the transmission routes. Research
done by Huang et al. [16] found that 60% of the confirmed
cases of COVID-19 occurred in places where the air temper-
ature ranged from 5°C to 15°C, with a peak in cases at
11.54°C. Moreover, approximately 73:8% of the confirmed
cases were concentrated in regions with absolute humidity
of 3 g/m3 to 10 g/m3. SARS-CoV-2, however, appears to be
spreading toward higher latitudes.

Seasonal patterns expose the limitations of many recent
COVID-19 models that do not incorporate seasonality. In
this paper, we consider South Africa, with two main climate
seasons in a year. And during these periods, there has always
been a surge in infections. We, therefore, propose a COVID-
19 model that incorporates periodicity in the disease trans-
mission pathway. In this case, the incidence is subject to
periodicity. We divided our population into five subpopula-
tions: susceptible individuals SðtÞ, exposed individuals EðtÞ,
asymptomatic individuals IaðtÞ, symptomatic individuals Is
ðtÞ, and recovered individuals RðtÞ: We came up with a
transmission rate βðtÞ, by incorporating the social distance
parameter m in the transmission rate. We defined m to be
periodically making our transmission rate periodic. We ana-
lyze the basic reproduction number, R0 (using the next
infection operator), and establish that R0 is a sharp threshold
for the COVID-19 models with periodic transmission. The
method of analysis for extinction and persistence results for
periodic epidemic systems is inspired by the research done
by Bai and Zhou [17, 18]. We fitted our mathematical model
to data obtained from the National Institute for Communica-
ble Diseases [19] for the estimation of parameters and then
simulated the efficacy of the social distance parameter.

This paper is organized as follows. In Section 2, we pro-
pose a new model for COVID-19 with periodic social dis-
tance parameters in the force of infection. A qualitative
analysis of the model is investigated in Section 3. The useful-
ness of our model is then illustrated in Section 4 where we fit
our model to the incidence data from South Africa. We con-
clude and discuss the paper in Section 5.

2. The Mathematical Model

2.1. Model Formulation.We consider the total human popula-
tion at the time t defined by NðtÞ: The total population is
divided into five subpopulations, the susceptible individuals
SðtÞ; the exposed individuals EðtÞ, those who are exposed to
the virus but not diagnosed positive for COVID-19 yet; the
asymptomatic individuals IaðtÞ, those who are confirmed
COVID-19 positive patients and do not have clinical
symptoms; the symptomatic individuals IsðtÞ, those who are
confirmed COVID-19 positive patients and have clinical
symptoms; and recovered individuals RðtÞ. Total population

N tð Þ = S tð Þ + E tð Þ + Ia tð Þ + Is tð Þ + R tð Þ: ð1Þ

The following compartmental diagram shows the flow of
population between subpopulations.

Table 1 shows the parameter used in formulating the
model.

From the compartmental model in Figure 1 and the
described parameters in Table 1, the following nonautono-
mous dynamical system is derived to describe the dynamics
of the transmission of COVID-19 with periodic social dis-
tancing in the force of infection:

dS
dt

=Λ − δ t, Ia, Isð ÞS − μS,

dE
dt

= δ t, Ia, Isð ÞS − μ + κð ÞE,
dIa
dt

= κpE − μ + α + γað ÞIa,
dIs
dt

= κ 1 − pð ÞE + αIa − μ + ψ + γsð ÞIs,
dR
dt

= γsIs + γaIa − μR,

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

, ð2Þ

Table 1: Description of parameters used in the model.

Parameter Description

Λ Recruitment rate of humans.

μ Natural mortality rate for humans.

δ t, Ia, Isð Þ The disease transmission rate for humans, which is
dependent on time.

κ Progression rate of exposed individuals to the
asymptomatic and symptomatic individuals.

γa, γs
Rate of recovery for asymptomatic and symptomatic

individuals, respectively.

α Rate of transfer from asymptomatic to symptomatic
individuals.

ψ Disease induce death rate.

m tð Þ The periodic rate at which individuals distance
themselves from each other.

η Relative infectivity parameter for the symptomatic
compared to the asymptomatic individuals.
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where

δ t, Ia, Isð Þ = β 1 −m tð Þð Þ Ia + ηIs
N

� �
: ð3Þ

The incidence function δðt, Ia, IsÞ determines the rate at
which new cases of COVID-19 are generated. The parameter
η measures the difference in infectivity between Ia and Is.
The rates mðtÞ are a periodic function of time with a com-
mon period, ω = 365/2 = 182:5 days. Periodic transmission
is often assumed to be sinusoidal, such that

m tð Þ = m̂ 1 + �m sin
2πt
182:5

� �� �
: ð4Þ

The product m̂�m is the amplitude of the periodic oscilla-
tions in mðtÞ. There are no periodic infections when �m = 0.
Here, m̂ is thus the baseline value or the time-average value
of social distancing.

3. Assumptions, Equilibrium Points,
and Analysis

The function δðt, Ia, IsÞ is differential and periodic in time
with period ω. That is,

δ t + ω, Ia, Isð Þ = δ t, Ia, Isð Þ: ð5Þ

To make biological sense, we assume that the function δ
satisfies the following three conditions ðA1 − A3Þ for all t ≥ 0
:

A1 δ t, 0, 0ð Þ = 0: ð6Þ

Setting all the derivatives of the dynamical system to
zeros and setting all infected classes to be zero, that is,
ðE, Ia, IsÞ = ð0, 0, 0Þ, gives the disease-free equilibrium

E0 = S, E, Ia, Is, Rð Þ = Λ

μ
, 0, 0, 0, 0

� �
: ð7Þ

Assumption ðA1Þ ensures that the model has a unique
and constant E0.

A2  δ t, Ia, Isð Þ ≥ 0: ð8Þ

Assumption A2 ensures a nonnegative force of infection.
So βð1 −mðtÞÞððIa + ηIsÞ/NÞ ≥ 0 with the condition that
0 ≤mðtÞ ≤ 1,∀t > 0.

A3 

∂δ t, Ia, Isð Þ
∂Ia

=
β 1 −m tð Þð Þ

N
≥ 0,

∂δ t, Ia, Isð Þ
∂Is

=
ηβ 1 −m tð Þð Þ

N
≥ 0:

ð9Þ

Assumption A3 states that the rate of new infection
increases with both the infected population size.
Assumption A4 below shows that geometrically, the sur-
face that represents the force of infection, δ, lies below
its associated tangent plane at the origin. This means
that the remainder term, R1, from the truncated Taylor
expansion of δ when the degree is equal to one is non-
positive. The second partial derivatives of the force of
infection are

S E

Ia

Is

R

𝜅pE

𝜅 (1−p) E

𝛼Ia

𝛾aIa

𝛾sIs

𝜇Ia

(𝜇 + 𝜓)Is

𝜇R

𝛿S

𝜇S

Λ

𝜇E

Figure 1: A compartmental model of COVID-19 with periodic transmission. The model consists of five subpopulations: susceptible SðtÞ,
exposed EðtÞ, asymptomatic IaðtÞ, symptomatic IsðtÞ, and recovered RðtÞ. Solid arrows indicate movements among compartments.
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A4δðt, Ia, IsÞ is concave for any t ≥ 0; i.e., the matrix

D2δ =

∂2δ
∂I2a

∂2δ
∂Is∂Ia

∂2δ
∂Ia∂Is

∂2δ
∂I2s

2
66664

3
77775, ð10Þ

is negative semidefinite everywhere. Since

A = Ia Is½ �

∂2δ
∂I2a

∂2δ
∂Is∂Ia

∂2δ
∂Ia∂Is

∂2δ
∂I2s

2
66664

3
77775

Ia

 

Is

2
664

3
775 ≤ 0, ð11Þ

we have

R1 ≤ 0: ð12Þ

It follows that if R1 ≤ 0, the matrix A is negative semide-
finite. The model shows that a single infected individual is
sufficient for a positive infection rate.

3.1. The Basic Reproduction Number, Using the Next
Infection Operator, L. Wang and Zhao [20] extended the
framework in Diekmann et al. [21] to consider an epidemi-
ological model in periodic environments. Let Φ−VðtÞ and ρð
Φ−VðωÞÞ be the monodromy matrix of the linear ω − peri-
odic system dz/dt = −VðtÞz and the spectral radius of
Φ−VðωÞ, respectively. Assume Yðt, sÞ,t ≥ s is the evolution
operator of the linear ω − periodic system

dy
dt

= −V tð Þy: ð13Þ

That is, for each s ∈ℝ, the 3 × 3 matrix Yðt, sÞ satisfies
dY t, sð Þ

dt
= −V tð ÞY t, sð Þ,∀t ≥ s, Y s, sð Þ = I3×3, ð14Þ

where I3×3 is an identity matrix. In fluctuating environ-
ments, we assume that ΦðsÞ is the initial distribution of

infectious individuals and is ω − periodic in s. Then, FðsÞΦ
ðsÞ is the rate of new infections produced by the infected
individuals who were introduced at time s. Given that t ≥ s,
then, Yðt, sÞFðsÞΦðsÞ gives the distribution of those infected
individuals who were newly infected at time s and remain in
the infected compartments at time t. It follows that

λ tð Þ≔
ð∞
0
Y t − sð ÞF sð Þϕ sð Þds =

ð∞
0
Y t, t − sð ÞF t − sð Þϕ t − sð Þds,

ð15Þ

is the cumulative number of new infections at time t pro-
duced by all those infected individuals ϕðsÞ introduced at
the time previous to t. Let Cω be the ordered Banach
space of all ω − periodic functions from ℝ to ℝ3, which
is equipped with the maximum norm k:k and the positive
cone

C+
ω ≔ Φ ∈ Cω : Φ tð Þ ≥ 0,∀t ∈ℝf g: ð16Þ

Then, we can define a linear operator L : Cω ⟶ Cω by

L ϕð Þ tð Þ =
ð∞
0
Y t, t − sð ÞF t − sð Þϕ t − sð Þds: ð17Þ

Here, L is the next infection operator, and we define
the basic reproduction number as

R0 ≔ ρ Lð Þ, ð18Þ

the spectral radius of L. We now define FðtÞ and VðtÞ
according to equation (2).

F tð Þ = 0:9

δ S

0

0

0
BB@

1
CCA = 0:9

0
β 1 −m tð Þð Þ

N
S

ηβ 1 −m tð Þð Þ
N

S

0 0 0

0 0 0

0
BBB@

1
CCCA:

ð19Þ

Substituting S =Λ/μ, we get

0:9F tð Þ =DxF t, E0À Á
=

0
β 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ

ηβ 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ
Nμ

0 0 0

0 0 0

0
BBB@

1
CCCA, ð20Þ

V = 0:9

μ + κð ÞE
−κ pE + μ + α + γ2ð ÞIa

−κ 1 − pð ÞE − α Ia + μ + ψ + γ1ð ÞIs

0
BB@

1
CCA =

U 0 0

−κ p U1 0

−U2 −α U3

0
BB@

1
CCA, ð21Þ
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where

U = μ + κð Þ,U1 = μ + α + γað Þ,U2 = κ 1 − pð Þ andU3

= μ + ψ + γsð Þ: ð22Þ

Also,

−V tð Þ =DxV t, E0À Á
= 1

−U 0 0

κ p −U1 0

U2 α −U3

0
BB@

1
CCA: ð23Þ

dY t, sð Þ
dt

= −V tð ÞY t, sð Þ,∀t ≥ s, Y s, sð Þ = I3×3: ð24Þ

1Y t, sð Þ =

e−U t−sð Þ 0 0
κ py1
U1

1 − e−U1 t−sð Þ
� �

e−U1 t−sð Þ 0

−Ce−U2 t−sð Þ C1 1 − e−U3 t−sð Þ
� �

e−U3 t−sð Þ

0
BBBB@

1
CCCCA,

ð25Þ

where C = −1/U2ðy1 + αy4Þ and C1 = ðα/U3Þy5:
We numerically evaluate the next infection operator by

For some positive integer M

To compute the basic reproduction number R0, we reduce
the operator eigenvalue problem to a matrix eigenvalue prob-
lem in the formofAx = λx, wherematrixA can be constructed
by arranging the entries of the function G: The basic repro-
duction number R0 can then be approximated by numerically
calculating the spectral radius of the matrix A. The mono-
dromy matrix of differential equation (14) is

Φ−V tð Þ = Y t, 0ð Þ =

e−U tð Þ 0 0
κpy1
U1

1 − e− U1 tð Þð
� �

e−U1 tð Þ 0

Ce−U2 tð Þ C1 1 − e−U3 tð Þ
� �

e−U3 tð Þ

0
BBBB@

1
CCCCA:

ð30Þ

Lϕð Þ tð Þ =
ð∞
0
Y t, t − sð ÞF t − sð Þϕ t − sð Þds =

ð182:5
0

G t, sð Þϕ t − sð Þds, ð26Þ

G t, sð Þ = 〠
M

k=0
Y t, t − s − kωð ÞF t − s − kωð Þ, ð27Þ

≈N 〠
M

k=0
0:7

0
β 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ
e−U t−sð Þ ηβ 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ
e−U t−sð Þ

0
κpy1β 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

NμU1
1 − e−U

2
1 t−sð Þ

� � κpy1ηβ 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ
NμU1

1 − e−U
2
1 t−sð Þ

� �

0
β 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ
Ce−U2 t−sð Þ ηβ 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ
Ce−U2 t−sð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð28Þ

G t, sð Þ ≈ βΛ

μN
〠
M

k=0
0:7

0 1 − m̂ 1 + �m sin
2π t − sð Þ
182:5

� �� �� �
e−U s+k182:5ð Þ η 1 − m̂ 1 + �m sin

2π t − sð Þ
182:5

� �� �� �
e−U s+k182:5ð Þ

0 κpy1 1 − m̂ 1 + �m sin
2π t − sð Þ
182:5

� �� �� �
1 − e−U1 s+k182:5ð Þ

� �
κpy1η 1 − m̂ 1 + �m sin

2π t − sð Þ
182:5

� �� �� �
1 − e−U1 s+k182:5ð Þ

� �

0 1 − m̂ 1 + �m sin
2π t − sð Þ
182:5

� �� �� �
Ce−U2 s+k182:5ð Þ η 1 − m̂ 1 + �m sin

2π t − sð Þ
182:5

� �� �� �
Ce−U2 s+k182:5ð Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

ð29Þ
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It follows that the eigenvalues of any lower triangular
matrix are the diagonal elements.

Thus, the spectral radius of ρðΦVð182:5ÞÞ =max fe−Uð182:5Þ,
e−U1ð182:5Þ, e−U3ð182:5Þg.

Lemma 1. The following statements are valid for equation (2)
R0 = 1 if and only if ρðΦF−VðωÞÞ = 1:
R0 > 1 if and only if ρðΦF−VðωÞÞ > 1:
R0 < 1 if and only if ρðΦF−VðωÞÞ < 1:

The disease free equilibrium, E0, is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1:

Proof. Since model 1 satisfies conditions (A1)—(A7) in
Assan et al. [22], it follows that Theorem 2.2 of Wang and
Zhao [20], hold for all conditions.

3.2. Disease Extinction. In this subsection, we analyze the
global stability of the disease-free equilibrium point for
the system (2). These give conditions for disease extinction.
Suppose we have the matrix function

F tð Þ − V tð Þ

=

−U
β 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ

Nμ

ηβ 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ
Nμ

κp −U1 0

U2 α −U3

0
BBBBB@

1
CCCCCA
,

ð31Þ

where FðtÞ =DFðE0Þ and VðtÞ =DV ðE0Þ: The disease-free
equilibrium E0 is globally asymptotically stable if all the
eigenvalues of the matrix DE0 = fFðtÞ − VðtÞg have positive
real parts. The matrix function of equation (31) is irreduc-
ible, continuous, cooperative, and ω-periodic. Let ΦðF−VÞðtÞ
be the fundamental solution matrix of the linear ordinary
differential system:

z′ = F tð Þ −V tð Þ½ �z, ð32Þ

where z = ½E, Ia, Is�T and ρðΦF−VðωÞÞ are the spectral radius
of ðΦF−VðωÞÞ:

Lemma 2. Let b = ð1/ωÞ ln ρðΦðF −VÞðωÞ: Then, there exist
a positive ω-periodic function vðtÞ such that ebtvðtÞ is a solu-
tion to equation (32).

Proof.

Since R0 < 1; then, ρðΦf ð182:5ÞÞ < 1, then b < 0, it fol-
lows that R0 < 1 implies

lim
t⟶∞

ebtv tð Þ = 0, 0, 0½ �T : ð34Þ

Considering and using A4, R1 ≤ 0, this follows

0:8
d
dt

E

Ia

Is

2
664

3
775 =

−U
β 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ

Nμ

ηβ 1 − m̂ 1 + �m sin 2π t/182:5ð Þ½ �ð ÞΛ
Nμ

κp −U1 0

U2 α −U3

2
66664

3
77775

E

Ia

Is

2
664

3
775

E

Ia

Is

2
664

3
775 = ebtv tð Þ: ð33Þ

d
dt

E

Ia

Is

2
6664

3
7775 =

δ t, Ia, Isð ÞS −UE

κpE −U1Ia

U2E + αIa −U3Is

2
6664

3
7775, =

−U
β 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ

Nμ

ηβ 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ
Nμ

κp −U1 0

U2 α −U3

2
666664

3
777775

E

Ia

Is

2
6664

3
7775 + R1,

≤

−U
β 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ

Nμ

ηβ 1 − m̂ 1 + �m sin 2πt/182:5ð Þ½ �ð ÞΛ
Nμ

κp −U1 0

U2 α −U3

2
666664

3
777775

E

Ia

Is

2
6664

3
7775:

ð35Þ
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From (Theorem 2.2 by Wang and Zhao [20]), R0 < 1 if
and only if ρðΦðF−VÞð182:5ÞÞ < 1: Therefore, b < 0: It is clear
that

lim
t⟶∞

E tð Þ = 0, lim
t⟶∞

Ia tð Þ = 0, and  lim
t⟶∞

Is tð Þ = 0, ð36Þ

Next, we consider the last equation in equation (2). For
any ε > 0, there exists T > 0 such whenever t > T , we have

Ia =
εa
γa

, Is =
εs
γs
 and 

dR
dt

< εa + εs − μR: ð37Þ

RðtÞ < εa + εs/μ for t > T . Since ε > 0 is arbitrary so

lim
t⟶∞

R tð Þ = 0: ð38Þ

Since the total population NðtÞ = SðtÞ + EðtÞ + IaðtÞ + Is
ðtÞ + RðtÞ, we have that

lim
t⟶∞

S tð Þ = Λ

μ
: ð39Þ

We thus have the following result.

Theorem 3. If R0 < 1, then the disease-free equilibrium of
Equation of 1 is globally asymptotically stable.

Theorem 3 shows that the disease will completely die out
as long as R0 < 1. This further implies that reducing and
keeping R0 below 1 would be sufficient to eradicate
COVID-19 infection even with periodic transmission.

3.3. Disease Persistence. In this subsection, we consider the
dynamics of equation (2) when R0 > 1, where E1 be the
endemic equilibrium point for equation (2). Let us consider
also the following set:

X ≔ℝ5
+, ð40Þ

X0 ≔ S, E, Ia, Is, Rð Þ ∈ X Sj > 0, E > 0, Ia > 0, Is > 0, R > 0f g,
ð41Þ

∂X0 ≔ X \ X0: ð42Þ
Let uðt, ϕÞ be the unique solution of equation (2) with

initial condition ϕ, ΦðtÞ semiflow generated by periodic
equation (2) and P : X⟶ X the Poincaré map associated
with equation (2), namely,

P ϕð Þ = ωð Þϕ = u ω, ϕð Þ,∀ϕ ∈ X, ð43Þ

Pm ϕð Þ = mωð Þϕ = u mω, ϕð Þ,∀m ≥ 0: ð44Þ

Proposition 4. The set X0 and ∂X0 are positively invariant
under the flow induced by equation (2).

Proof. For any initial condition ψ ∈ X0, by solving equation
(2), we derive and obtain

S tð Þ = exp −
ðt
0
h sð Þds

� �
S 0ð Þ +Λ

ðt
0
exp

ðs
0
h τð Þdτ

� �
ds

� �
,

≥Λ exp −
ðt
0
h sð Þds

� � ðt
0
exp

ðs
0
h τð Þdτ

� �
ds

� �
> 0,∀t > 0,

E tð Þ = exp −Utð Þ E 0ð Þ +
ðt
0
δ s, Ia, Isð ÞS sð Þ exp Usð Þds

� �
,

≥exp −Utð Þ
ðt
0
δ s, Ia, Isð ÞS sð Þ exp Usð Þds

� �
> 0,∀t > 0,

Ia tð Þ = exp −U1tð Þ Ia 0ð Þ +
ðt
0
κpE sð Þ exp U1sð Þds

� �
,

≥exp −U1tð Þ κp
ðt
0
E sð Þ exp U1sð Þds

� �
> 0,∀t > 0,

Is tð Þ = exp −U3tð Þ Is 0ð Þ + Ð t
0U2E sð Þ + αIa sð Þ exp U3sð Þds

� �
,

≥exp −U3tð Þ
ðt
0
U2E sð Þ + αIa sð Þ exp U3sð Þds

� �
> 0,∀t > 0,

R tð Þ = exp −μtð Þ R 0ð Þ +
ðt
0
γsIs sð Þ + γaIa sð Þð Þ exp μsð Þds

� �
,

≥exp −μtð Þ
ðt
0
γsIs sð Þ + γaIa sð Þð Þ exp μsð Þds

� �
> 0,∀t > 0,

ð45Þ

where h = ðδðt, Ia, IsÞ − μÞS:

Thus, X0 is positively invariant. Since X is positively
invariant and ∂X0 is relatively closed in X, it yields that ∂
X0 is positively invariant.

The compactΩ is defined as a positive invariant set for the
equation (2), which attracts all positive orbits in ℝ5

+, and the
solutions are bounded. Ω attracts all positive orbits in X,
which implies that the discrete-time system P : X ⟶ X is
point dissipative. Moreover, ∀n0 ≥ 1, and Pn0 is compact, it
then follows that P admits a global attractor in X.

Lemma 5. If R0 > 1,there exists η > 0 such that when kϕ −
E1k ≤ η, ∀ϕ ∈ X0, we have

lim sup
n⟶∞

Pn ϕð Þ − E1  ≥ η: ð46Þ

Proof. Suppose by contradiction that lim sup
n⟶∞

kPnðϕÞ − E1k
< η for some ϕ ∈ X0: Then, there exists an integer N1 ≥ 1
such that for all n ≥N1, kPnðϕÞ − E1k < η. By the continuity
of the solution uðt, ϕÞ, we have kuðt, PnðϕÞÞ − uðt, E1Þ ≤ σk
for all t ≥ 0 and σ > 0. For all t ≥ 0, let t = nω + t ′, where t ′
∈ ½0, ω� and n = ½t/ω�. ½t/ω� is the greatest integer less or
equal to t/ω: If kϕ − E1k ≤ η, then by the continuity of the
solution uðt, ϕÞ, we have
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u t, ϕð Þ − u t, E1À Á  = u t ′ + nω, ϕ
� �

− u t ′ + nω, E1
� � ,

= u t ′ + nω
� �

ϕ − ϕ t ′ + nω
� �

E1
� ,

= Φ t ′
� �

Φ nωð Þϕ −Φ t ′
� �

Φ nωð ÞE1
 ,

= Φ t ′
� �

Pn Φð Þ −Φ t ′
� �

Pn E1À Á ,
= Φ t ′

� �
Pn Φð Þ −Φ t ′

� �
E1

  ≥ σ:

ð47Þ

Moreover, there exists σ∗ > 0 such that for all t ∈ ½0, ω�,

S tð Þ
N

≥
S∗

N∗ − σ∗: ð48Þ

Hence, we obtain the following equation:

dE
dt

≥ β 1 −m tð Þð Þ Ia + ηIsð Þ S∗

N∗ − σ∗
� �

− μ + κð ÞE, ð49Þ

dIa
dt

= κpE − μ + α + γað ÞIa, ð50Þ

dIs
dt

= κ 1 − pð ÞE + αIa − μ + ψ + γsð ÞIs, ð51Þ

dR
dt

= γsIs + γaIa − μR: ð52Þ

Let us consider the following auxiliary linear equation:

d�Z tð Þ
dt

=Mσ∗ tð Þ�Z tð Þ, ð53Þ

where

�Z tð Þ = �E tð Þ,�Ia tð Þ,�Is tð Þ, �R tð ÞÀ ÁT , ð54Þ

and Mσ∗ðtÞ a matrix defined by

U
β 1 −m tð Þð Þ

N
q

ηβ 1 −m tð Þð Þ
N

q 0

κp U1 0 0

U2 α U3 0

0 γa γs −μ

0
BBBBBB@

1
CCCCCCA
, ð55Þ

where q = ðS∗/N∗Þ − σ∗:
By Lemma 2, there exists a positive ω − periodic function

vðtÞ such that �ZðtÞ = ertvðtÞ is a solution of equation (53)
with r = ð1/ωÞ ln ρðΦMσ∗ðωÞÞ:ρðΦMσ∗ðωÞÞ > 1 implies that
r > 0. In this case, �ZðtÞ⟶∞ as t⟶∞. Applying the
theorem of comparison of Lakshmikantham et al. [23],
we have

lim
x⟶∞

E tð Þ, Ia tð Þ, Is tð Þ, R tð Þðj j =∞, ð56Þ

that contradicts the fact that solutions are bounded.

Theorem 6. If R0 > 1, there exists ξ > 0 such that any solution
uðt, φÞ with the initial condition ϕ ∈ X0 satisfies

liminf
t⟶∞

S tð Þ ≥ ξ, liminf
t⟶∞

E tð Þ ≥ ξ, liminf
t⟶∞

Ia tð Þ ≥ ξ, liminf
t⟶∞

Is tð Þ ≥ ξ,

ð57Þ

liminf
t⟶∞

R tð Þ ≥ ξ, ð58Þ

and equation (2) has at least one positive periodic solution.

Proof. Let us consider the following sets:

M∂ = ϕ ∈ ∂X0 : P
n ϕð Þ ∈ ∂X0, n ≥ 0f g, ð59Þ

D = S, 0, 0, 0, 0ð Þ ∈ X : S ≥ 0f g: ð60Þ
It is clear that D ⊂M∂: So we must prove that M∂ ⊂D:

That means, for any initial condition ϕ ∈ ∂X0,EðnωÞ = 0 or
IaðnωÞ = 0 or IsðnωÞ = 0 or RðnωÞ = 0 or, for all n ≥ 0: Let ϕ
∈ ∂X0. Suppose by contradiction that there exists an integer
n1 ≥ 0 such that Eðn1ωÞ > 0 or Iaðn1ωÞ > 0 or Isðn1ωÞ > 0 or
Rðn1ωÞ > 0. Then, by replacing the initial time t = 0 by t = n1
ω in equations (45)–(53), we obtain SðtÞ > 0, EðtÞ > 0, IaðtÞ
> 0, IsðtÞ > 0, RðtÞ > 0 that contradicts the fact that ∂X0 is
positively invariant. The equality M∂ =D implies that E1 is a
fixed point of P and acyclic in M∂, every solution in M∂
approaches to E1. Moreover, Lemma 5 implies that E1 is an
isolated invariant set inX andWsðE1Þ ∩ X0 =∅. By the acycli-
city theorem on uniform persistence for maps (Zhao [24],
Theorem 3.1.1), it then follows that P is uniformly persistent
with respect to ðX0, ∂X0Þ. So the periodic semiflowΦðtÞ is also
uniformly persistent. Hence, there exists ξ > 0 such that

liminf
t⟶∞

S tð Þ ≥ ξ, liminf
t⟶∞

E tð Þ ≥ ξ, liminf
t⟶∞

Ia tð Þ ≥ ξ, liminf
t⟶∞

Is tð Þ ≥ ξ,

ð61Þ

liminf
t⟶∞

R tð Þ ≥ ξ: ð62Þ

Furthermore, from (Zhao [24], Theorem 1.3.6), the system
(2) has at least one periodic solution uðt, ϕ∗Þ with ϕ∗ ∈ X0.
Now, let us prove that S∗ð0Þ is positive. If S∗ð0Þ = 0; then,
we obtain that S∗ð0Þ > 0 for all t > 0. But using the periodicity
of the solution, we have Sð0Þ = SðnωÞ = 0 which is also a con-
tradiction.

4. Numerical Simulations

We now apply our model to the COVID-19 pandemic in
South Africa. We use the outbreak data published daily by
the National Institute for Communicable Diseases [19].
These data sets contain the daily reported new cases, cumu-
lative cases, and disease-induced deaths in South Africa, for
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each province in South Africa. We, however, in this work
considered the national data.

The numerical simulations were done using Python
software. We use the force of infection with interventions,
given by

β 1 −m tð Þð Þ Ia + ηIs
N

� �
wherem tð Þ = m̂ 1 + �m sin

2πt
182:5

� �� �
:

ð63Þ
In our case where the intervention is social distancing,m, it

is assumed to be periodic, due to the fluctuations in the existing
data. The parameter β is positive and denotes the maximum
value of the transmission rate. We conduct numerical simula-
tions for an epidemic period starting from 27th of March
2020, when South Africa was locked and social distancing was
observed in every place to 19th of April 2022. Our time was
set in days and given our period-ω to be 182:5 days, due to
the number of waves in a year. We fit the constructed model
to new cases of South Africa DSFSI [25] to illustrate our math-
ematical results. The total population of South Africa in the year
2020 was 59.31 million Google [26]. The mortality rate μ was
obtained by using the life expectancy of South Africa which
was found to be 64.3 years. The transmission rate was obtained
through data fitting and all other parameters that were used in
this section. The social distancing parametermðtÞ and the pro-
portion of exposed individuals p are all in the interval (0,1).

To estimate the values for the rest of the parameters not
given above, we fit our model to the new cases reported daily
in South Africa from 27th of March 2020 to 19th of April
2022. Studies reveal that the true number of COVID-19
infections in Africa could be 97% higher than the number
of confirmed reported cases according to Schlein [27] and
Kleynhans et al. [28]. The initial conditions of all state vari-
ables are taken from the data. We set our initial conditions
for each wave as

Firstwave : E0 = 100, Ia0 = 96, Is0 = 1, R0 = 0,

Secondwave : E0 = 34000, Ia0 = 32903, Is0 = 1240, R0 = 591208,

Thirdwave : E0 = 16972, Ia0 = 16282, Is0 = 438, R0 = 890429,

Fourthwave : E0 = 16000, Ia0 = 15296, Is0 = 598, R0 = 1331581:

9>>>>>=
>>>>>;
:

ð64Þ

Initial conditions for susceptible and the asymptotic
infectives are given by S0 =N − ðE0 + Ia0 + Is0 + R0Þ and
Ia0 = ð97/3Þ × Is0, respectively.

Table 2 gives the start dates, end dates, and the number
of days in which each wave occurs. We thus consider the
system

dX0
dt

= f X0ð Þ, for t =

t0 ≤ t < t1,

t1 ≤ t < t2,

t2 ≤ t < t3,

t3 ≤ t < t4,

8>>>>><
>>>>>:

ð65Þ

where

t0 = 27th of March 2020, t1 = 11th of September 2020, t2
= 10th of April 2021,t3 = 29th of October 2021, and t4 = 20th
of April 2022:

In Table 3, we discuss in detail the values of the
parameters used in equation (2). During the fitting of the
mathematical model to the South African data, we divided
days according to the number of waves we have. The table
compares the transmission rate β, finding the first wave to
have a high transmission rate among waves 2 and 3, and
this is due to some preventive measures not being imple-
mented. In the presence of vaccination, social distance,
and other preventive measures, the fourth wave still tends
to have a higher transmission rate compared to all the
waves.

The first four plots in Figure 2 can be combined to give
the last figure, which depicts the piecewise fitting of the
model to the data. What is critical is the initialization of
the initial conditions for each wave.

We conceive that the number of infections decreases
with increasing social distancing over time. In Figure 3, we
vary the efficacy of the social distance parameter when it is
10%, 50%, and 90%. Our result shows that, when the efficacy
is between 10% − 50%, it increases the disease infection rate
since individuals do not observe the rules of social distancing
and COVID-19 transmission mode as seen in Figure 3. The
disease persists after a long oscillating transient the infection
approaches a positive ω − periodic solution. When the effi-
cacy is 90%, it reduces the infection rate, thereby reducing
the transmission rate too.

Table 2: Time and days for the waves used in the estimation of
initial conditions.

Waves Start date End date Days

1 27th of March 2020 11th of September 2020 178
2 11th of September 2020 10th of April 2021 200
3 11th of April 2021 29th of October 2021 200
4 30th of October 2021 19th of April 2022 171

Table 3: Parameter estimation of COVID-19 in South Africa for
the first four waves in days.

Estimated
parameters

Wave 1 Wave 2 Wave 3 Wave 4

Λ 1:00 × 104 6:66 × 106 1:59 × 107 1:70 × 107

β 3:33 × 10−1 2:49 × 10−1 1:90 × 10−1 2:1 × 10−1

κ 3:00 × 10−2 3:45 × 10−2 4:90 × 10−2 1:60 × 10−3

γa 7:00 × 10−2 1:33 × 10−4 1:28 × 10−3 3:90 × 10−2

γs 3:33 × 10−2 4:42 × 10−2 5:10 × 10−1 2:70 × 10−1

α 1:43 × 10−1 1:70 × 10−2 9:00 × 10−3 2:10 × 10−3

ψ 1:43 × 10−1 2:45 × 10−1 9:90 × 10−3 4:50 × 10−3

η 1:60 × 10−2 4:58 × 10−1 1:07 × 10−1 8:50 × 10−2
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5. Discussion and Conclusion

We proposed a mathematical model to investigate the
coronavirus pandemic in South Africa. We included two
unique features in our model: the incorporation of the

social distance parameter in the disease transmission dynam-
ics and considering it to be periodic due to climate changes or
festive seasons experienced in South Africa. We conducted a
detailed analysis of this model and applied it to study the
South Africa epidemic using reported data from DSFSI
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Figure 2: New cases in South Africa for the first four waves. The first wave from 27th of March to 11th of September 2020, the second wave
from 11th of September 2020 to 10th of April 2021, the third wave from 11th of April to 29th of October 2021, and the fourth wave from 30th
of October 2021 to 19th of April, 2022. The blue dots denote the new cases from the data, and the red lines denote our mathematical model
prediction. We can see that in each wave, our model constructed fitted well for the given parameters in Table 3.
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[25]. Our equilibrium analysis of this model shows that the
disease dynamics exhibit a threshold at R0 = 1. We have
established the global asymptotic stability of the disease-free
equilibrium ðE0Þ when R0 < 1, which implies that the disease
dies out, and the global asymptotic stability of the endemic
equilibrium ðE1Þ when R0 > 1, there is at least one positive
periodic solution, that is, the disease will spread.

Our numerical simulation results demonstrate the appli-
cation of our model to COVID-19 in South Africa and the
model fit the reported data very well. The numerical simula-
tions also suggest that when raising �m and m̂, respectively,
while keeping the other parameters fixed in the transmission
rate increases the infection curve. Also, increasing the social
distance parameter on a scale of ð0 − 1Þ decreases the infec-
tion curve. This means that climate or festive fluctuations
should be taken into consideration in designing policies
aimed at COVID-19 control and management.

It is widely speculated that COVID-19 would persist and
become endemic. From our analysis and numerical simula-

tions, performed over a time interval of 4 years, the disease
was still striving and persisting, supporting this speculation.
Our results imply that we should be more prepared to fight
COVID-19 in the long run beyond this current endemic
wave, to reduce the endemic burden and potentially eradi-
cate the disease. We can achieve this when vaccination
becomes a requirement.

The model presented in this paper can be improved by
incorporating the environmental reservoir into the disease
transmission dynamics. When infected individuals cough
or sneeze, they spread the virus to the environment through
their respiratory droplets which infect other susceptible
people with close contact in the same area. The current
vaccination drive has the potential of changing the seasonal
patterns. However, like influenza, a seasonal vaccination
program may be a likely scenario in the case of COVID-19
if it continues to be seasonal. This has the potential of lower-
ing the peaks of the outbreaks and reducing mortality due to
the disease.

2.00

1.75

1.50

1.25

1.00

In
fe

ct
ed

 p
op

ul
at

io
n 

(I
_s

)

0.75

0.50

0.25

0.00

2.00

1.75

1.50

1.25

1.00

In
fe

ct
ed

 p
op

ul
at

io
n 

(I
_s

)

0.75

0.50

0.25

0.00

2.00
1e7

1e7 1e7

1.75

1.50

1.25

1.00

In
fe

ct
ed

 p
op

ul
at

io
n 

(I
_s

)

0.75

0.50

0.25

0.00

0 200 400 600 800
Time (days)

1000 1200 1400 0 200 400 600 800
Time (days)

1000 1200 1400

0 200 400 600 800
Time (days)

1000 1200 1400

m (t) = 0.1 m (t) = 0.5

m (t) = 0.9

Figure 3: An infection curve of the symptomatic individuals with social distance parameters with efficacies of 10%, 50%, and 90%,
respectively; in model 1, parameters are taken from Table 2, the disease persists and a periodic solution with ω = 182:5 days forms after a
long transient.
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