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In this study, we present a mathematical model for the codynamics of taeniasis and neurocysticercosis and rigorously analyze it.
To understand the underlying dynamics of the proposed model, basic system properties such as the positivity and boundedness of
solutions are investigated through the completing differential process. The basic reproduction number was calculated using the
next-generation matrix method, and the analysis showed that when R0 < 1, the disease in the community eventually dies out,
and when R0 > 1, the diseases persist. Local stability of the equilibria was analyzed using the Jacobian matrix, and Lyapunov
function techniques were used to determine the global analysis, which showed that the endemic equilibrium point was globally
stable when R0 > 1. On the other hand, the disease-free equilibrium was determined to be globally stable when R0 < 1. To
identify the most influential parameters of the proposed model, partial correlation coefficient techniques were used. The
numerical results depict that the model aligns well with the transmission dynamics, which goes through two populations:
humans and pigs, whereby the model system stabilizes after some time, showing the validity of the proposed model.
Furthermore, the simulations of the proposed model revealed that the shedding habit of infected humans with taeniasis and the
bad cooking habit or eating of raw or undercooked pork products have a higher impact on the spread of neurocysticercosis and
taeniasis in the community. Hence, this study proposes that in order to control taeniasis and neurocysticercosis, effective disease
control measures should primarily prioritize hygienic behaviour and proper cooking of pork meat to the required temperature.

1. Introduction

Neurocysticercosis (NCC) is a serious public health problem
in Taenia solium endemic areas and in some immigrants
and international travelers [1]. NCC disease is caused by a
parasitic pork tapeworm at the larvae stage, called Taenia
solium [2], that invades the central nervous system of the
human brain [3]. There are two hosts for the life cycle of
Taenia solium: humans as definitive hosts and pigs as inter-
mediate hosts for reproduction. Pigs acquire the infection
when they ingest human faeces containing Taenia solium

eggs and subsequently evolve into cysticerci or cysts [4].
When people consume raw or undercooked pork product
containing cysticerci, they can develop an intestinal tape-
worm infection at the stage of adult tapeworm called taenia-
sis, but not NCC [5]. Humans can also become intermediate
hosts by directly ingesting Taenia solium eggs from their
surrounding environment. These eggs then evolve into cysti-
cerci that migrate mostly into the central nervous system
causing NCC. Some NCC cases can result in epilepsy [6].
The main source of Taenia solium eggs is humans infected
with taeniasis who excrete faeces in an environment where
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pigs and other humans can easily access them and get
infected. In this scenario, there is a possibility of autoinfec-
tion, causing a high risk of developing NCC for people
who are infected with taeniasis [7].

The World Health Organization (WHO) considers NCC
as one of the most neglected tropical diseases and a major
cause of epilepsy in regions where pigs are free-ranging
and hygiene is poor [8]. Moreover, pork production is
expected to increase in the next decade in sub-Saharan
Africa [9]; hence, NCC will likely become more prevalent
[10]. Despite the efforts to eliminate taeniasis and NCC,
the diseases are still endemic and persisting in many pig-
raising regions around the globe, especially in sub-Saharan
Africa, Southeast Asia, and Latin America [11]. Its burden
has accounted for an estimated 2.8 million disability-
adjusted life years lost globally [12, 13].

The burden of taeniasis and NCC in Africa is not well-
documented due to limited surveillance systems and
underreporting. However, several studies have highlighted
their significant prevalence in certain regions. A study in
Cameroon reported NCC prevalence to be 29% among
patients with epilepsy [14]. Taeniasis and NCC are both
common in Tanzania, with high prevalence rates reported
in various regions of the country [15]. A study conducted
in rural areas of Tanzania found a high prevalence of taeni-
asis, with up to 20% of the population infected [16]. Accord-
ing to [17], the prevalence of taeniasis was found to be 21.4%
in a sample of 300 schoolchildren in Dar es Salaam, while
another study published in [15] reported a prevalence of
14.1% in a sample of 200 patients with abdominal pain in
Dar es Salaam. NCC is a significant public health concern
in Tanzania, with a prevalence rate of 2.3% reported in
[15, 18]. This prevalence rate is higher than the global aver-
age, which is estimated to be around 1% [19]. Other studies
from rural Northern Tanzania reported that the estimates of
the prevalence of NCC among people with epilepsy range
from 4 to 18%, but the overall estimates go even up to 30%
in people with epilepsy in endemic areas [16]. The associa-
tion between NCC and epilepsy can reach 70% [17, 18].

The insights from mathematical modeling have been
used intensively to study the dynamics of infectious diseases
for decades. Recently, authors modelled the Middle East
respiratory syndrome coronavirus (MERS-CoV) with differ-
ent approaches, both aligning with mathematical modeling.
For instance, [20] modelled the epidemic trend of MERS-
CoV with optimal control using a deterministic theoretical
model to understand the transmission between individuals
and MERS-CoV reservoirs such as camels. Also, MERS-
CoV has been studied using fractional operators with the
next-generation matrix method [21]. Other mathematical
models that have been devoted to studying this emerging
disease can be found in [22, 23] and [24].

The dynamics and control of parasite foodborne infec-
tions have been studied through the years using a variety
of mathematical models [25–27]. These models can aid in
understanding infectious disease dynamics and determine
the most effective prevention strategies. Despite the number
of studies devoted to modeling the transmission dynamics of
taeniasis and cysticercosis [5, 28–31], little attention is given

to the dynamics of NCC. Additionally, the codynamics,
which is a result of the complex life cycle of the Taenia
solium worm, has not been given preferable consideration.
Motivated by the above-cited mathematical models, and
for the purpose of better understanding the transmission
dynamics of taeniasis and NCC, the study proposes a math-
ematical model for taeniasis and NCC codynamics transmis-
sion with autoinfection and coinfection.

The novelty of our work is that we studied the transmis-
sion dynamics of taeniasis, NCC codynamics, and autoinfec-
tion using a mathematical modeling approach, as none of
the studies in the literature have studied the complex
dynamic behaviour of the model.

This work is organized as follows: Section 2 presents
taeniasis and NCC codynamic transmission model formula-
tion. Section 3 presents a model analysis. In Section 4, it
shows the numerical results and discussion, while Section 5
discusses the conclusion.

2. Model Formulation

The proposed model considers the human population Nh t ,
the pig population Np t , the Taenia solium eggs in the envi-
ronment E t , and the concentration of cysts in the infected
pork products P t . This model is inspired by the work of
[31, 32] and formulated by adding the infected pork meat
to account for the concentration of cysts compartment and
NCC compartment to account for humans with NCC and/or
taeniasis. The model is governed by the following assumptions
with notations therein.

The human population Nh t is divided into three clas-
ses, namely, susceptible Sh t , infected with taeniasis IT t ,
and infected with NCC IN t . The pig population is also
divided into susceptible pigs Sp t and infected pigs Ip t .
The total populations, for humans and pigs at any time
are, respectively, given by Nh t = Sh t + IT t + IN t and
Np t = Sp t + Ip t .

Each human class incurs a natural death at the rate of μh.
Susceptible are subject to increase by a constant recruitment
rate of Λh through birth and move to class IT at rate βT and
to class IN at rate βN . The transmission of both the cysts
from infected pork and Taenia solium eggs from the envi-
ronment to human that results in NCC is assumed to be
density dependent. Thus, the force of infection at which
individuals acquire taeniasis is defined as

λT = βTP t Sh t , 1

where βT is the effective transmission rate of cysts upon con-
sumption of infected pork meat. The force of infection at
which Sh and IT acquire NCC, respectively, is defined as

λN = βNE t Sh t ,
λB = βBE t IT t ,

2

where βN and βB are the effective contact rates
between human and Taenia solium eggs in a contami-
nated environment.

2 Computational and Mathematical Methods



The number of susceptible pigs increases by birth at the
rate of Λp, become infected with cysts due to digesting
Taenia solium eggs in the environment at the rate of βp,
and die naturally at the rate of μp. Infected pigs are slaugh-
tered at the rate of ω. Natural recovery for cysts-infected pigs
takes a long time [31], and therefore, we assumed no natural
recovery. The transmission rate of Taenia solium eggs to the
pig is modelled as the product of the contact rate and the
probability of infection upon feeding on Taenia solium eggs
from the environment. The force of infection by which pigs
acquire infection is defined as

λp = βPE t Sp t , 3

where βP is the effective contact rate between pig and Taenia
solium eggs in a contaminated environment.

The number of eggs consumed by pigs and humans has a
negligible effect on the total number of eggs present in the
environment because of the plethora of eggs in the environ-
ment while it can take a few eggs to cause the infection [31].
Taenia solium eggs contaminateE t at a rate ofσ, and as a
result of humans infected with taeniasis defecating in the
environment and diminish naturally at the rate ofα,P t
increases at the rate ofωas result of slaughtering infected pigs
and removed naturally or otherwise by the rate ofδ.

In light of the aforementioned assumptions, the dynam-
ics of the proposed model are shown in Figure 1 and cap-
tured by the following set of ordinary differential equations:

Sh′ t =Λh − βTP t + βNE t + μh Sh t ,
IT′ t = βTP t Sh t − βBE t + μh IT t ,
IN′ t = βNE t Sh t + βBE t IT t − μh + μN IN t ,

SP′ t =ΛP − βpE t + μp Sp t ,

Ip′ t = βPE t Sp t − μp + ω Ip t ,

P′ t = ωIp t − δP t ,

E′ t = σIT t − αE t ,
4

with the following initial conditions

Sh 0 = Sh0 ≥ 0,
IT 0 = IT0 ≥ 0,
IN 0 = IN0 ≥ 0,
Sp 0 = Sp0 ≥ 0,
Ip 0 = Ip0 ≥ 0,
P 0 = P0 ≥ 0,
E 0 = E0 ≥ 0

5

3. Analysis of the Model

This section presents the boundedness and model positivity
as well as the computation of the basic reproduction number
of model (4) and the stability of disease-free and endemic
equilibrium.

3.1. Positivity of Model Solutions. In this section, we prove
the positivity of the proposed model solutions by proving
Theorem 1.

Theorem 1. Let the initial condition of model (4) be nonneg-
ative, then the solution Sh, IT , IN , Sp, Ip, P, E is positive for
all t > 0.

Proof. Consider the first equation in model (4), which is

Sh′ t =Λh − βTP t + βNE t + μh Sh t 6

If we ignore the positive terms, Equation (6) becomes

dSh
dt

≥ − βTP t + βNE t + μh Sh t 7

By separating the variables in Equation (7) and integrat-
ing them, we have

Sh ≥ Ce−
t

0
βTP t +βNE t +μh ds 8

Applying the initial condition, we obtain

Sh t ≥ Sh 0 e−
t

0
βTP t +βNE t +μh ds ≥ 0 9

By the same approach, we establish that

IT t ≥ It 0 e−
t

0
μh+βBE s ds ≥ 0,

IN t ≥ IN 0 e− μh+μN t ≥ 0,

Sp t ≥ Sp 0 e−
t

0
βpE s +μp ds ≥ 0,

Ip t ≥ Ip 0 e− μp+ω t ≥ 0,

P t ≥ P 0 e−δt ≥ 0,

10

E t ≥ E 0 e−αt ≥ 0 11

Therefore, we can conclude that the proposed model is
positive for all t > 0.

3.2. Bounded Region. The invariant region serves to show the
feasibility of the model solutions. Recall that Nh t = Sh t
+ IT t + IN t and Np t = Sp t + Ip t for human and
pig populations, respectively. Starting with the human pop-
ulation, we have

Nh′ t = Sh′ t + IT′ t + IN′ t 12
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Substituting the derivatives from model (4) into
Equation (12) and upon simplification, we get

Nh′ t =Λh − μhNh t − μNIN 13

From Equation (13) it can be observed that

dNh

dt
≤Λh − μhNh 14

By solving Equation (14) and applying the initial condi-
tions of the model (4), we obtain

Nh t ≤
Λh

μh
+ Nh 0 −

Λh

μh
e−μht 15

As t⟶∞, Equation (15) reduces to Nh 0 ≤Λh/μh.
Since human population is nonnegative, implies that 0 ≤
Nh t ≤Λh/μh

When the same procedure is applied to the pig popula-
tion as t⟶∞, we obtain

0 ≤Np t ≤
Λp

μp
16

Since Nh t ≤Λh/μh and Np t ≤Λp/μp, then IT t ≤Λh/
μh, IN t ≤Λh/μh, and Ip t ≤Λp/μp. It follows the same for
the concentration of Taenia solium eggs in the environment
and cysts concentration in the infected pork products, when
t⟶∞, we have, respectively

P t ≤
Λp

μp

ω

δ
,

E t ≤
Λh

μh

σ

α

17

Therefore, the proposed model (4) is a positive variant
in the region

Σ = Sh, IT , IN , Sp, Ip, P, E ∈ℝ7
+ Nh t ≤

Λh

μh
,Np t

≤
Λp

μp
, P t ≤

Λp

μp

ω

δ
, E t ≤

Λh

μh

σ

α

18

Hence, the proposed model (4) has biological and epide-
miological meaning.

3.3. Disease-Free Equilibrium. The disease-free equilibrium
(DFE) of model (4) is obtained by setting the right-hand
sides of the equations of model (4) to zero, and it is given by

E0 =
Λh

μh
, 0, 0,

Λp

μp
, 0, 0, 0 19

In other words, the DFE occurs in the absence of both
taeniasis and NCC in humans and when there are no infec-
tions in pigs.

3.4. Basic Reproduction Number. The basic reproduction
number R0 is an important quantity in epidemiology that
measures the potential for disease transmission within a
population. R0 represents the average number of secondary
infections that can be generated by a single infected individ-
ual in a susceptible population and quantifies the transmissi-
bility of a disease [33]. When R0 < 1, the disease dies out in
the population, and when R0 > 1, the disease remains
persistent [34]. We computed R0 for model (4) using the
approach described in [33–35].

To apply the technique in [34], we rewrite the model sys-
tem (4) as

dx
dt

=F x −V x , 20

with V i =V −
i −V +

i .

�N

�B
�h
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�h
�p

�T

�

�
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�p
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�N

�B
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IN
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�

�
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�h

�h+�N
�p
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Figure 1: Flow diagram for the transmission dynamics of taeniasis and NCC codynamics model (4), where λT is given in Equation (1), λN
and λB are given in Equation (2), and λP is given in Equation (3).
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As pointed out in [34],R0 is given by the spectral radius
of the next-generation matrix defined as

G = FV−1 = ∂F i

∂Xj
Eo

∂F i

∂Xj
Eo

−1

, 21

where F i denotes new infectious and V i transfer terms with i
, j = 1, 2, 3, 4, 5 for the infected classes of model (4). Then, F i,
V −

i , and V +
i are obtained from the infected classes of model

(4) which are IT , IN , Ip, P and E and given in Equation (22).

F x =

βTPSh

βNESh

βpESp

0
0

,

V + x =

0
βBIT

0
ωIp

σIT

,

V − x =

βNE + μh IT

μh + μN IN

μp + ω Ip

δP

αE

22

The elements in vectors F i and V i are expressed as the
derivatives with respect to the infected states, and their associ-
ated Jacobian matrices evaluated at E0 are given by

F =

0 0 0 βTΛh

μh
0

0 0 0 0 βNΛh

μh

0 0 0 0
βPΛp

μp

0 0 0 0 0
0 0 0 0 0

,

V =

μh 0 0 0 0
0 μh + μN 0 0 0

0 0 μp + ω 0 0

0 0 −ω δ 0
−σ 0 0 0 α

,

23

V−1 =

1
μh

0 0 0 0

0 1
μh + μN

0 0 0

0 0 1
μp + ω

0 0

0 0 ω

δ

1
μp + ω

1
δ

0

σ

α

1
μh

0 0 0 1
α

24

Using matrix F in Equation (23) and matrix V−1 in (24),
matrix G in (25) is obtained.

G =

0 0 ΛhβTω

δμh μp + ω

ΛhβT

δμh
0

ΛhβNσ

αμ2h
0 0 0 ΛhβN

αμh

Λpβpσ

αμhμp
0 0 0

Λpβp

αμp

0 0 0 0 0
0 0 0 0 0

25

Eigenvalues of G are

−
ΛhΛpβTβpωσ

αδμpμ
2
h μp + ω

,
ΛhΛpβTβpωσ

αδμpμ
2
h μp + ω

, 0, 0, 0 26

Therefore, the basic reproduction number was found to be

R0 =
ΛhΛpβTβpωσ

αδμpμ
2
h μp + ω

27

The basic reproduction number consists of two terms
which characterize the contribution from the different pathways
(human and pig populations) to new infections. For better bio-
logical interpretation, Equation (27) can be rearranged as

R0 = R0h R0p, 28

where

R0h =
ΛhβTσ

αμ2h
, 29

R0p =
Λpβpω

δμp μp + ω
30

Equations (29) and (30) propose the partial basic reproduc-
tion number for the human population and pig population as
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the subbasic reproduction numbers for the whole model system
(4). Here,R0h describes the number of humans that one infec-
tious pig infects over its expected infection period in a
completely susceptible human population, and R0h describes
the number of pigs infected by one infectious human during
the period of infectiousness in a completely susceptible pig
population.

In Equation (27), 1/μh is the life expectancy for human,
1/μp + ω is the average life time cysts-infected pig, Λh/μh
and Λp/μp are, respectively, the initial populations for sus-
ceptible humans and pigs, and ω/δ and σ/α are, respectively,
the density of Taenia solium larvae cysts in the contami-
nated pork meat and Taenia solium eggs released by humans
with taeniasis.

3.5. Local Stability of Disease-Free Equilibrium. The dynam-
ical system of model (4) is nonlinear. Its local stability is
determined from the sign of the eigenvalues of the corre-
sponding Jacobian matrix at the disease-free equilibrium
point (E0). The Jacobian matrix at E0 is given by

J E0 =

−μh 0 0 0 0 ΛhβT

μh

ΛhβN

μh

0 −μh 0 0 0 ΛhβT

μh
0

0 0 − μh + μN 0 0 0 ΛhβN

μh

0 0 0 −μp 0 0 0

0 0 0 0 − μp + ω 0
Λpβp

μp

0 0 0 0 ω −δ 0
0 σ 0 0 0 0 −α

31

Theorem 2. The disease-free equilibrium is locally asymptot-
ically stable if R0 < 1, and all eigenvalues of the Jacobian
matrix at E0 have negative real parts, and if R0 > 1, E0 is
unstable.

Proof. The first, third, and fourth columns of the matrix
J E0 in Equation (31) contain only the diagonal terms, which
gives the first three eigenvalues: λ1 = μh, λ2 = − μh + μN , and
λ3 = −μp. Thus, the matrix J E0 reduces to

J ′ E0 =

−μh 0 ΛhβT

μh
0

0 − μp + ω 0
Λpβp

μp

0 ω −δ 0
σ 0 0 −α

32

From Equation (32), the characteristic polynomial of
matrix J ′ E0 is given by

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, 33

where

a1 = μh + α δ + μp + ω + δ > 0,

a2 = μh + α δ + δ μp + ω + μhα + μh + α δ > 0,

a3 = μhαδ + μh + μh + α δ > 0,

a4 =
ΛhΛpβTβpσω

μhμp
+ μhαδ μp + ω > 0

34

Note that λ represents the eigenvalues and ai i = 1, 2, 3, 4
are the coefficients of the characteristic polynomial. It is evi-
dently seen that all coefficients of the characteristics polyno-
mial in Equation (33) are positive; by applying the Routh-
Hurwitz criterion, the other four eigenvalues of the matrix in
Equation (32) will also have negative real parts.

Since all eigenvalues of the Jacobian matrix J E0 evalu-
ated at E0 have negative real parts, then model system (4) is
locally asymptotically stable when R0 < 1.

3.6. Global Stability of Disease-Free Equilibrium.Model (4) is
said to be stable if its disease-free equilibrium is upheld
when the introduction of small or large perturbation
(infected individuals) into the system, and it will be globally
stable if the disease persists no more, regardless of the size of
the perturbation that has been introduced. In this section, we
determine the global stability of model (4) at E0 using the
approach described in [36, 37].

Theorem 3. The disease-free equilibrium of model (4) is glob-
ally asymptotically stable in the invariant region Σ, if and
only if R0 < 1, and unstable otherwise.

Proof. Let B = IT , IN , Ip, P, E T be the vector of the state var-
iables of the infected classes in model (4), and consider the
following comparison principle.

B′ ≤ F −V B, 35

where F and V are defined in Equation (23) and B′ =
IT′ , IN′ , Ip′ , P′, E′

T
is derivative of B. Note that F and V−1

are triangular matrices and meet the definition of the Met-
zler matrices. Then, by the Perron-Frobenius theorem [38],
the dominant eigenvalue of FV−1 and V−1F is equal, and
there exists a nonnegative Perron-Frobenius vector h such
that

ρ V−1F = ρ FV−1 = hTV−1F 36
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This implies that

hTV−1F=R0h
T 37

Motivated by [39], consider a Lyapunov function

η t = hTV−1B 38

Differentiating Equation (38) with respect to the infected
states in model (4) and substituting them into Equation (35)
yield

η′ t = hTV−1B′ ≤ hTV−1 F −V B

= Ro − 1 hTB∀hTB ≥ 0
39

The stability of the Lyapunov function, η′ t = R0 − 1
hTB ≤ 0, can only occur when Ro ≤ 0. If η′ t = 0, then hT

B = 0 as well. Since the Perron-Frobenius eigenvector h has
nonnegative entries, then vector B will result in IT , IN , Ip,
P, E = 0, 0, 0, 0, 0, 0 ; by substituting these values in model
(4), disease-free equilibrium is obtained as

E0 = Λh

μh
, 0, 0,

Λp

μp
, 0, 0, 0 40

When η t = 0, vector B converges to 0, 0, 0, 0, 0, 0 as
t⟶∞, indicating that the transmission variables IT , IN ,
Ip, P, and E lose their transmission energy to susceptible
classes, and hence the system returns to disease-free equilib-
rium. Therefore, every solution in the region Σ converges to
a disease-free equilibrium point, E0 as t⟶∞ for R0 < 1.
Thus, by LaSalle’s invariant principle [37] E0 is globally
asymptotically stable in region Σ when R0 < 1.

3.7. Endemic Equilibrium Point. The endemic equilibrium
point denoted by E1 is defined as a steady state solution
for system (4), which occurs when there is persistence of
the taeniasis and NCC in the population. E1 is obtained by
equating the right-hand side equal to zero of system (4) by
zero and solving for Sh, IT , IN , SP , Ip, P, and E, resulting into

E1 = S∗h , I∗T , I∗N , S∗P , I∗p , P∗, E∗ , 41

where

Note that the equilibrium point is solved in terms of E∗.
When S∗h = I∗T = I∗N = I∗p = P∗ = E∗ = 0, we have a free equilib-
rium point. Otherwise, when S∗h ≠ 0, I∗T ≠ 0, I∗N ≠ 0, I∗p ≠ 0,
P∗ ≠ 0, and E∗ ≠ 0, we have disease endemic equilibrium
point E1.

3.8. Stability Analysis of Endemic Equilibrium. In this section,
we prove the global stability of endemic equilibrium E∗ using a
Lyapunov global asymptotic stability theorem [40, 41].

Theorem 4. The endemic equilibrium E1 is globally asymp-
totically stable if R0 > 1 and unstable otherwise.

Proof. Define a positive definite function H ε∗ ∈ℝ7
+ ⟶ℝ,

for all ε∗ ∈ Σ to be a Lyapunov function for taeniasis and
NCC dynamics, such that H E1 = 0 and H E2 > 0 for all
E2 ∈ Σ − E1 . Hence, we need to show that dH E1 /dt = 0
and dH E2 /dt < 0 which depicts that all solutions in Σ con-
verge to E1 as time goes to infinity.

S∗h =
Λhδ μp + ω μp + βPE

∗

βTωΛpβPE
∗ + βNE

∗δ μp + ω μp + βPE
∗ + μhδ μp + ω μp + βPE

∗
,

I∗T =
ΛhβTωΛpβPE

∗δ μp + ω μp + βPE
∗

βBE
∗ + μh βTωΛpβPE

∗ + βNE
∗δ μp + ω μp + βPE

∗ + μhδ μp + ω μp + βPE
∗ δ μp + ω μp + βPE

∗
,

I∗N =
ΛhβNE

∗ βBE
∗ + μh δ μp + ω μp + βPE

∗ + βBE
∗ΛhβTωΛpβPE

∗ δ μp + ω μp + βPE
∗

μh + μN βBE
∗ + μh βTωΛpβPE

∗ + βNE
∗δ μp + ω μp + βPE

∗ + μhδ μp + ω μp + βPE
∗ δ μp + ω μp + βPE

∗ ,

S∗p =
ΛP

βpE
∗ + μp

, Ip =
ΛpβPE

∗

μp + ω μp + βPE
∗

, P∗ =
ωΛpβPE

∗

δ μp + ω μp + βPE
∗

, E∗ = E∗

42
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Assume H =H Sh, IT , IN , Sp, Ip, P, E be a candidate
Lyapunov function given by

H = Sh − S∗h + S∗h ln
S∗h
Sh

+ IT − I∗T + I∗T ln I∗T
IT

+ IN − I∗N

+ I∗N ln I∗N
IN

+ Sp − S∗p + S∗p ln
S∗p
Sp

+ Ip − I∗p + I∗p ln
I∗p
Sp

+ P − P∗ + P∗ ln P∗

P
+ E − E∗ + E∗ ln E∗

E

43

Computing Equation (43) at taeniasis and NCC endemic
equilibrium point, E1 yields

H S∗h , I∗T , I∗N , S∗p , I∗p , P∗, E∗ = 0 44

Then, we find the Hessian matrix M of H at

E2 =H Sh, IT , IN , Sp, Ip, P, E , 45

hence, this matrix is given by M = ∇2H E2 . Thus,

M =

S∗h
S2h

0 0 0 0 0 0

0 I∗T
I2T

0 0 0 0 0

0 0 I∗N
I2N

0 0 0 0

0 0 0
S∗p
S2p

0 0 0

0 0 0 0
I∗p
I2p

0 0

0 0 0 0 0 P∗

P2 0

0 0 0 0 0 0 E∗

E2

46

Eigenvalues of matrix M are

S∗h
S2h

> 0,

I∗T
I2T

> 0,

I∗N
I2N

> 0,

S∗p
S2p

> 0,

I∗p
I2p

> 0,

P∗

P2 > 0,

E∗

E2 > 0

47

Since all eigenvalues are positive, the Hessian matrix is
positive-definite at Σ − ε∗. Hence, H Σ − ε∗ > 0. Next,
differentiating each term in Equation (43) with respect to
t gives

dH
dt

= 1 − S∗h
Sh

dSh
dt

+ 1 − I∗T
IT

dIT
dt

+ 1 − I∗N
IN

dIN
dt

+ 1 −
S∗p
Sp

dSp
dt

+ 1 −
I∗p
Ip

dIp
dt

+ 1 − P∗

P
dP
dt

+ 1 − E∗
t

E
dE
dt

48

Plugging system of equations of model (4) yields

dH
dt

= 1 − S∗h
Sh

Λh − βTP + βhE + μh Sh

+ 1 − I∗t
It

dβTPSh − βNE + δ + μh It

+ 1 − I∗N
IN

βNESh + βTEIT − +μh + μN IN

+ 1 −
S∗p
Sp

ΛP − βPE + μp Sp

+ 1 −
I∗p
Ip

βPESp − μpIp + 1 − P∗

P
ωIp − δP

+ 1 − E∗

E
σIT − αE

49

Table 1: Parameter values of model (4).

Parameter Value Dimension Reference

Λh 140 Day-1 Assumed

Λp 1450 Day-1 [47]

βN 2 4 × 10−11 Day-1 [31]

βB 4 × 10−10 Day-1 Assumed

βT 0 064 0 083 − 0 68 /30 Day-1 [31]

βp 0.01 Day-1 [5]

μh 0 0141/365 Day-1 [47, 48]

μN 4 1095 × 10−5 Day-1 Assumed

μp 0 083/30 Day-1 [31]

α 0 6 0 5 − 4 /7 Day-1 [49]

ω 0 132/365 Day-1 [48]

σ 106 640000 − 1800000 Day-1 [49]

δ 0 8 0 5 − 2 /365 Day-1 [29]
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Then, Equation (49) simplifies to

dH
dt

=Λh + βTP + βNE + μh S∗h + βTPSh + βhE + μh I∗T

+ βNESh + βTP + μh + μN I∗N +Λp + βpE + μp S∗p

+ βpESp + μpI
∗
p + ωIp + δP∗ − βTP + βNE + μh Sh

−Λh
S∗h
Sh

− βNE + μh IT −
I∗T
IT

βTPSh

− βTP + μh + μN IN −
I∗N
IN

βNESh − βpE + μp Sp

−Λp

S∗p
Sp

− μpIp − βpESp
I∗p
Ip

− δP − ωIp
P∗

P

− αE −
E∗
T

E
σIT

50

Note that dH/dt can be rewritten in the form of

dH
dt

= R −Q, 51

where

R =Λh + βTP + βNE + μh S∗h + βTPSh + βhE + μh I∗T

+ βNESh + βTP + μh + μN I∗N +Λp + βpE + μp S∗p

+ βpESp + μpI
∗
p + ωIp + δP∗,

Q = βTP + βNE + μh Sh +Λh
S∗h
Sh

+ βhE + μh IT

+ I∗T
IT

βTPSh + βTP + μh + μN IN + I∗N
IN

βNESh

+ βpE + μp Sp +Λp

S∗p
Sp

+ μpIp + βpESp
I∗p
Ip

+ δP

+ ωIp
P∗

P
+ αE + E∗

T

E
σIT

52

From Equation (51), it can be noted that if R <Q, then
dH/dt < 0, and if Σ = Σ∗, then dH/dt = 0. From the
LaSalle’s invariant principle as applied in [30, 42, 43], we
can ascertain that as t⟶∞, and the solution of model
system (4) approaches the endemic equilibrium when
R0 > 0. Hence, the endemic equilibrium is globally asymptot-
ically stable in the invariant set Σ if R >Q.

4. Numerical Results and Discussion

We performed numerical simulations for model (4) to support
the analytical results described in Section 3.We simulated sen-
sitivity analysis, dynamics of the model system, stability of the
endemic equilibrium point, and the contribution of taeniasis-
infected individuals to the taeniasis and NCC coinfection bur-
den. Using initial conditions and parameter values in Table 1,
the model was simulated using an ODE solver coded in
MATLAB programming language.

Most of the real data associated with taeniasis and NCC
are limited in quantity and inconsistent due to underreport-
ing and misdiagnosis [44–46]. Hence, the data used to
support the findings of this study mostly are from the liter-
ature similar to this study, where unavailable data especially
values of parameters were assumed for the purpose of verify-
ing the results of the mathematical analysis of model (4).
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Figure 2: PRCC results for global sensitivity analysis.
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4.1. Sensitivity Analysis. First, we derived Equation (53)
for the total number of potential individuals who can
acquire taeniasis and NCC, denoted by Ptotal, and then
computed its partial rank correlation (PRCC) [50] with
parameters βN , βP , α, δ, and σ. Nonlinear and mono-
tone relationship were observed for the parameters with
respect to Ptotal, which is a prerequisite for performing
PRCC analysis.

Ptotal =
T

0
βTP t + βNE t Sh t dt 53

Figure 2 shows PRCC results for T = 2000 days (cho-
sen arbitrarily). The base values for parameters are given
in Table 1. For each of the parameters, 1000 Latin
Hypercube Samples (LHS) were generated from the
interval (0.5× base value and 1.5× base value). We note
that the parameters βB, βP, σ, and ω have significant
positive correlations with Ptotal. This indicates that trans-

mission rate of taeniasis and NCC will increase the total
number of patients related to taeniasis and/or NCC.

4.2. Dynamical System of the Model. We illustrate the
dynamics of taeniasis and NCC model (4) behaviour
by numerically solving the model system equations.
Using the initial conditions of the variables, Sh 0 =
10000, IT 0 = 1, IN 0 = 1, Sp 0 = 3614, Ip 0 = 0, P 0
= 0, and E 0 = 0.

Figure 3(a) shows that the susceptible humans decrease
after contracting taeniasis and NCC. In addition, the natural
death rate contributes to the decrease in these susceptible
populations. The decline of susceptible individuals does
not decrease to zero; it stabilizes to a nonnegative value
due to the continuous recruitment rate. It is also observed
that the susceptible individuals decline rapidly after the first
200 days. On the other hand, the infectious classes increase
after individuals from the susceptible class acquire diseases
and move to these classes. The NCC class has an additional
disease-induced death rate, causing a lesser decrease. Both
taeniasis and NCC classes stabilize after 400 days and 500
days, respectively.
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Figure 3: Dynamical behaviour of model (4) for (a) human population, (b) pig population, (c) concentration of Taenia solium eggs, and (d)
concentration of cysts.
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In Figure 3(b), we observe that susceptible pigs decrease
after ingestion of Taenia solium eggs from the contaminated
environment, get infected, and move to the infectious class.
The decrease also contributed to the natural death rate. It
is noted that after the first 250 days, susceptible pigs decrease
rapidly but stabilize after the 650 days. However, the infec-
tious class increases after 250 days and stabilizes after the
first 800 days.

Figures 3(c) and 3(b) illustrate the dynamics of Taenia
solium eggs concentration in the contaminated environ-
ment and the concentration of Taenia solium larvae cysts
in the contaminated pork products, respectively. We
observe from the graphs that the Taenia solium eggs
increase after the first 150 days, stabilize to a nonnegative
number, and stay in that state indefinitely. This increase is
a result of an increase in the number of infected humans
with taeniasis and the shedding rate of the eggs in the
environment. In addition, Figure 3(d) demonstrates the
dynamics of cysts, whereby an increase in the rate of con-
suming cysts from the infected pork products, result in an
increase in the Taenia solium eggs. However, the removal

rate of the Taenia solium eggs and cysts lead to a decrease
in their concentrations.

4.3. Stability of the Endemic Equilibrium Point. Figure 4 indi-
cates that the endemic equilibrium point of model (4) is
globally stable, and the system comes to an equilibrium
point from any possible initial conditions. For the purpose
of demonstration, we show endemic simulation for human
and susceptible pig populations.

4.4. Visualization of the Role Played by Taeniasis Infectives in
NCC Dynamics. Numerical simulations in Figure 5 show
the effect of varying the infectious coefficient of taeniasis
on the taeniasis and the coinfected human populations.
As the value of βT is increased, Figure 5 affirms that
the taeniasis infectives, coinfected human populations,
and the infected pigs also increase. This is an obvious
indication that the role taeniasis infectives play in the
dynamics of taeniasis and NCC transmission should not
be disregarded.
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Figure 4: The global stability of the endemic equilibrium point. (a) Stability of endemic equilibrium for susceptible humans. (b) Stability of
endemic equilibrium for infected humans with taeniasis. (c) Stability of endemic equilibrium for infected humans with both taeniasis and
NCC. (d) Stability of endemic equilibrium for cysts-infected pigs.
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5. Conclusion

It was pointed out that NCC is a serious public health prob-
lem in Taenia solium endemic areas. Elimination of Taenia
solium, the causative agent of the disease, remains a key
intervention method for controlling NCC. Contracting the
contaminated environment with Taenia Solium and the
infected pork products are driving factors of taeniasis and
NCC in the community. As such, in this work, the taeniasis
and NCC codynamics model is formulated and analyzed.
The basic properties of the model are shown. We discussed
numerous qualitative properties of the model such as the
positivity of the solution set, invariant region, equilibria
points, basic reproductive number, and stability of nature
of equilibrium points. We established that disease-free equi-
librium is globally asymptotically stable when the basic
reproduction numbers are less than unity. By using suitable
Lyapunov functions, the equilibrium E1 is globally asymp-
totically stable whenever R0 > 1.

The sensitivity analysis of the formulated Equation (53)
for infected humans shows that most of the parameters
and particularly easily addressable parameters have a domi-

nant role in disease transmission. Numerical simulations
show that the increased infectivity of taeniasis infectives
increases the number of NCC infections in humans. Further,
simulations dictate that reducing the rate of consuming
improperly cooked or raw pork meat and the ingestion of
Taenia solium eggs through good hygiene and sanitation is
of great importance towards reducing the burden of NCC
infection and its close association with taeniasis.

Further investigation of the influence of variations in the
model’s parameters on the taeniasis and NCC was carried
out through numerical simulations. In view of the findings
from this study, it was recommended that health manage-
ment decision-makers should implement policies that would
make more people become medically hygienic and practice
proper cooking of pork meat so that the spread of the disease
can stem as the community is gradually driven towards a
taeniasis/NCC free.

In the future, we intend to extend this study by including
the optimal control and study the impact of public health
education and vaccination of pig swarms in controlling these
preventable diseases; the model dynamical behaviour will be
considered as a discrete time.
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Figure 5: Effect of taeniasis infectives on codynamics of taeniasis and NCC.
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