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In this work, we suggest a new numerical scheme called the fractional higher order Taylor method (FHOTM) to solve fractional
differential equations (FDEs). Using the generalized Taylor’s theorem is the fundamental concept of this approach. Then, the local
truncation error generated by the suggested FHOTM is estimated by proving suitable theoretical results. At last, several numerical
applications are given to demonstrate the applicability of the suggested approach in relation to their exact solutions.
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1. Introduction

Fractional calculus is regarded as a powerful tool of mathe-
matical analysis and shows the integration or differentiation
in fractional order [1, 2]. Numerous researchers have
expressed interest in this field, with some focusing on the
analytical side of solving fractional differential equations
(FDEs), which involves uniqueness, existence, stability, and
other aspects; for example, refer to the study works [3–5].
Furthermore, a significant amount of research has been done
with an applied focus since many fractional problems are
challenging to solve analytically.

Nowadays, the majority of studies address this area since
it is less expensive to generate a numerical approximation
for a given nonlinear fractional problem than to get an ana-
lytical estimate. In this context, a variety of numerical
methods have been suggested and applied to solve FDEs

(see, e.g., [6–11]). Among these methods, we cite the follow-
ing: homotopy perturbation and the matrix approach
methods [12, 13], Adomian decomposition method [14],
neural networks [15], fractional difference method [16],
fractional Euler method (FEM) [17], modified fractional
Euler method (MFEM) [18], and others (see [19–22]).

The applied method that caught our interest and that we
used in our research is that of Taylor, which is an algorithm
utilized to estimate the solution of the classical IVP given as
follows:

ϕ′ t = g t, ϕ t , t ∈ t0, T
ϕ t0 = ϕ0,  

1

where g is a continuous function. Subsequently, numerous
authors have investigated Taylor series methods and created
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mathematical methods for solving fractional differential
problems. These authors include those listed in [23–27]
and the references therein.

For the fractional case, this method is witnessing
remarkable development by researchers. For example, in
[28], the authors created a novel method for nonlinear frac-
tional partial differential equations: a combination of DTM
and generalized Taylor’s formula. Then, in [29], Huang
et al. presented an approximate solution of fractional
integro-differential equations by the Taylor expansion
method. The author in [30] developed the general fractional
Euler and Taylor methods, and those methods are applied to
different FDEs of first order. In general, various numerical
methods are improved to provide better performance in
accordance with particular needs. In this context, this paper
presents a new approach for giving an approximate numer-
ical solution for FDEs. It is called the fractional higher order
Taylor method (FHOTM). One characteristic of the sug-
gested algorithm is that it improves the FEM in terms of effi-
ciency and accuracy, meaning that this approach’s accuracy
increases with increasing order.

The present work is organized as follows: The funda-
mental concepts of our research are introduced in Section
2, along with some definitions and characteristics of frac-
tional calculus theory. The fractional initial value problem
(FIVP) is solved by the FHOTM, which is established in
Section 3. Next, we determine a relevant theoretical result
and use it to analyze and estimate the local truncation
error produced by the FHOTM. Several numerical applica-
tions demonstrating the accuracy of the suggested method
are provided in Section 4. For completeness, a brief sum-
mary of the study’s findings is provided at the conclusion.

2. Some Preliminary Results

The purpose of this section is to recall the following key result.

Definition 1 (see [31]). The fractional Riemann-Liouville
integrator for a continuous function ϕ on 0, b is defined by

Jβϕ t =
1

Γ β

t

0
t − s β−1ϕ s ds, β > 0, 0 < t ≤ b

ϕ t , β = 0, 0 < t ≤ b

where Γ β ≔ +∞
0 e−t tβ−1dt

Note that for α, β ≥ 0, we have

Jβtδ = Γ δ + 1 tβ+δ

Γ β + δ + 1 δ > −1 2

Jα Jβϕ t = Jα+βϕ t = Jβ Jαϕ t 3

Definition 2 (see [31]). Let ϕ ∈ Cm 0, b ,ℝ , m ∈ℕ∗, and
m − 1 < β ≤m; the Caputo fractional derivative is given by

Dβϕ t = Jm−βDmϕ t = 1
Γ m − β

t

0
t − s m−β−1ϕ m s ds

The Caputo fractional differentiator satisfies the follow-
ing properties [31]:

DβC = 0, where C ∈ℝ 4

Dβtγ = Γ γ + 1
Γ γ − β + 1 tγ−β, where γ > β − 1 5

Dβ λg t + ωh t = λDβ g t + ωDβ h t 6

where λ, ω ∈ℝ Additionally, we present below some other
properties that are connected to the combination of the pre-
ceding two operators [31]:

Dβ Jβϕ t = ϕ t 7

JβDβϕ t = ϕ t − 〠
m−1

k=1
ϕk 0+ tk

k
8

where t > 0 and m − 1 < β ≤m such that m ∈ℕ∗.

Theorem 1 (generalized Taylor’s formula) [17]. Suppose that
Djβϕ t is a continuous function on 0, b , for j = 0, 1, 2,⋯,
m + 1, where 0 < β ≤ 1. Then, we can extend the function ϕ
for the node t0 in the subsequent way:

ϕ t = 〠
m

i=0

t − t0
iβ

Γ iβ + 1
Diβϕ t0 + t − t0

m+1 β

Γ m + 1 β + 1
D m+1 βϕ ζ

9

with 0 < ζ ≤ t, for all t ∈ 0, b .
To provide more clarity, we can formulate the above

expression of ϕ by

ϕ t = ϕ t0 + t − t0
β

Γ β + 1
Dβϕ t0

+ t − t0
2β

Γ 2β + 1
D2βϕ t0 +⋯+ t − t0

mβ

Γ mβ + 1
Dmβϕ t0

+ t − t0
m+1 β

Γ m + 1 β + 1
D m+1 βϕ ζ

10

3. Results and Discussion

Our objective in this part is to propose a FHOTM. The gen-
eralized Taylor’s method will be used to accomplish this.
Furthermore, we will present a theoretical result concerning
the estimation of the local truncation error of our scheme-
developed approach.

3.1. Taylor’s Higher Order Fractional Approach. In regard to
the Caputo fractional derivative, this technique can be used
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to find an approximate solution for FIVPs. The form of such
a problem is

Dβϕ t = g t, ϕ t 11

dependent on the initial condition

ϕ 0 = ϕ0 12

where t ∈ I = 0, b , 0 < β ≤ 1, Dβ denotes the differential
operator in the sense of Caputo, and g I ×ℝ⟶ℝ is a
continuous function. In order to solve problems (11) and
(12), we divide 0, b into discrete parts as 0 = t0 < t1 = t0 +
h <⋯ < tm = t0 +mh = b, where h = b/m is the step size cor-
responds to the mesh points ti = t0 + ih, i = 1,⋯,m. Now,
for j = 0,⋯,m + 1 and m ∈ℕ, we assume that ϕ t and
Djβϕ t fulfill the conditions of the generalized Taylor’s the-
orem provided in Theorem 1. Then, by extending the solu-
tion ϕ with regard to Theorem 1, where t0 = ti, we obtain

ϕ t = ϕ ti + Dβϕ ti
Γ β + 1 t − ti

β + D2βϕ ti
Γ 2β + 1 t − ti

2β

+⋯+ Dmβϕ ti
Γ mβ + 1 t − ti

mβ

+ D m+1 βϕ ζ

Γ m + 1 β + 1 t − ti
m+1 β

After that, we change t to ti+1 in the previous equality to
get the following equation:

ϕ ti+1 = ϕ ti + hβ

Γ β + 1 Dβϕ ti

+ h2β

Γ 2β + 1 D2βϕ ti +⋯+ hmβ

Γ mβ + 1 Dmβϕ ti

+ h m+1 β

Γ m + 1 β + 1 D m+1 βϕ ζ

13

where ζ ∈ ti, ti+1 . According to

Dβϕ t = g t, ϕ t

D2βϕ t =Dβg t, ϕ t

⋮

Dmβϕ t =D m−1 βg t, ϕ t ,

then the above expression (13) becomes of the following
manner:

ϕ ti+1 = ϕ ti + hβ

Γ β + 1 g t, ϕ t + h2β

Γ 2β + 1 Dβg t, ϕ t

+⋯+ hmβ

Γ mβ + 1 D m−1 βg t, ϕ t

+ h m+1 β

Γ m + 1 β + 1 Dmβg ζ, ϕ ζ

14

Indeed, Formula (14) can be approximately defined in
the form that follows:

ϰ0 = ϕ0

ϰi+1 ≈ ϰi + hβT ti, ϰi
15

where

T ti, ϰi = 1
Γ β + 1 g ti, ϰi + hβ

Γ 2β + 1 Dβg ti, ϰi

+⋯+ h m−1 β

Γ mβ + 1 D m−1 βg ti, ϰi
16

for i = 0, 1,⋯,m − 1, such that wi represents the approxi-
mate values of the exact solution y at ti. However, the steps
of solutions of problem (11) can be given in the form of
Algorithm 1.

3.2. Estimation of Local Truncation Error. The object of this
section is to estimate the local truncation error from the sug-
gested method developed in Equation (15). For this purpose,
we present the following theorem.

Theorem 2. Let us assume that the FIVP (11) and (12) can be
approximated using the proposed FHOTM with a step size h.
We additionally suppose that Djβϕ t ∈ C 0, b , for j = 0, 1, 2,
⋯,m + 1, m ∈ℕ, where 0 < β ≤ 1. Then, in this case, O hmβ

is the local truncation error.

Proof 1. Equation (14) gives us the ability to derive the fol-
lowing:

ϕ ti+1 − ϕ ti −
hβ

Γ β + 1 g t, ϕ t −
h2β

Γ 2β + 1 Dβg t, ϕ t

−⋯−
hmβ

Γ mβ + 1 D m−1 βg t, ϕ t

= h m+1 β

Γ m + 1 β + 1 Dmβg ζ, ϕ ζ

for ζ ∈ ti, ti+1 . This consequently gives

ϕ ti+1 − ϕ ti − hβT ti, ϕ ti = h m+1 β

Γ m + 1 β + 1 Dmβg ζ, ϕ ζ
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where

T ti, ϕ ti = 1
Γ β + 1 g ti, ϕ ti

+ hβ

Γ 2β + 1 Dβg ti, ϕ ti

+⋯+ h m−1 β

Γ mβ + 1 D m−1 βg ti, ϕ ti

for i = 0, 1, 2,⋯,m − 1. Consequently, we can define the
local truncation error at step i + 1 in the following form:

ET
i+1 h = ϕ ti+1 − ϕ ti

hβ
−T ti, ϕ ti

such that

ET
i+1 h = hmβ

Γ m + 1 β + 1 Dmβg ζ, ϕ ζ

As a result of Djβϕ t ∈ C 0, b , for j = 0, 1, 2,⋯,m + 1,
then we get

D m+1 βϕ t =Dmβg t, ϕ t

which has bounds on the interval 0, b . Therefore, we have

ET
i+1 h = O hmβ

4. Illustrative Applications

In this part, we explore two different examples of FDEs to
validate our novel approach. We present the results obtained
from each example using comparative figures and tables.

Example 1. Let as assess the following problem:

Dβϕ t = ϕ t − t, t ∈ 0, 1
ϕ 0 = 0 5  

17

At this point, it is necessary to point out that the exact
solution to the given problem (17) when β = 1 is presented
by

ϕ t = t + 1 − 1
2 e

t

In this case, we put m = 10, and therefore, h = 0 1. Thus,
we assume that

g t, ϕ t = ϕ t − t

Furthermore, let us suppose that we desire to apply on
the FHOTM of order 2β. In order to achieve this, we calcu-
late

Dβg t, ϕ t = ϕ t − t −
1

Γ 2 − β
t1−β

Consequently, by using Equation (16), T ti, ϰi can be
found as follows:

T ti, ϰi = 1
Γ β + 1 ϰi − ti + hβ

Γ 2β + 1 ϰi − ti −
1

Γ 2 − β
t
1−β
i

18

where ϰ1 indicate estimates for ϕ ti , such that i = 0, 1, 2,⋯, 9.
Thanks to ti = 0 1i, Equation (18) can be reformulated as

T ti, ϰi = 1
Γ β + 1 ϰi − 0 1i

+ 0 1 β

Γ 2β + 1 ϰi − 0 1i − 1
Γ 2 − β

0 1i 1−β

19

1: Start
2: Define function g t, y
3: Read initial values of (t0 and y0), the value of (β), number of steps (n) and calculation point (tn)
4: Calculate step size h = tn − t0 /n
5: Set i = 0
6: Loop
7: wprime = g t i , y i /Γ β + 1 + hβDβg t i , y i /Γ 2β + 1
8: yn+1 = yn + hβ ∗wprime
9: i = i + 1
10: while i < n do
11: Display yn as result
12: end while
13: Stop

Algorithm 1: 2β-FHOTM.
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Thus, the 2β order of the FHOTM can be expressed, based
on Equation (19), as follows:

ϰ0 = 0 5

ϰi+1 = ϰi + 0 1 β 1
Γ β + 1 ϰi − 0 1i

+ 0 1 β

Γ 2β + 1 ϰi − 0 1i − 1
Γ 2 − β

0 1i 1−β ,

20

for i = 0, 1, 2,⋯, 9. We have the capability to simulate an
approximate solution of problem (17) for the FHOTM of 2β
order in regard to Equation (20), which is shown in Figures 1
and 2, respectively, when β = 1 and for various values of β.

To analyze the absolute error values of the numerical
solution produced by the suggested FHOTM of order 2β,
we plot Figure 3.

Example 2. The next problem studied corresponds to the fol-
lowing FIVP:

Dβϕ t = ϕ t − t2 + 1, t ∈ 0, 2
ϕ 0 = 0 5  

21

where 0 ≤ β ≤ 1. We notice that the problem defined in
Equation (21) with β = 1 has the following exact solution:

ϕ t = t + 1 2 −
1
2 e

t

Now, we choose m = 10 in order to apply the suggested
FHOTM, and thus, h = 0 2. In the next step, we are looking

to apply the FHOTM of order 2β and 3β, respectively. In
order to achieve this, we suppose that

g t, ϕ t = ϕ t − t2 + 1

This therefore indicates

Dβg t, ϕ t =Dβϕ t −
2

Γ 3 − β
t2−β

Thus,

Dβg t, ϕ t = ϕ t − t2 + 1 − 2
Γ 3 − β

t2−β

Analogously, we can obtain

D2βg t, ϕ t =Dβϕ t −
2

Γ 3 − β
t2−β −

2
Γ 3 − 2β t2−2β

which implies that

D2βg t, ϕ t = ϕ t − t2 + 1 − 2
Γ 3 − β

t2−β −
2

Γ 3 − 2β t2−2β

Applying Equation (16) allows us to express T ti, ϰi in
the following way:

T ti, ϰi = 1
Γ β + 1 ϰi − t2i + 1

+ hβ

Γ 2β + 1 ϰi − t2i + 1 − 2
Γ 3 − β

t
2−β
i + h2β

Γ 3β + 1

ϰi − t2i + 1 − 2
Γ 3 − β

t
2−β
i −

2
Γ 3 − 2β t

2−2β
i

22
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Figure 1: A graphical comparison of Example 1: an approximate solution of order 2β for β = 1 vs. the analytical solution.
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Figure 3: A graphical representation of Example 1 for the absolute errors of the numerical solutions of order 2β for β = 1.
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Figure 2: Comparisons between the exact solution of Example 1 and the numerical solution of ϕ according to different values of β.
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For i = 0, 1, 2,⋯, 9, Equation (22) can be reformulated,
since ti = 0 2i, as follows:

T ti, ϰi = 1
Γ β + 1 ϰi − 0 04i2 + 1 + 0 2 β

Γ 2β + 1

ϰi − 0 04i2 + 1 − 2
Γ 3 − β

0 2i 2−β + 0 2 2β

Γ 3β + 1

ϰi − 0 04i2 + 1 − 2
Γ 3 − β

0 2i 2−β −
2

Γ 3 − 2β 0 2i 2−2β

23

Thus, with the main expression (19), the FHOTM of
order 2β and 3β is presented for i = 0, 1, 2,⋯, 9 as

ϰ0 = 0 5

ϰi+1 = ϰi + 0 2 β 1
Γ β + 1 ϰi − 0 04i2 + 1

+ 0 2 β

Γ 2β + 1 ϰi − 0 04i2 + 1 − 2
Γ 3 − β

0 2i 2−β

24
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Figure 5: Comparisons between the exact solution of Example 2 and the numerical solution of ϕ according to different values of β.
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Figure 4: A graphical comparison of Example 2: an approximate solution of order 2β for β = 1 and the analytical solution.
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ϰ0 = 0 5

ϰi+1 = ϰi + 0 2 β 1
Γ β + 1 ϰi − 0 04i2 + 1 + 0 2 β

Γ 2β + 1

ϰi − 0 04i2 + 1 − 2
Γ 3 − β

0 2i 2−β + 0 2 2β

Γ 3β + 1

ϰi − 0 04i2 + 1 − 2
Γ 3 − β

0 2i 2−β −
2

Γ 3 − 2β 0 2i 2−2β

25

Similarly, by utilizing Equations (24) and (25), we
illustrate two approximated solutions for problem (21).
Figures 4 and 5 show a numerical solution for β = 1 and
for different values of β, which was achieved by applying
the FHOTM of order 2β. Next, using the FHOTM with
an order of 3β, the second approximation for the problem
mentioned in (21) is obtained. Figure 6 illustrates this for
β = 1.
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Figure 6: A graphical comparison of Example 2: an approximate solution of order 3β for β = 1 and the analytical solution.
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The absolute values of the errors between the exact solu-
tion for the case of β = 1 and the approximate solutions
computed by FHOTM with the orders of 2β and 3β are dis-
played in Figures 7 and 8 and Table 1, respectively.

The accuracy of the suggested method is readily appar-
ent in regard to previous numerical results, and it gets better
as the method’s order increases.

5. Conclusion

Applications such as the ones listed above have shown that
the proposed method produces a good approximation of
the FIVP solution, particularly when contrasted with the
precise solution. This insight shows that there are numerous

scenarios in which the formula can be applied. In particular,
the FHOTM may have the following characteristics:

• The beneficial result of the FHOTMencourages the appli-
cation of the formula in various real-world situations.

• The FHOTM indicates that the approach is practical
and has the potential to progress a number of fields
where fractional calculus is crucial.

• It has been concluded that the FHOTM can generate
more degrees of freedom by considering various frac-
tional order values. This means that we may take any
value of fractional order into account instead of adher-
ing to only one value that represents only the integer-
order case.
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Table 1: A comparison between the absolute errors of the
numerical solutions for 2β and 3β order.

t Absolute error for 2β Absolute error for 3β
0 0 0

0.1 1 × 10−3 1 × 10−4

0.2 2 × 10−3 1 4 × 10−4

0.3 3 × 10−3 1 8 × 10−4

0.4 4 × 10−3 2 2 × 10−4

0.5 4 5 × 10−3 2 6 × 10−4

0.6 4 7 × 10−3 3 × 10−4

0.7 4 9 × 10−3 3 4 × 10−4

0.8 5 × 10−3 3 8 × 10−4

0.9 6 × 10−3 4 2 × 10−4

1 8 × 10−3 4 6 × 10−4
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