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In various fields, such as economics, finance, bioinformatics, geology, and medicine, namely, in the cases of electroencephalogram,
electrocardiogram, and biotechnology, cluster analysis of time series is necessary. The first step in cluster applications is to establish
a similarity/dissimilarity coefficient between time series. This article introduces an extension of the affinity coefficient for the
autoregressive expansions of the invertible autoregressive moving average models to measure their similarity between them. An
application of the affinity coefficient between time series was developed and implemented in R. Cluster analysis is performed with
the corresponding distance for the estimated simulated autoregressive moving average of order one. The primary findings indicate
that processes with similar forecast functions are grouped (in the same cluster) as expected concerning the affinity coefficient. It
was also possible to conclude that this affinity coefficient is very sensitive to the behavior changes of the forecast functions:
processes with small different forecast functions appear to be well separated in different clusters. Moreover, if the two processes
have at least an infinite number of π- weights with a symmetric signal, the affinity value is also symmetric.
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1. Introduction

Cluster analysis is a set of exploratory multivariate data anal-
ysis methods for identifying natural groups in data, based on
a coefficient of similarity or dissimilarity between variables
or between individuals, or more generally between statistical
units of data [1]. The objective of this analysis is to identify

clusters of statistical data units within the dataset that share
similar characteristics, resulting in high similarity among
units within a cluster and low similarity among units belong-
ing to different clusters [1, 2]. Hierarchical cluster analysis
algorithms, namely, agglomerative hierarchical cluster anal-
ysis, provide a hierarchy of partitions and are the most used
[3]. Agglomerative strategy algorithms usually start with all
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statistical units separated into unit sets (singletons), forming a
cluster partition equal to the number of statistical units, and
successively grouping the most similar groups (according to
some measure of similarity or dissimilarity between statistical
units and criterion of aggregation between groups) in the same
cluster, until it forms a partition of a single cluster. The hierar-
chy obtained with the applied agglomerative hierarchical clus-
tering analysis depends on the agglomerative method. The
average linkage method produces more balanced hierarchies.
This method does not have the chain effect of the single link-
age method, and it is an intermediate method between the sin-
gle linkage and complete linkage methods. Moreover, the
average linkage method uses more information than the
others [1]. Cluster analysis is also important in the domain
of time series. In economics, finance, engineering, bioinfor-
matics, geology, medicine, and biotechnology, the data is
stored sometimes in the form of time series data. Automated
acquisition systems and the growing storage capacity have
made time series data available in these (and other) domains.
It includes different applications, such as financial stock prices,
electrocardiogram (ECG) measurements, blood pressure in
health, satellite images, earthquake in earth observation, and
even social media, among others [4]. Time series are prevalent
in data mining applications, and clustering time series can be
an appropriate alternative for time series classification models
because annotations can be hard to get [5]. Time series data is
seen as many data points but can be seen as a single object.
Clustering these objects is advantageous because it allows the
discovery of interesting patterns in time series data [4]. For
example, economics may be interesting to look at some time
series indicators and cluster them, such as Gross National
Product or population growth [6]. In Engineering, Niennat-
trakul and Ratanamahatana demonstrated the utility of time
series representation in the task of clustering multimedia data
[7]. In medicine, the study of biological signals requires dis-
crimination between signals caused by particular illnesses,
namely, in the cases of ECG [8] and electroencephalogram
(EEG) [9], data are stored in time series data. Clustering time
series is useful, and a general overview of time series clustering
methods can be found for instance in Maharaj, D’Urso, and
Caiado and many others [4, 10–12]. A more usual approach
in clustering time series is whole time-series clustering. In this
approach, each time series is considered as a single object and
clustering is performed concerning to their similarities [4, 10].
This approach can be performed considering that each time
series is generated by a model (model-based approach), and
the similarity between fitted models is evaluated. In the
model-based approach, a raw time series is transformed into
model parameters and then a suitable model dissimilarity/
similarity and clustering algorithm is chosen and applied [4,
10]. Then, a proper dissimilarity/similarity measure for clus-
tering time series based on the nature and specific purpose
of the clustering task is needed.

1.1. Measures in Whole Time Series Clustering. In whole
time-series clustering, Piccolo [13] introduced a Euclidean
distance for Autoregressive Integrated Moving Average
(ARIMA) models based on autoregressive (AR) representa-
tion of these processes. Corduas and Piccolo and Maharaj

[14, 15] extended the model-based clustering idea of Piccolo
by developing a testing procedure for differences between
underlying models of each pair of independent time series
by using equivalent AR expansions and using the p values
of each test in an algorithm to cluster the time series. Also,
Maharaj [16] extended the testing procedure for significant
differences between underlying models of each pair of inde-
pendent time series to that of related series. In the case of
clustering seasonal time series, Piccolo’s method can be
extended by fitting seasonal ARIMA models. Scotto, Alonso,
and Barbosa [17, 18] and D’Urso, Maharaj, and Alonso [19]
proposed different aspects of clustering of seasonal time
series based on the estimates of fitted generalized extreme
value models. In every case, it is used a dissimilarity/similar-
ity measure. Several dissimilarity/similarity measures
between time series have been proposed [4, 10, 11]. One of
the most used dissimilarity measures is the Euclidean dis-
tance between AR expansions of the fitted ARIMA models
proposed by Piccolo and Corduas and Piccolo [13, 14]. This
distance is independent of the signal of the values of the
coefficients of AR expansions of the fitted ARIMA models
and is very dependent on the magnitude of the coefficients
of AR expansions of the fitted ARIMA models. Thus, cluster
analysis based on a coefficient, which measures the similarity
between the “profiles,” in a domain of time series is needed.

An extension of the affinity coefficient proposed by
Bacelar-Nicolau and Nicolau [20] and Nicolau and
Bacelar-Nicolau [21] as a similarity measure between the
AR expansions of the invertible linear time series for autore-
gressive moving average (ARMA) models is presented in this
work. The affinity coefficient was introduced by Matusita
[22] to measure the proximity between two distribution
functions. Bacelar-Nicolau introduced the affinity coefficient
in cluster analysis, as a basic similarity coefficient between
variables or individuals [23, 24]. In the beginning, the affin-
ity coefficient was applied to positive frequencies [23–25],
that is, positive profiles. According to Bacelar-Nicolau and
Nicolau [20] and Nicolau and Bacelar-Nicolau [21], the
affinity coefficient, also called the Matusita–Nicolau coeffi-
cient [26], was generalized to real numbers. Later, this coef-
ficient was extended to clustering of statistical data units,
mainly in a three-way approach: while in the two-way case,
each cell of the data matrix contains a single value, and in
a three-way approach, each cell of the data matrix may con-
tain a set of values, describing a probability distribution, a
histogram (frequency distribution), or integer frequencies,
for instance, instead of one single value [1, 2, 24, 27–30].
There are real advantages in using the affinity coefficient to
measure the similarity between profiles because of its
properties [2]. In fact, the affinity coefficient presents sev-
eral relevant properties in its application to the field of
exploratory analysis of multivariate data, revealing, for
example, to be a more robust coefficient than the well-
known correlation coefficient of Pearson, when it is
intended to cluster a set of statistical of variables [31].
The associated distance is also a function of the profiles,
so it depends less on the magnitude of values than the
Euclidean distance. These properties also apply when the
statistical units are time series, or multiple time series, or
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similarity search models in time series [32, 33]. It is there-
fore natural to hope for a good quality in the results of
time series cluster analysis based on the extension affinity
coefficient or on the associated distance. Furthermore,
cluster analysis that will be used, based on the affinity
coefficient, admits either an empirical or a probabilistic
approach, not yet applied to time series sets; therefore, it
was proposed below an extension of the affinity coefficient
to the domain of time series [24, 29, 30, 34, 35].

In the present work, it extended the affinity coefficient,
related to the generalized affinity coefficient for real numbers,
for the AR expansions of the invertible ARMA models
(ARMA(p,q)) as a similarity measure between linear time
series and particularized for ARMA(1,1). Also, it simulated
ARMA(1,1) processes and the likelihood estimates of their
coefficients are obtained to perform agglomerative hierarchi-
cal cluster analysis with the associated distance with the pro-
posed extension of the affinity coefficient. These simulated
results and discussions are shown.

2. Affinity Coefficient and Associated
Distance for ARMA Models

The affinity coefficient and its extensions are measures of
similarity used in hierarchical and nonhierarchical cluster
analysis. Here, it proposed an extension of the affinity coef-
ficient to the domain of time series.

2.1. Definition and Properties of the Affinity Coefficient for
ARMA Models. A time series is a set of dependent observa-
tions made at successive points in time that have something
structurally stable. Here, it is considered that the dependence
between the observations verifies the linear equation of the
ARMA model [36, 37]. A set of observations X = Xt , t ∈Ζ
is called a process ARMA model of order p and q
(ARMA(p,q)) if it is stationary and satisfies the equation:

Xt − φx1Xt−1−⋯−φxpXt−p = εt − θx1εt−1−⋯−θxqεt−q 1

or, equivalently,

φ B Xt =Θ B εt

with φ B = 1 − φx1B−⋯−φxpB
p, Θ B = 1 − θx1B−⋯−θxqBq

where φx1,⋯, φxp, θx1,⋯, θxq, are real coefficients, B is the

backshift operator such that BkXt = Xt−k, k = 0, 1,⋯, and
(εt , t ∈Ζ) are white noises with constant variance σ2 differ-
ent from zero. The stationary process X satisfies the model
ARMA(p,q), as in Equation (1), with the following conditions:

i. If φxp ≠ 0, θxq ≠ 0,

ii. The solutions of the equations φ B = 0 and Θ B = 0
do not have common roots,

iii. The solutions of the equations φ B = 0 and Θ B = 0
are in a module strictly larger than one,

Then, there is one and only one stationary solution and the
representation (1) is unique [36, 37].

Let X = Xt , t ∈Ζ be a zero mean ARMA(p,q) process
defined as in Equation (1) satisfying the previous assump-
tions. Thus, because the solutions of the equation Θ B = 0
are in a module strictly larger than one, then X is invertible
and so can be represented in terms of its past values accord-
ing to the AR (∞) formulation [36, 37], that is,

B Xt = εt 2

with

B = φ B
Θ B

= 1 − 〠
∞

j=1
πx,jB

j 3

〠
∞

j=1
πx,j <∞ 4

Note that the π- weights of the AR (∞) formulations, as
in Equation (3), are the coefficients of the best linear forecast
of X given in the past; that is, they are the coefficients of the
orthogonal projection of the process given in the past. Note
that also, if q = 0, the X process is called the AR process and
denoted by AR(p). These processes are not represented in
terms of their past values according to the AR (∞) formula-
tion. If p = 0, the X process is called the moving average pro-
cess and is denoted by MA(q). These processes can be
represented in terms of their past values according to the
AR (∞) formulation if the solutions of the equation Θ B
= 0 are in a module strictly larger than one [37]. In the fol-
lowing, let the processes X and Y satisfy the model
ARMA(p,q), as in Equation (1), and satisfy the conditions
i, ii, and iii. Thus, let be X and Y processes that can be rep-
resented according to the AR (∞) formulation. Let be also X
and Y processes that their white noise is a Gaussian process,
and then given the initial values, the operators φ B and Θ
B and the variance of the white noise the probabilistic
structure of the processes X and Y are completely character-
ized [13, 14]. Thus, instead of using the X and Y processes to
define the similarity measure, it is possible to use their rep-
resentation according to the AR (∞) formulation. From this
consideration, Piccolo [13] introduced the Euclidean dis-
tance between the π- weights of the AR (∞) formulations
as a measure of structural dissimilarity between two ARIMA
processes, with given orders [13]. In the same way, it may
extend the affinity coefficient, according to Bacelar-Nicolau
and Nicolau [20] and Nicolau and Bacelar-Nicolau [21],
between the π- weights of the AR (∞) formulations as a
measure of similarity between two ARMA processes, with
given orders. In fact, Matusita [22] defined the proximity
of finite or infinite distribution functions (positive valued
data) with the affinity coefficient, and Bacelar-Nicolau [20]
and Nicolau [21] prove that the affinity coefficient can be
extended as a measure of similarity over real (thus, also neg-
ative) valued data. Since the π- weights of the AR (∞) for-
mulations characterize the probabilistic structure of the
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processes X and Y , under the conditions mentioned above, it
may extend the affinity coefficient to the affinity coefficient
between the π- weights of the AR (∞) formulations as a
measure of similarity between two ARMA processes with
given orders.

Let X and Y be a zero mean processes of ARMA(p,q)
processes, as in Equation (1), where the white noise is Gauss-
ian with constant variance σ2 different of zero and satisfy
the conditions i, ii, and iii. Then, the affinity coefficient
between the processes X and Y is extended by

Aff X, Y = 〠
∞

j=1
sign

πx,j
πx

sign
πy,j
πy

πx,jπy,j
πx πy

5

where πx,j, j = 1, 2,⋯, and πy,j, j = 1, 2,⋯, , with πx,j ≠ 0
and πy,j ≠ 0, for some j, are the π- weights of the AR (∞)
formulation of the X and Y ARMA processes with

πx = 〠
∞

j=1
πx,j <∞ 6

πy = 〠
∞

j=1
πy,j <∞ 7

Note that the expression (5) is the inner product between
the following successions: sign πx,1/πx, πx,1/πx, ,⋯
and sign πy,1/πy, πy,1/πy, ,⋯ . In case of πx,j ≠ 0, for
some j, j = 1,⋯, and πy,j = 0, ∀j, the affinity coefficient

between the vectors (sign πx,1/πx, πx,1/πx, ,
sign πx,2/πx, πx,2/πx, ,⋯ ), (0,0,0….) is 0, by the prop-
erties of inner product. On the other hand, if πx,j = 0, ∀j
and πy,j = 0, ∀j, both the processes are white noises, so the
natural value for the affinity coefficient is one. Thus, the
affinity coefficient can be applied also in these cases. The
affinity coefficient defined, in Equation (5), satisfies the fol-
lowing property.

Property 1. The given two zero mean ARMA(p,q) processes
X and Y defined, as in Equation (1), satisfied the conditions
i, ii, and iii with Gaussian white noise with constant variance
σ2 different from zero. Then, the affinity coefficient is
defined, as in Equation (5), between the X and Y processes
verifying the following properties:

i. Aff X, Y always exists and converges.

ii. Aff X, Y is a symmetric coefficient.

iii. −1 ≤Aff X, Y ≤Aff X, X = 1.

iv. Aff X, Y = 1 if and only if πy′n = απx′n, ∀n ∈N .

Proof 1. To define the similarity measure between X and Y ,
let us use their representation according to the AR (∞) for-
mulation. Let πx,j, j = 1,⋯ and πy,j, j = 1,⋯ be the π-

weights of the AR (∞) formulation of X and Y . Let be some
j, j = 1, 2,⋯, such that, πx,j ≠ 0 and let be some i, i = 1, 2,⋯,
such that πy,i ≠ 0

i. Consider the series ∑∞
j=1 πx,jπy,j/πx, πy, . Let be ∀n

∈N , πx′n = πx,1/πn
x ,⋯ , πx,n/πn

x , where πn
x

=∑n
j=1 πx,j .

Let us consider the succession of partial sums given by

∀n ∈N,Sn =∑n
j=1 πx,j/πn

x πy,j/πn
y . This succession is the

inner product between πx′n and πy′n, ∀n ∈N. Then, by Cau-
chy–Schwarz inequality

∀n ∈N , πx′n, πy′n ≤ πx′n πy′n

Thus, ∀n ∈N,Sn satisfies

Sn = πx′n, πy′n = πx′n, πy′n ≤ πx′n πy′n

= πn
x

πn
x

πn
y

πn
y

= 1

As a series of nonnegative terms is convergent if and
only if the succession of partial sums is limited and because
all absolutely convergent series are convergent series, then
Aff X, Y always exists and converges.

ii. From expression (5), the affinity coefficient, Aff X,
Y , is a symmetric coefficient.

iii. Let be ∀n ∈N , Tn =∑n
j=1 sign πx,j/πn

x sign πy,j/πn
y

πx,j/πn
x πy,j/πn

y . It can be seen that ∀n ∈N , Tn

≤ Tn ≤ Sn. Then, Aff X, Y ≤∑∞
j=1

πx,jπy,j/πx, πy, ≤ 1, because all absolutely conver-

gent series are also convergent and are proved above
that ∀n ∈N,Sn ≤ 1, so Aff X, Y ≤ 1 = Aff X, X =
πx, /πx, . On the other hand, Aff X, Y ≤∑∞

j=1

πx,jπy,j/πx, πy, ≤ 1, then −1 ≤Aff X, Y ≤ 1

iv. By Cauchy–Schwarz inequality πx′n, πy′n = πx′n
πy′n if and only if πy′n = απx′n, ∀n ∈N.

Then

∀n ∈N , Sn = πx′n, πy′n = πx′n, πy′n = πx′n πy′n

= πn
x

πn
x

πn
y

πn
y

= 1
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if and only if πy′n = απx′n, ∀n ∈N. Thus, if ∀n ∈N , Tn = Sn
and πy′n = απx′n follows that Aff X, Y = 1. On the other

hand, if ∀n ∈N , Tn = −Sn and πy′n = απx′n follows that
Aff X, Y = −1.

Thus, in the conditions of the property, the π- weights
uniquely determine the forecast function for future values
given present and past values [13]. Assuming that εt is a
Gaussian process and the orders are known, given the same
set of initial values, we have that Aff X, Y = 1 if the
models X and Y produce the same forecasts or πy′n = απx′n,
∀n ∈N So, it is proved in the property above that the affinity
coefficient defined as in Equation (5) is a similarity measure
between the ARMA(p,q) processes X and Y satisfying the
above conditions. This similarity measure generalizes the
classical similarity measures from positive to real values.

Note that the affinity coefficient defined as in Equation
(5) is also a similarity measure which satisfies the properties
above for the MA(q) processes which can be represented in
terms of its past values according to the AR (∞) formula-
tion. When q = 0 and p ≠ 1, X is an AR(p) process, and then,
it cannot be represented in terms of its past values according
to the AR (∞) formulation since q = 0; however, the coeffi-
cient defined as in Equation (5) remains a measure of simi-
larity. When q = 0 and p = 1, that is, when the process is only
a AR(1) and X cannot be represented in terms of its past
values according to the AR(∞) formulation since q = 0, it
happens that the affinity is equal to 1 and the models X
and Y do not produce the same forecasts. Thus, the affinity
coefficient behaves as a similarity coefficient for ARMA(p,q)
processes, MA(q) processes, and AR(p) processes with p ≠ 1,
but for AR(1) processes, it does not verify the uniqueness
because πy′n = απx′n, ∀n ∈N . This restriction is not a prob-
lem, because a proper similarity measure must be based on
the nature and specific purpose of the clustering task, thus
allowing to interpret the clustering solutions in terms of
grouping target [38]. For this coefficient, it can also use the
associated distance to the domain of time series. In the fol-
lowing section, it presented the distance associated with
the proposed Aff X, Y between ARMA(p,q) processes.

2.2. The Affinity Associated Distance for ARMA Models.
Given two zero mean ARMA(p,q) processes X and Y , satis-
fying the conditions of the property above, the affinity asso-
ciated distance between X and Y will be defined by the usual
relationship

d X, Y = d2 X, Y = 2 1 −Aff X, Y 8

Note that this is the equation which relates the standard
affinity coefficient to the associated distance, in the case of X
and Y being elements of Rn+ U 0 , now extended to R∞

Property 2. The measure defined as in Equation (8) satisfies
the properties of a distance between ARMA(p,q) processes.
Thus, it satisfies the following properties:

i. ∀X, Y , 0 = d X, X ≤ d X, Y = d Y , X .

ii. ∀X, Y , d X, Y = 0 if and only if πy′n = απx′n, ∀n ∈N .

iii. ∀X, Y , Z, d X, Y ≤ d X, Z + d Z, Y .

Proof 2.

i. ∀X, Y , 1 = Aff X, X ≥Aff X, Y = Aff Y , X ; then,
from Equation (8), 0 = d X, X ≤ d X, Y = d Y , X .

ii. ∀X, Y, Aff X, Y = ±1 if and only if πy′n = απx′n, ∀n
∈N ; then, from Equation (8), d X, Y = 0 if and
only if πy′n = απx′n, ∀n ∈N .

iii. ∀X, Y , Z, d X, Y = lim π”n
x − π”n

y by definition

where ∀n ∈N , π”n
x = sign πx,1/πn

x πx,1/πn
x ,⋯ ,

sign πx,n/πn
x πx,n/πn

x and is the norm in
Rn. It can be seen that πx″n − πy″n = πx″n − πy″n
− πz″n + πz″n , and due to properties of the triangu-
lar inequality of norm in Rn and the notion of con-
vergence of series, it follows

d X, Y = lim πx″n − πy″n − πz″n + πz″n ≤

≤lim πx″n − πz″n + lim πz″n − πy″n =d X, Z + d Z, Y
because the limits exist.

Therefore, it is proved above that the measure in Equa-
tion (8) is a distance measure between the zero mean
ARMA(p,q) processes X and Y defined, as in Equation (1),
satisfying the conditions of a distance if and only if πy′n ≠ α

πx′n, ∀n ∈N . This is the associated distance to the affinity
coefficient between the two zero mean ARMA(p,q) processes
X and Y . Note that in the case of AR(1) πy′n = απx′n, ∀n ∈N
so in this case, the measure defined in Equation (8) is a
semidistance.

The affinity coefficient was defined in Equation (5), and
consequently, the distance measure defined in Equation (8)
can have different expressions depending on the order of
the processes. Thus, even though ARMA(1,1) models are
relatively simple time series models, they are a very impor-
tant case because they fit particularly well in many applica-
tions to real phenomena. Consequently, the following
section presents the expression of the affinity coefficient in
the case of ARMA(1,1) processes.

2.3. Affinity Coefficient for ARMA Model of Order One. In
the case of the ARMA(1,1) and in the cases of AR(1) and
MA(1), that is, when q = 0 and p = 0, respectively, the
expression of the affinity coefficient is now presented.
Consider X a zero-mean invertible ARMA(1,1) process
defined, as in the Equation (1), satisfying the conditions
i, ii, and iii with Gaussian white noise with constant variance
σ2 different from zero; then, in this case, the π- weights of
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the AR (∞) formulation of ARMA(1,1) processes are given
by [13]

πx,j = θj−1x φx − θx , j = 1, 2 9

Let Y be an ARMA(1,1) process in the same conditions of
X, and then, it can be proved that

1. Aff X, Y = 0, if

i. φx − θx = 0 and φy − θy ≠ 0,

ii. φx − θx ≠ 0 φy − θy = 0.

2. Aff X, Y = 1, if

i. θx φx − θx = θy φy − θy , ∀j,

ii. θx = 0, θy = 0, φx ≠ 0, φy ≠ 0, and sign φx/ φx sign
φy/ φy > 0,

and

3. Aff X, Y = −1, if

i. θx = 0, θy = 0, φx ≠ 0, φy ≠ 0, and sign φx/ φx sign
φy/ φy > 0.

Moreover

Aff X, Y =
1 − θx 1 − θy

1 − θxθy

10

if

i. φx − θx > 0 and θx > 0 and φy − θy > 0 and θy > 0,

ii. φx − θx < 0 and θx > 0 and φy − θy < 0 and θy > 0,

iii. φx − θx > 0 and θx < 0 and φy − θy > 0 and θy < 0,

iv. φx − θx < 0 and θx < 0 and φy − θy < 0 and θy < 0,

v. θx = 0, φx ≠ 0, φy − θy ≠ 0, θy ≠ 0 and sign φx/ φx
sign φy − θy 1 − θy / φy − θy > 0,

vi. θy = 0, φy ≠ 0, φx − θx ≠ 0, θx ≠ 0 and sign φy/ φy
sign φx − θx 1 − θx / φx − θx > 0,

and

Aff X, Y = −
1 − θx 1 − θy

1 − θxθy

11

if

i. φx − θx < 0 and θx > 0 and φy − θy > 0 and θy > 0,

ii. φx − θx > 0 and θx > 0 and φy − θy < 0 and θy > 0,

iii. φx − θx < 0 and θx < 0 and φy − θy > 0 and θy < 0,

iv. φx − θx > 0 and θx < 0 and φy − θy < 0 and θy < 0,

v. θx = 0, φx ≠ 0, φy − θy ≠ 0, θy ≠ 0 and sign φx/ φx
sign φy − θy 1 − θy / φy − θy < 0,

vi. θy = 0, φy ≠ 0, φx − θx ≠ 0, θx ≠ 0 and sign φy/ φy
sign φx − θx 1 − θx / φx − θx < 0.

Also

Aff X, Y =
1 − θx 1 − θy

1 + θxθy

12

if

i. φx − θx > 0 and θx < 0 and φy − θy > 0 and θy > 0,

ii. φx − θx > 0 and θx > 0 and φy − θy > 0 and θy < 0,

iii. φx − θx < 0 and θx > 0 and φy − θy < 0 and θy < 0,

iv. φx − θx < 0 and θx < 0 and φy − θy < 0 and θy > 0,

and finally,

Aff X, Y = −
1 − θx 1 − θy

1 + θxθy

13

if

i. φx − θx < 0 and θx < 0 and φy − θy > 0 and θy > 0,

ii. φx − θx > 0 and θx > 0 and φy − θy < 0 and θy < 0,

iii. φx − θx > 0 and θx < 0 and φy − θy < 0 and θy > 0,

iv. φx − θx < 0 and θx > 0 and φy − θy > 0 and θy < 0.

In the case of Equations (10) and (11), the affinity coef-
ficient is unbounded if the product θxθy is near one; how-
ever, if the product is one, X cannot be represented in
terms of its past values according to the AR (∞) formulation
so X does not satisfy the hypothesis.
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Because the ARMA(1,1) models fit particularly well in
many applications to real phenomena, it was applied the
proposed extension of the affinity coefficient and its asso-
ciated distance to the likelihood estimates of the coeffi-
cients of ARMA(1,1) processes, simulated with R, and
agglomerative hierarchical cluster analysis is made. In the
following section, the simulated results are presented and
discussed.

3. Simulation Results

The affinity coefficient proposed and the associated distance
for AR(1), MA(1), and ARMA(1,1) were implemented using
the programming language R [38, 39]. The used packages
were haven, ggplot2, dplyr, lubridate, forecast, TSclust, tidy-
verse, mefa4, data.table, gridExtra, clValid, stats, tibble,
ggdendro, and dendextend with version 4.1.3. To apply this
coefficient, AR of order one processes, moving average of
order one processes, and ARMA of order one processes
were generated with R and the likelihood estimates of the
coefficients of the AR(1), MA(1), ARMA(1,1) processes,
simulated with R, were obtained. After verifying how this
coefficient behaves, the affinity coefficient of the likelihood
estimates of the coefficients of AR(1), MA(1), and
ARMA(1,1) processes was calculated and agglomerative
hierarchical clustering analysis with the affinity coefficient
approach was applied. To evaluate the results, it was chosen
the average linkage as a method of aggregation between
groups.

3.1. Clustering of ARMA Time Series: An Example. The
ARMA processes of order one were generated using the pro-
gramming language R in the following way: The time series
S1 and S2 (Group 1) were created with the AR coefficient
given by ar = 0, moving average coefficient given by ma =
0 3, and variance given by 0.0001. In the same way, the time
series S3 and S4 (Group 2) were created with the coefficients,
ar = 0, ma = −0 2, and variance given by 0.0001. In the third
group, the series S5 and S6 (Group 3) were generated with
the AR part given by ar = 0 and ma = −0 3 and variance
given by 0.0001. The series S7 and S8 (Group 4) were gener-
ated with the coefficients, ar = 0, ma = 0 2, and variance
given by 0.0001. The series S9 and S10 (Group 5) were gen-
erated with the coefficients, ar = 0 3, ma = 0 2, and variance
given by 0.0001. The series S11 and S12 (Group 6) were gen-
erated with the coefficients, ar = 0 4, ma = 0 3, and variance
given by 0.0001. The series S13 and S14 (Group 7) were gen-
erated with the coefficients, ar = 0 2, ma = 0 3, and variance
given by 0.0001. The series S15 and S16 (Group 8) were gen-
erated with the coefficients, ar = 0 3,ma = −0 2, and variance
given by 0.0001. The series S17 and S18 (Group 9) were gen-
erated with the coefficients, ar = 0 2,ma = −0 3, and variance
given by 0.0001. The series S19 and S20 (Group 10) were
generated with the coefficients, ar = 0 4, ma = −0 2, and var-
iance given by 0.0001. The series S21 and S22 (Group 11)
were generated with the coefficients, ar = 0 2, ma = 0 3, and
variance given by 0.0001. All time series were created with
a length of 500 samples each [6].

The likelihood estimates of all parameters of the gener-
ated time series were estimated using the programming lan-
guage R. The likelihood estimates of the coefficients of the
generated ARMA processes can be seen in Table 1. It applied
agglomerative hierarchical clustering analysis with the dis-
tance associated to the affinity coefficient for the processes,
given in Table 1, that is, for the estimated time series X
and Y , which the autoregressive and moving average coeffi-
cients are the likelihood estimates of the coefficients of the
generated AR(1), MA(1), ARMA(1,1) processes, and the
results are in the following section [14].

3.2. Hierarchical Clustering Results With Affinity Associated
Distance. For applying the agglomerative hierarchical clus-
tering analysis, it calculated the affinity associated distance
between the estimated time series X and Y . Since the dis-
tance depends on the π- weights of the AR (∞) formula-
tions, that is, depending on the coefficients of the best
linear forecasts of X and Y given your past, it is expected
that processes with similar π- weights have high similarity
and processes with distinct π- weights have low similarity.
Because the π- weights depend on the autoregressive and
moving average coefficients and the proposed affinity coeffi-
cient assigns the same weight to all π- weights, then it is
expected that the MA(1) and ARMA(1,1) processes have

Table 1: Likelihood estimates of the coefficients of the generated
autoregressive moving average processes.

Series Autoregressive coefficients Moving average coefficients

Ŝ1 0 00e + 00 2 25e − 01
Ŝ2 0 00e + 00 2 40e − 01
Ŝ3 0 00e + 00 −1 62e − 01
Ŝ4 0 00e + 00 −1 98e − 01
Ŝ5 0 00e + 00 −2 93e − 01
Ŝ6 0 00e + 00 −2 95e − 01
Ŝ7 0 00e + 00 2 17e − 01
Ŝ8 0 00e + 00 1 60e − 01
Ŝ9 3 16e − 01 1 61e − 01
Ŝ10 3 56e − 01 0 00e + 00
Ŝ11 4 59e − 01 3 08e − 01
Ŝ12 4 01e − 01 3 07e − 01
Ŝ13 1 89e − 01 3 13e − 01
Ŝ14 2 04e − 01 3 24e − 01
Ŝ15 0 00e + 00 1 23e − 01
Ŝ16 1 46e − 01 0 00e + 00
Ŝ17 0 00e + 00 −9 80e − 02
Ŝ18 0 00e + 00 −1 30e − 01
Ŝ19 1 86e − 01 0 00e + 00
Ŝ20 0 00e + 00 1 63e − 01
Ŝ21 2 88e − 01 2 32e − 01
Ŝ22 2 14e − 01 3 48e − 01
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Ŝ
13

Ŝ
14

Ŝ
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Ŝ1
3

1
16
e−

01
96

8e
−
02

18
0e

+
00

17
9e

+
00

17
5e

+
00

17
5e

+
00

1
27
e−

01
2
07
e−

01
1
99
e+

00
1
91
e+

00
2
00
e+

00
2
00
e+

00
0
00
e+

00
N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

Ŝ1
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similar behavior (grows and decreases at the same time); that
is, similar profiles will be in the same cluster even the mag-
nitude of the coefficients is different. Thus, it is expected that
the associated distance to the affinity coefficient proposed
depends less on the magnitude and more on the signal of
the values of the π- weights of the AR (∞) formulations of
the processes than the Euclidean distance. The associated
distance between the estimated time series was calculated
using Equation (8), that is, using the relationship

d X, Y = 2 1 −Aff X, Y

and the matrix of distances between the estimated time
series is in Table 2.

The results obtained after applying agglomerative hierar-
chical analysis with an average linkage method between
groups are shown in dendrogram Figure 1.

From Figure 1, it may be observed the dendrogram has
21 levels. Reading the tree from left to right, we find six
well-separated clusters of estimated time series given in
Table 3.

With these six clusters and reading the tree from left to
right, we find that the distance puts in the first cluster the
estimated time series Ŝ13, Ŝ14, and Ŝ22 that are ARMA(1,1)
processes with similar magnitude and positive signal of the
moving average part and similar magnitude and negative
signal of the difference between the autoregressive coefficient
and the moving average coefficient. In this case, the π-
weights have all negative signals (see Formula (9)). The sec-
ond cluster comprises the estimated time series Ŝ1, Ŝ2, and Ŝ
7 that are MA(1) processes with similar magnitude of the
positive moving average part, and the difference between
the autoregressive coefficient and the moving average coeffi-
cient has a negative signal because the AR coefficient is zero.
Thus, the π- weights of these time series have all negative
signals (see Formula (9)). The third group contains the esti-
mated time series Ŝ8, Ŝ15, and Ŝ20 that are MA(1) processes
with similar magnitude of positive moving average coeffi-
cients and which difference between the autoregressive coef-
ficient and the moving average coefficient has a negative
signal so the π- weights of these time series have all negative
signals (see Formula (9)). Note that the coefficient magni-
tudes in this group are slightly different from those of the
previous group. Thus, the distance puts at the same cluster
MA(1) processes with similar forecasts and in different clus-
ters MA(1) processes with small differences in the magni-
tude of the coefficients, that is, with small differences in

their forecasts which is what is intended from the distance.
Note that in the superior level, the time series of the previous
two groups are at the same cluster, so the cluster analysis
includes in the same cluster MA(1) processes with similar
forecasts. The fourth cluster contains the estimated time
series Ŝ9, Ŝ11, Ŝ12, and Ŝ21 that are ARMA(1,1) processes
with similar magnitude and positive signal of the moving
average part and similar magnitude and positive signal of
the difference between the autoregressive coefficient and
the moving average coefficient. Note that the distance first
puts together the time series Ŝ11 and Ŝ12 that have very sim-
ilar autoregressive and moving average coefficients and,
after, includes together the time series Ŝ9 and Ŝ21 that are
also ARMA(1,1) processes but with coefficient magnitudes
slightly different from the time series Ŝ11 and Ŝ12. In this
case, the π- weights have all positive signals (see Formula
(9)); then, the forecasts are very different from the forecasts
of the time series in the first cluster. The distance puts in dif-
ferent groups in the ARMA(1,1) processes with different π-
weights, that is, with different forecasts. Thus, the distance
is put at the same cluster ARMA(1,1) processes with similar
forecasts and in different cluster ARMA(1,1) processes with
different forecasts like expected. The fifth cluster comprises
the estimated time series Ŝ10, Ŝ16, and Ŝ19 that are AR(1)
processes for these time series; the π- weights have all posi-
tive signals (see Formula (9)). Even in this case, when the
processes cannot be represented in terms of their past values
according to the AR (∞) formulation, the measure puts
together time series with similar forecasts. In the last cluster,
the distance puts together the time series Ŝ3, Ŝ4, Ŝ5, Ŝ6, Ŝ17,
and Ŝ18 that are MA(1) processes with negative coefficients,
so the positive signal of the difference between the autore-
gressive coefficient and the moving average coefficient and

0.0

0.5

1.0

1.5

22 13 14 2 1 7 15 8 20 11 12 9 21 19 10 16 5 6 17 4 3 18

Figure 1: Dendrogram resulting from the hierarchical cluster analysis with average linkage method and affinity-associated distance.

Table 3: Clusters obtained of the estimated autoregressive moving
average processes with the affinity-associated distance.

Clusters Time series in the clusters

Cluster 1 {Ŝ13, Ŝ14, Ŝ22}
Cluster 2 {Ŝ1, Ŝ2, Ŝ7}
Cluster 3 {Ŝ8, Ŝ15, Ŝ20}
Cluster 4 {Ŝ9, Ŝ11, Ŝ12, Ŝ21}
Cluster 5 {Ŝ10, Ŝ16, Ŝ19}
Cluster 6 {Ŝ3, Ŝ4, Ŝ5, Ŝ6, Ŝ17, Ŝ18}
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then the π- weights has alternate negative and positive sig-
nals; therefore, these MA(1) processes have very different
forecasts when compared to the other MA(1) processes.

The cut-off occurs at level 20, where the hierarchy sepa-
rates two well-defined clusters of the time series given by the
groups {Ŝ1, Ŝ2, Ŝ7, Ŝ8, Ŝ13, Ŝ14, Ŝ15, Ŝ20, Ŝ22} and {Ŝ3, Ŝ4, Ŝ
5, Ŝ6, Ŝ9, Ŝ10, Ŝ11, Ŝ12, Ŝ16, Ŝ17, Ŝ18, Ŝ19, Ŝ21}. Observing
these two groups, it can be seen that the distance puts in
the first group MA(1) processes and ARMA(1,1) processes
which have negative signals of all π- weights, and in the sec-
ond group, the distance puts AR(1) processes, ARMA(1,1)
processes which have positive signals of all π- weights, and
MA(1) processes which have alternate positive and negative
signals of all π- weights.

The distance depends on the π- weights, and the π-
weights depend on the signal and magnitude of the moving
average’s part and the signal and magnitude of the difference
between the AR part and the moving average part (see For-
mula (9)). This distance is very sensitive to changes of the
magnitude and signal on the π- weights and is very sensitive
to different forecasts like expected. The results show that two
processes with the same behavior of the forecast functions
are similar with respect to this coefficient, and two processes
with slightly different behavior of the forecast functions are
different with respect to this coefficient.

3.3. Comparing Results With Euclidean Distance. For com-
paring the results obtained with the affinity coefficient/
associated distance and those obtained with the Euclidean
distance as proposed by Piccolo [13] in the agglomerative
hierarchical clustering analysis, it calculated the Euclidean
distance between the same estimated time series. The
results obtained after applying agglomerative hierarchical
analysis with an average linkage method between groups
are shown in dendrogram (Figure 2). Looking at the den-
drogram, it is possible to see in the hierarchy five clusters,
given in Table 4.

With these five clusters, the cluster analysis includes the
first cluster in the estimated time series Ŝ1, Ŝ2, and Ŝ7 that
are MA(1) processes in which the π- weights of these time
series have all negative signals. The second cluster comprises
the estimated time series, Ŝ8, Ŝ13, Ŝ14, Ŝ15, Ŝ20, and Ŝ22.
This second cluster contains ARMA(1,1) processes in which
the π- weights have all negative signals and MA(1) processes
in which π- weights have all negative signals. In the associ-
ated distance, these ARMA(1,1) and MA(1) processes were
separated. Note that in the superior level, the time series of

the previous two groups are in the same cluster obtained
with the associated distance.

The third cluster puts together the estimated time series
Ŝ12, Ŝ17, and Ŝ21 that are ARMA (1,1) with positive π-
weights and MA (1) with negative and positive π- weights.
Note that these ARMA(1,1) processes and the MA(1) pro-
cess were separated in the associated distance. The associ-
ated distance puts together these time series at a higher
level in the tree. In the fourth cluster, the Euclidean distance
puts together the estimated time series Ŝ3, Ŝ4, Ŝ9, Ŝ11, Ŝ16, Ŝ
18, and Ŝ19 that are AR(1) and ARMA(1,1) processes with
positive π- weights and MA (1) processes with negative
and positive π- weights. The associated distance puts
AR(1), ARMA(1,1), and MA(1) processes together at a
higher level in the tree. The fifth cluster contains MA(1) pro-
cesses where the π- weights have alternate negative and pos-
itive signals and the AR(1) process.

Looking at the clusters provided by the affinity-
associated distance and the Euclidean distance (Tables 2
and 4) it appears that the affinity approach better separates
the different types of AR(1), MA(1), and ARMA(1,1) pro-
cesses depending on the signal and size of the π- weights.
Moreover, the affinity coefficient approach appears to be
more responsive than the Euclidean distance to small differ-
ences in forecasting functions.

For better understanding, the dendrograms were com-
pared using a tanglegram and the entanglement coefficient
with the dendextend package of R language.

The entanglement coefficient was calculated and
obtained the value 0.19 which means that dendrograms have
some similar features but also have significant differences in
their structures, as shown in the figure. Note that this coeffi-
cient can take values between zero for no entanglement, and
one for full entanglement.

0.00

0.15

0.30

2 1 7 8 20 15 22 13 14 21 12 17 9 11 3 16 18 4 19 10 5 6

Figure 2: Dendrogram resulting from the hierarchical cluster analysis with average linkage method and Euclidean distance.

Table 4: Clusters obtained of the estimated autoregressive moving
average processes with Euclidean distance.

Clusters Time series in the clusters

Cluster 1 {Ŝ1, Ŝ2, Ŝ7}
Cluster 2 {Ŝ8, Ŝ13, Ŝ14, Ŝ15, Ŝ20, Ŝ22}
Cluster 3 {Ŝ12, Ŝ17, Ŝ21}
Cluster 4 {Ŝ3, Ŝ4, Ŝ9, Ŝ11, Ŝ16, Ŝ18, Ŝ19}
Cluster 5 {Ŝ5, Ŝ6, Ŝ10}
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Figure 3 illustrates the comparison of the dendrograms.

4. Conclusions and Future Work

In this work, it proposed the extended affinity coefficient and
associated distance, based on the π- weights of the AR (∞)
formulations of the ARMA(p,q) processes, in the domain
of time series cluster analysis. The affinity coefficient and
associated distance can have different expressions depending
on the order of the processes. Thus, in the case of the ARMA
(1,1) and in the cases of AR (1) and MA (1), the expression
of the affinity coefficient was presented because these models
are very important cases, since they appear in many applica-
tions to real data. For these particular models and to verify
how this coefficient behaves, the affinity coefficient proposed
between the AR (1), MA (1), and ARMA(1,1) models was
calculated and agglomerative hierarchical clustering analysis
with the associated distance was applied. The results showed
that this similarity coefficient considers the structure of the
time series because it depends on the π- weights. In fact,
the π- weights completely characterize the distribution of
the process if the initial values, the orders, and the variance
of the Gaussian white noise are given. The results show, as
expected, that two processes with the same behavior of the
forecast functions (same π- weights) are similar with respect
to this coefficient. Moreover, if the two processes have at
least an infinity number of π- weights with a symmetric sig-
nal, the affinity is also symmetric. It is also possible to con-
clude that this affinity coefficient is very sensitive to the
behavior changes of the forecasting functions (same π-
weights), because the associated distance is more sensitive
to differences of the forecast functions, since it better sepa-
rates the different types of AR(1), MA(1), and ARMA(1,1)
of processes depending more on the sign and size of the π-
weights than the Euclidean distance for the estimated time
series. The affinity coefficient proposed, and the associated
distance can also be implemented for ARMA(p,q) models

and ARIMA models. An identified limitation of this coeffi-
cient is that for AR(1) processes, the associated distance is
only a semidistance, so the measure in this case does not sat-
isfy the uniqueness; however, in this case, the Euclidean dis-
tance is only bounded [13].

The results obtained when clustering time series with the
affinity coefficient approach are important because they can
be used in many applications to real phenomena in the areas
of medicine and biotechnology. In fact, this approach can be
applied in the analysis of data regarding biological signals
such as ECG and EEG, noncommunicable diseases [40] or
other data that can be analyzed in these terms. From this
analysis, it is intended to contribute to the development of
biotechnological tools to support the diagnosis and monitor-
ing of various pathologies.

Finally—last but not least—from a methodological point
of view, it should be noted that clustering models using affin-
ity coefficient over the pi coefficients of the AR(∞) models,
rather than time series themselves, allows us to compare
time series of different lengths with different dates. We
intend to use and develop this approach over the next works.
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Figure 3: Comparison of dendrograms with the tanglegram function of R.
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