
Research Article
Redefined Quintic B-Spline Collocation Method to Solve the
Time-Fractional Whitham-Broer-Kaup Equations

Adel R. Hadhoud 1 and Abdulqawi A. M. Rageh 1,2

1Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebeen El-Kom, Egypt
2Department of Mathematics and Computer Science, Faculty of Science, Ibb University, Ibb, Yemen

Correspondence should be addressed to Abdulqawi A. M. Rageh; abdulqawei_ahmed@yahoo.com

Received 20 December 2023; Revised 6 February 2024; Accepted 6 March 2024; Published 5 April 2024

Academic Editor: Qichun Zhang

Copyright © 2024 Adel R. Hadhoud and Abdulqawi A. M. Rageh. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This article proposes a collocation approach based on a redefined quintic B-spline basis for solving the time-fractional Whitham-
Broer-Kaup equations. The presented method involves discretizing the time-fractional derivatives using an L1-approximation
scheme and then approximating the spatial derivatives using the redefined quintic B-spline basis. The von Neumann technique
has been used to demonstrate that the proposed method is unconditionally stable. The error estimates are discussed and show
that the proposed method is third-order convergent. The results demonstrate the potential of the proposed method as a
reliable tool for solving fractional differential equations.

1. Introduction

Fractional calculus has grown significantly in relevance in
recent years. The fractional derivatives and integrals have been
used in numerous applications in the fields of science and
engineering, including but not limited to fluid mechanics,
chemical physics, electricity, control theory, epidemic diseases,
biomedicine, signal processing, and issues with heat conduc-
tion and diffusion [1–5]. There are several definitions of
fractional-order derivatives, each with a variety of uses [6–10].

The Whitham-Broer-Kaup (WBK) equations are a set of
coupled nonlinear partial differential equations that describe
the propagation of shallow water waves in a channel. Its
fractional counterpart describes shallow water in a porous
medium, which can absorb wave energy and prevent tsu-
namis. Several analytical and numerical methods have been
developed to solve the WBK equations [11–14]. Wang and
Chen [15] applied an analytic iterative technique called the
residual power series method to solve time-fractional WBK
equations. Wang et al. [14] proposed the generalized expo-
nential rational function method to elucidate the basic solu-
tion properties of the WBK equation. Wang et al. [16] used

the generalized projective Riccati equation method to solve
the classical WBK equations. Yasmin [17] used the Yang
decomposition method for fractional-order nonlinear WBK
equations. Sadat and Kassem [18] used Lie point symmetries
for the fractional Riemann-Liouville system to reduce frac-
tional WBK equations to nonlinear fractional ordinary dif-
ferential equations using the prolongation theorem. Wang
and Li [19] provided a streamlined homogeneous balance
technique to investigate the shallow water small-amplitude
WBK model equations. Nonlaopon et al. [20] used the
Laplace homotopy perturbation transform technique to
solve the fractional-order WBK equations. Cao et al. [13]
used the conformal fractional derivative to transform the
nonlinear space-time fraction WBK equation into an ordi-
nary differential equation and then used the complete poly-
nomial discriminant system to find the exact solutions. Ali
et al. [21] applied the Laplace Adomian decomposition tech-
nique to obtain an approximate solution of the nonlinear
coupled system of WBK equations of time-space fractional
order. Shah et al. [22] used the q-homotopy analysis trans-
form method and the natural decomposition method to
solve time-fractional WBK equations. Our paper focuses
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on the homogeneous and nonhomogeneous fractional WBK
equations that take the following form [23]:

∂αu x, t
∂tα

+ u x, t ∂u x, t
∂x

+ ∂v x, t
∂x

+ q
∂2u x, t

∂x2
= f x, t ,

1

∂αv x, t
∂tα

+ u x, t ∂v x, t
∂x

+ v x, t ∂u x, t
∂x

+ p
∂3u x, t

∂x3

− q
∂2v x, t
∂x2

= g x, t , x ∈ a, b , t ∈ 0, T ,

2

subject to the initial conditions

u x, 0 = η1 x ,
v x, 0 = η2 x ,

x ∈ a, b ,
3

and boundary conditions

u a, t = ψ1 t , u b, t = ψ2 t ,
ux a, t = ψ3 t , ux b, t = ψ4 t ,
v a, t = ϕ1 t , v b, t = ϕ2 t ,
vx a, t = ϕ3 t , vx b, t = ϕ4 t ,

, t ∈ 0, t , 4

where ψ1 t , ψ2 t , ψ3 t , ψ4 t , ϕ1 t , ϕ2 t , ϕ3 t , and
ϕ4 t are supposed to be smooth functions with continuous
first-order derivatives and u x, t represents the horizontal
velocity, while v x, t denotes the height that deviates from
the equilibrium position. The constants p and q are real
numbers, which are expressed as different diffusion powers,
and dα/dtα is the Caputo derivative operator, where 0 < α ≤ 1.
When α = 1, the resulting equations are the usual WBK equa-
tions. Importantly, setting p = 1 and q = 0 yields the fractional-
order modified Boussinesq (MB) equation, while setting p = 0
and q = 1/2 produces the fractional-order approximate long
wave (ALW) equation.

The collocation method is widely used to obtain solu-
tions for partial differential equations [24–27]. Depending
on the situation, it can be useful to find the solution of
fractional partial differential equations (FPDEs) at various
locations within the given problem domain. In such cases,
spline solutions can provide information on spline interpo-
lation between mesh points. The nonpolynomial, cubic,
quadratic, trigonometric, and quintic B-spline methods are
used to solve many fractional-order partial differential equa-
tions [28–32].

In the usual collocation method, the basis functions are
required to vanish on the boundary where the Dirichlet-
type boundary conditions are specified. However, in the set
of quintic B-splines Q−2,Q−1,Q0,⋯,QN ,QN+1,QN+2 , the
basis functions Q−2,Q−1,Q0,⋯,QN ,QN+1,QN+2 do not van-
ish at one of the boundary points. Therefore, it is necessary
to redefine the basis functions into a new set of basis func-

tions that vanish on the boundary where the Dirichlet-type
boundary conditions are specified. The primary goal of this
work is to propose an efficient computational approach
based on a redefined quintic B-spline (RQBS) algorithm
for obtaining the numerical solution of time-fractional
WBK equations. RQBS functions are essentially a generaliza-
tion of typical quintic B-spline functions that include a free
parameter that gives the ability to adjust the solution curve.
We used the L1-approximation formula to discretize the
Caputo time-fractional derivative, whereas RQBS functions
are used to discretize the spatial derivatives. This approach
is developed for numerical solutions of fractional-order
WBK equations. Moreover, this scheme is equally effective
for homogeneous and nonhomogeneous FPDEs. The
redefined quintic B-spline collocation discretization for the
problem considered leads to a system with the pentadiagonal
matrix.

This paper’s brief outline is as follows. In Section 2, we
provide some basic definitions and lemmas. In Section 3,
we explain the quintic B-spline collocation scheme and its
redefinition. Then, we describe the method and apply it to
the coupled time-fractional WBK equation. Section 4 dis-
cusses the von Neumann technique for ensuring the stability
of the method. Error analysis is discussed in Section 5. In
Section 6, numerical examples are presented to demonstrate
the applicability and accuracy of the proposed method.
Finally, we finished this paper with the conclusion.

2. Basic Concepts

In this section, we will introduce some fundamental defini-
tions of the fractional derivative of order α where α > 0.
Numerous definitions of the fractional derivative can be found
in the literature, but the Riemann-Liouville and Caputo frac-
tional derivatives are the most widely utilized ones.

Definition 1. The Riemann-Liouville fractional derivative of
order α ≥ 0, n − 1 < α ≤ n, n ∈ℕ of a function f ∈ C a, b , is
defined by

aD
α
t f t = 1

Γ n − α

dn

dtn

t

a

f τ

t − τ α−n+1 dτ 5

The fractional derivative used in this study is in the
Caputo meaning, which is defined as follows.

Definition 2 (see [6]). The Caputo fractional derivative of
order α ≥ 0, n − 1 < α ≤ n, n ∈ℕ of a function f ∈ C a, b , is
defined by

∂αu x, t
∂tα

= 1
Γ n − α

t

0

∂nu x, s
∂tn

t − s n−α−1ds 6

3. Derivation Method

3.1. Temporal Discretization. Let tn = nτ denote the integra-
tion time tn > 0; the time-fractional derivative is approxi-
mated by the L1-approximation [30, 33–35], which is valid
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for 0 ≤ α < 1. Explicitly, the time Caputo derivative of order
α is replaced by the L1-approximation at tn which is given
in the following lemma.

Lemma 3 (see [36]). Suppose 0 < α < 1 and g t ∈ C2 0, tn , it
holds that

1
Γ 1 − α

tn

0

g′ t
tn − t α dt −

τ−α

Γ 2 − α
g tn − δαn−1g t0 − 〠

n−1

k=1
δαn−k−1 − δαn−k g tk

≤
1

Γ 2 − α

1 − α

12
+ 22−α

2 − α
− 1 + 2−α max

0≤t≤tn
g″ t τ2−α,

7

where δαk = k + 1 1−α − k1−α, q ≥ 0.

Lemma 4 (see [36]). Let 0 < α < 1 and δαk = k + 1 1−α − k1−α

, k = 0, 1,⋯; then, 1 = δα0 > δα1 >⋯ > δαk ⟶ 0, as k⟶∞.

Following Lemma 3 and some algebraic simplifications,
we can approximate the time Caputo derivative at tn+1 as fol-
lows:

∂αUn+1 x
∂tα

= ∂αU x, tn+1
∂tα

= τ −α

Γ 2 − α
〠
n

k=0
δαk Un−k+1 x −Un−k x

+ O τ2−α ,

8

∂αVn+1 x
∂tα

= ∂αV x, tn+1
∂tα

= τ −α

Γ 2 − α
〠
n

k=0
δαk

Vn−k+1 x −Vn−k x + O τ2−α
9

3.2. Quintic B-Spline Method. This section introduces the
quintic B-spline collocation method. We begin by dividing
the domain a, b into N subinterval xj, xj+1 where a = x0
< x1 < x2 <⋯ < xN = b with uniform step h = xj+1 − xj for j
= 0, 1,⋯,N . The quintic B-spline functions Qj x for j =

−2, −1,⋯,M + 1,M + 2 are described by the following rela-
tionships [32, 37–39]:

Qj x = 1
120h5

x − xj−3
5, x ∈ xj−3, xj−2 ,

x − xj−3
5 − 6 x − xj−2

5, x ∈ xj−2, xj−1 ,

x − xj−3
5 − 6 x − xj−2

5 + 15 x − xj−1
5, x ∈ xj−1, xj ,

xj+3 − x 5 − 6 xj+2 − x 5 + 15 xj+1 − x 5, x ∈ xj, xj+1 ,

xj+3 − x 5 − 6 xj+2 − x 5, x ∈ xj+1, xj+2 ,

xj+3 − x 5, x ∈ xj+2, xj+3 ,
0, otherwise

10

The values of Qj x and its first three derivatives are
given in Table 1.

Let U x, t and V x, t be the quintic B-spline approxi-
mations of the exact solutions u x, t and v x, t , respec-
tively, of the system considered in eqs. (1) and (2). Since
the set of quintic B-splines forms a basis over the domain
a ≤ x ≤ b, the approximate solutions U x, t and V x, t
can be written as

u x, t = 〠
N+2

j=−2
γj t Qj x , 11

v x, t = 〠
N+2

j=−2
ρj t Qj x , 12

where γj t and ρj t are the time-dependent unknown
quantities to be computed and Qj x are the quintic B-
spline basis function as shown in Table 1.

Let Un
j =U xj, tn and Vn

j = V xj, tn be the approxi-
mate solutions of u x, t and v x, t , respectively; then, Un

j ,
Vn

j , and their first three-order derivatives are determined at
the nth time level and the nodal points xj in terms of γnj
and ρnj as

3.3. Redefined Quintic B-Spline Method. To obtain an
approximate solution to systems (1) and (2), we have rede-
fined the quintic B-spline basis functions into a new set of
basis functions that vanish on the boundary points since
Q−2 x , Q−1 x , Q0 x , Q1 x , Q2 x , QN−2 x , QN−1 x ,

QN x , QN+1 x , and QN+2 x are nonzero at one of the
boundary points. The basis functions are redefined as
follows. Allowing the approximate solutions u x, t and
v x, t given by Eqs. (11) and (12) to satisfy the bound-
ary conditions (Eq. (4)) and eliminating γ−2 t , γ−1 t ,

120Un
j = γnj−2 + 26γnj−1 + 66γnj + 26γnj+1 + γnj+2, 120Vn

j = ρnj−2 + 26ρnj−1 + 66ρnj + 26ρnj+1 + ρnj+2,

24h Ux
n
j = −γnj−2 − 10γnj−1 + 10γnj+1 + γnj+2, 24h Vx

n
j = −ρnj−2 − 10ρnj−1 + 10ρnj+1 + ρnj+2,

6h2 Uxx
n
j = γnj−2 + 2γnj−1 − 6γnj + 2γnj+1 + γnj+2, 6h2 Vxx

n
j = ρnj−2 + 2ρnj−1 − 6ρnj + 2ρnj+1 + ρnj+2,

2h3 Uxxx
n
j = −γnj−2 + 2γnj−1 − 2γnj+1 + γnj+2, 2h3 Vxxx

n
j = −ρnj−2 + 2ρnj−1 − 2ρnj+1 + ρnj+2

13
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γN+1 t , γN+2 t , ρ−2 t , ρ−1 t , ρN+1 t , and ρN+2 t from
the resultant equations, we obtain the approximate solutions
for u x, t and v x, t as

U x, t =W1 x, t + 〠
N

j=0
γj t Qj x , 14

V x, t =W2 x, t + 〠
N

j=0
ρj t Qj x , 15

where the weight functions W1 x, t and W2 x, t are
given by

and the basis functions Qj x as

Table 1: Quintic B-splines and their corresponding derivatives.

x xj−3 xj−2 xj−1 xj xj+1 xj+2 xj+3

Qj 0
1
120

13
60

22
40

13
60

1
120 0

Qj′ 0
1
24h

5
12h 0 −

5
12h −

1
24h 0

Qj″ 0
1
6h2

1
3h2

−
1
h2

1
3h2

1
6h2 0

Q‴
j 0

1
2h3

−
1
h3

0
1
h3

−
1
2h3 0

W1 x, t =
Q−1′ x0 ψ1 t +Q−1 x0 ψ3 t Q−2 x − Q−2′ x0 ψ1 t +Q−2 x0 ψ3 t Q−1 x

Q−2 x0 Q−1′ x0 −Q−2′ x0 Q−1 x0

+
QN+2′ xN ψ2 t +QN+2 xN ψ4 t QN+1 x − QN+1′ xN ψ2 t +QN+1 xN ψ4 t QN+2 x

QN+2′ xN QN+1 xN −QN+1′ xN QN+2 xN
,

16

W2 x, t =
Q−1′ x0 ϕ1 t +Q−1 x0 ϕ3 t Q−2 x − Q−2′ x0 ϕ1 t +Q−2 x0 ϕ3 t Q−1 x

Q−2 x0 Q−1′ x0 −Q−2′ x0 Q−1 x0

+
QN+2′ xN ϕ2 t +QN+2 xN ϕ4 t QN+1 x − QN+1′ xN ϕ2 t +QN+1 xN ϕ4 t QN+2 x

QN+2′ xN QN+1 xN −QN+1′ xN QN+2 xN
,

17

Qj x =

Qj x −
Q−1′ x0 Qj x0 −Q−1 x0 Qj′ x0

Q−2 x0 Q−1′ x0 −Q−2′ x0 Q−1 x0
Q−2 x +

Q−2′ x0 Qj x0 −Q−2 x0 Qj′ x0
Q−2 x0 Q−1′ x0 −Q−2′ x0 Q−1 x0

Q−1 x , j = 0, 1, 2,

Qj x , 3 ≤ j ≤N − 3,

Qj x −
QN+2′ xN Qj xN −QN+2 xN Qj′ xN

QN+2′ xN QN+1 xN −QN+1′ xN QN+2 xN
QN+1 x +

QN+1′ xN Qj xN −QN+1 xN Qj′ xN
QN+2′ xN QN+1 xN −QN+1′ xN QN+2 xN

QN+2 x , j =N − 2,N − 1,N

18
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Substituting the values of Qj from Table 1 into Eqs.
(16)–(18), we get

W1 x, t = −3 25ψ1 t + 13hψ3 t Q−2 x

+ 3
2 5ψ1 t + hψ3 t Q−1 x

+ 3
2 5ψ2 t − hψ4 t QN+1 x

+ 3 13hψ4 t − 25ψ2 t QN+2 x ,

W2 x, t = −3 25 ϕ1 t + 13h ϕ3 t Q−2 x

+ 3
2 5ϕ1 t + h ϕ3 t Q−1 x

+ 3
2 5 ϕ2 t − hϕ4 t QN+1 x

+ 3 13h ϕ4 t − 25ϕ2 t QN+2 x ,

19

and Qj x as

3.4. Description of Numerical Method. In order to apply the
suggested method using the redefined set of quintic B-splines
basis functions Qj x to systems (1)–(4), we write the system

by approximate solutions Un+1
i =W1 xi, tn+1 +∑N

j=0γ j tn+1
Qj xi = W1

n+1
i +∑N

j=0γ
n+1
j Qj xi and Vn+1

i =W2 xi, tn+1
+∑N

j=0ρj tn+1 Qj xi = W2
n+1
i +∑N

j=0ρ
n+1
j Qj xi at n + 1

time level and nodal points xi, i = 1, 2,⋯,N as follows:

∂αUn+1
i

∂tα
+ UUx

n+1
i + Vx

n+1
i + q Uxx

n+1
i = f n+1i ,

∂αVn+1
i

∂tα
+ UVx

n+1
i + VUx

n+1
i − q Vxx

n+1
i + p Uxxx

n+1
i = gn+1

i ,

21

where f n+1i = f1 xi, tn+1 and gn+1
i = f2 xi, tn+1 .

The Caputo fractional derivatives are discretized using
the L1-approximation as described in Eqs. (8) and (9), and
the nonlinear terms UUx

n+1
i , UVx

n+1
i , and VUx

n+1
i

are linearized using the linearization form given by Rubin
and Graves [40], UUx

n+1
i =Un+1

i Ux
n
i +Un

i Ux
n+1
i −Un

i
Ux

n
i ; we get

r〠
n

k=0
δαk Un−k+1

i −Un−k
i +Un+1

i Ux
n
i +Un

i Ux
n+1
i

−Un
i Ux

n
i + Vx

n+1
i + q Uxx

n+1
i = f n+1i ,

22

r〠
n

k=0
δαk Vn−k+1

i − Vn−k
i +Un+1

i Vx
n
i +Un

i Vx
n+1
i

−Un
i Vx

n
i +Vn+1

i Ux
n
i +Vn

i Ux
n+1
i − Vn

i Ux
n
i

− q Vxx
n+1
i + p Uxxx

n+1
i = gn+1i ,

23

where r = τ −α/ Γ 2 − α . After simplifying Eqs. (22) and
(23), we get

r + Ux
n
i Un+1

i +Un
i Ux

n+1
i + Vx

n+1
i + q Uxx

n+1
i

= r + Ux
n
i Un

i − r〠
n

k=1
δαk Un−k+1

i −Un−k
i + f n+1i ,

24

r + Ux
n
i Vn+1

i + Vx
n
i U

n+1
i +Vn

i Ux
n+1
i

+Un
i Vx

n+1
i − q Vxx

n+1
i + p Uxxx

n+1
i

= r + Ux
n
i Vn

i +Un
i Vx

n
i

− r〠
n

k=1
δαk Vn−k+1

i −Vn−k
i + gn+1i

25

Using Eqs. (14) and (15) in Eqs. (24) and (25), we obtain

r + Ux
n
i W1

n+1
i + 〠

N

j=0
γn+1j Qj xi +Un

i W1x
n+1
i + 〠

N

j=0
γn+1j Qj′ xi

+ W2x
n+1
i + 〠

N

j=0
ρn+1j Qj′ xi + q W1xx

n+1
i + 〠

N

j=0
γn+1j Qj″ xi

= r + Ux
n
i Un

i − r〠
n

k=1
δαk Un−k+1

i −Un−k
i + f n+1i ,

r + Ux
n
i W2

n+1
i + 〠

N

j=0
ρn+1j Qj xi + Vx

n
i W1

n+1
i + 〠

N

j=0
γn+1j Qj xi

+ Vn
i W1x

n+1
i + 〠

N

j=0
γn+1j Qj′ xi +Un

i W2x
n+1
i + 〠

N

j=0
ρn+1j Qj′ xi

− q W2xx
n+1
i + 〠

N

j=0
ρn+1j Qj″ xi + p W1xxx

n+1
i + 〠

N

j=0
γn+1j Q

‴
j xi

= r + Ux
n
i Vn

i +Un
i Vx

n
i − r〠

n

k=1
δαk Vn−k+1

i − Vn−k
i + gn+1

i

26

Qj x =

Qj x + 3 13 hQj′ x0 + 25Qj x0 Q−2 x −
3
2 hQj′ x0 + 5Qj x0 Q−1 x , j = 0, 1, 2,

Qj x , 3 ≤ j ≤N − 3,

Qj x −
3
2 5Qj xN − hQj′ xN QN+1 x + 3 25Qj xN − 13hQj′ xN QN+2 x , j =N − 2,N − 1,N

20
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This leads to that

〠
N

j=0
r + Ux

n
i Qj xi +Un

i Qj′ xi + qQj″ xi γn+1j + 〠
N

j=0
Qj′ xi ρn+1j

= r + Ux
n
i Un

i − r〠
n

k=1
δαk Un−k+1

i −Un−k
i −W1

n+1
i + f n+1i ,

27

〠
N

j=0
r + Ux

n
i Qj xi +Un

i Qj′ xi − qQj″ xi ρn+1j

+ 〠
N

j=0
Vx

n
i Qj xi + Vn

i Qj′ xi + pQ
‴
j xi γn+1j

= r + Ux
n
i Vn

i +Un
i Vx

n
i − r〠

n

k=1
δαk Vn−k+1

i −Vn−k
i

−W2
n+1
i + gn+1

i ,

28

where W1
n+1
i and W2

n+1
i are the resulting terms from

the weight functions

W1
n+1
i = r + Ux

n
i W1

n+1
i +Un

i W1x
n+1
i

+ W2x
n+1
i + q W1xx

n+1
i ,

W2
n+1
i = r + Ux

n
i W2

n+1
i +Un

i W2x
n+1
i

− q W2xx
n+1
i + Vx

n
i W1

n+1
i

+ Vn
i W1x

n+1
i + p W1xxx

n+1
i

29

Using Eq. (20) and Table 1 for the coefficients Qj xi ,

Qj″ xi , Qj′ xi , and Q
‴
j xi , we may rewrite systems (27)

and (28) as follows:

where

Fn+1
i = r + Ux

n
i Un

i − r〠
n

k=1
δαk Un−k+1

i −Un−k
i −W1

n+1
i + f n+1i ,

Gn+1
i = r + Ux

n
i Vn

i +Un
i Vx

n
i − r〠

n

k=1
δαk Vn−k+1

i −Vn−k
i

−W2
n+1
i + gn+1i , i = 0, 1,⋯,N ,

35

9q
2 γn+10 + 5qγn+11 + q

2 γ
n+1
2 = h2Fn+1

0 ,

−
99p
4 γn+10 −

39p
2 γn+11 −

3p
4 γn+12 −

9qh
2 ρn+10 − 5qhρn+11 −

qh
2 ρn+12 = h3Gn+1

0 ,
, i = 0, 30

a11γ
n+1
0 + a12γ

n+1
1 + a13γ

n+1
2 + a14γ

n+1
3 −

47h
192 ρ

n+1
0 + 3h

32 ρ
n+1
1 + 27h

64 ρn+12 + h
24 ρ

n+1
3 = h2Fn+1

1 ,

c11γ
n+1
0 + c12γ

n+1
1 + c13γ

n+1
2 + c14γ

n+1
3 + d11ρ

n+1
0 + d12ρ

n+1
1 + d13ρ

n+1
2 d14ρ

n+1
3 = h3Gn+1

1 ,
, i = 1, 31

ai5γ
n+1
i−2 + ai6γ

n+1
i−1 + ai7γ

n+1
i + ai8γ

n+1
i+1 + ai9γ

n+1
i+2 −

h
24 ρ

n+1
i−2 −

5h
12 ρ

n+1
i−1 + 5h

12 ρ
n+1
i+1 + h

24 ρ
n+1
i+2 = h2Fn+1

i ,

ci5γ
n+1
i−2 + ci6γ

n+1
i−1 + ci7γ

n+1
i + ci8γ

n+1
i+1 + ci9γ

n+1
i+2 + di5ρ

n+1
i−2 + di6ρ

n+1
i−1 + di7ρ

n+1
i + di8ρ

n+1
i+1 + di9ρ

n+1
i+2 = h3Gn+1

i ,
, i = 2,⋯,N − 2, 32

aN−1
10 γn+1N−3 + aN−1

11 γn+1N−2 + aN−1
12 γn+1N−1 + aN−1

13 γn+1N −
h
24 ρ

n+1
N−3 −

27h
64 ρn+1N−2 −

3h
32 ρ

n+1
N−1 +

47h
192 ρ

n+1
N = h2Fn+1

N−1,

cN−1
10 γn+1N−3 + cN−1

11 γn+1N−2 + cN−1
12 γn+1N−1 + cN−1

13 γn+1N + dN−1
10 ρn+1N−3 + dN−1

11 ρn+1N−2 + dN−1
12 ρn+1N−1 + dN−1

13 ρn+1N = h3Gn+1
N−1,

, i =N − 1, 33

q
2 γ

n+1
N−2 + 5qγn+1N−1 +

9q
2 γn+1N = h2Fn+1

N ,

3p
4 γn+1N−2 +

39p
2 γn+1N−1 +

99p
4 γn+1N −

qh
2 ρn+1N−2 − 5qhρn+1N−1 −

9qh
2 ρn+1N = h3Gn+1

N ,
, i =N , 34
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and the following coefficients

a11 =
35h2
192 Ux

n
1 + r −

47Un
1h

192 −
17q
48 ,

a12 =
17h2
32 Ux

n
1 + r + 3Un

1h
32 −

11q
8 ,

a13 =
69h2
320 Ux

n
1 + r + 27Un

1h
64 + 5q

16 ,

a14 =
h2

120 Ux
n
1 + r + Un

1h
24 + q

6 ,

c11 =
35h3
192 Vx

n
1 −

47h2Vn
1

192 + 49p
16 ,

c12 =
17h3
32 Vx

n
1 +

3Vn
1h

2

32 + 9p
8 ,

c13 =
69h3
320 Vx

n
1 +

27Vn
1h

2

64 −
15p
16 ,

c14 =
h3

120 Vx
n
1 +

Vn
1h

2

24 + p
2 ,

d11 =
35h2
192 Ux

n
1 + r −

47Un
1h

192 + 17q
48 ,

d12 =
17h2
32 Ux

n
1 + r + 3Un

1h
32 + 11q

8 ,

d13 =
69h2
320 Ux

n
1 + r + 27Un

1h
64 −

5q
16 ,

d14 =
h2

120 Ux
n
1 + r + Un

1h
24 −

q
6 ,

ai5 =
h2

120 Ux
n
i + r −

Un
i h
24 + q

6 , ai6 =
13h2
60 Ux

n
i + r −

5Un
i h

12 + q
3 , ai7 =

11h2
20 Ux

n
i + r − q,

ai8 =
13h2
60 Ux

n
i + r + 5Un

i h
12 + q

3 , ai9 =
h2

120 Ux
n
i + r + Un

i h
24 + q

6 , ci5 =
h3

120 Vx
n
i −

Vn
i h

2

24 −
p
2 ,

ci6 =
13h3
60 Vx

n
i −

5Vn
i h

2

12 + p, ci7 =
11h3
20 Vx

n
i , ci8 =

13h3
60 Vx

n
i +

5Vn
i h

2

12 − p,

ci9 =
h3

120 Vx
n
i +

Vn
i h

2

24 + p
2 , di5 =

h2

120 Ux
n
i + r −

Un
i h
24 −

q
6 , di6 =

13h2
60 Ux

n
i + r −

5Un
i h

12 −
q
3 ,

di7 =
11h2
20 Ux

n
i + r + q, di8 =

13h2
60 Ux

n
i + r + 5Un

i h
12 −

q
3 , di9 =

h2

120 Ux
n
i + r + Un

i h
24 −

q
6 ,

i = 2,⋯,N − 2,

aN−1
10 = h2

120 Ux
n
N−1 + r −

Un
N−1h
24 + q

6 ,

aN−1
11 = 69h2

320 Ux
n
N−1 + r −

27Un
N−1h
64 + 5q

16 ,

aN−1
12 = 17h2

32 Ux
n
N−1 + r −

3Un
N−1h
32 −

11q
8 ,

aN−1
13 = 35h2

192 Ux
n
N−1 + r + 47Un

N−1h
192 −

17q
48 ,

cN−1
10 = h3

120 Vx
n
N−1 −

Vn
N−1h

2

24 −
p
2 ,

cN−1
11 = 69h3

320 Vx
n
N−1 −

27Vn
N−1h

2

64 + 15p
16 ,

cN−1
12 = 17h3

32 Vx
n
N−1 −

3Vn
N−1h

2

32 −
9p
8 ,

cN−1
13 = 35h3

192 Vx
n
N−1 +

47Vn
N−1h

2

192 −
49p
16 ,

dN−1
10 = h2

120 Ux
n
N−1 + r −

Un
N−1h
24 −

q
6 ,

dN−1
11 = 69h2

320 Ux
n
N−1 + r −

27Un
N−1h
64 −

5q
16 ,

dN−1
12 = 17h2

32 Ux
n
N−1 + r −

3Un
N−1h
32 + 11q

8 ,

dN−1
13 = 35h2

192 Ux
n
N−1 + r + 47Un

N−1h
192 + 17q

48

36
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System (30) to (34) can be written in blocks of five-
diagonal matrices as follows:

37

where

γn+1 =

γn+10

γn+11

⋮

γn+1N

,

ρn+1 =

ρn+10

ρn+11

⋮

ρn+1N

,

Fn+1 =

Fn+1
0

Fn+1
1

⋮

Fn+1
N

,

Gn+1 =

Gn+1
0

Gn+1
1

⋮

Gn+1
N

,

38

and A, B, C, and D are N + 1 × N + 1 matrices where

A =

9q
2 5q q

2 0 0 0 0 ⋯ 0 0

a11 a12 a13 a14 0 0 0 ⋯ 0 0
a25 a26 a27 a28 a29 0 0 ⋯ 0 0
0 a35 a36 a37 a38 a39 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ aN−2
5 aN−2

6 aN−2
7 aN−2

8 aN−2
9

0 0 0 0 ⋯ 0 aN−1
10 aN−1

11 aN−1
12 aN−1

13

0 0 0 0 ⋯ 0 0 q
2 5q 9q

2

,

B =

0 0 0 0 0 0 ⋯ 0 0  

−
47h
192

3h
32

27h
64

h
24 0 0 ⋯ 0 0  

−
h
24 −

5h
12 0 5h

12
h
24 0 ⋯ 0 0  

0 −
h
24 −

5h
12 0 5h

12
h
24 ⋯ 0 0  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ −
h
24 −

5h
12 0 5h

12
h
24  

0 0 0 ⋯ 0 −
h
24 −

27h
64 −

3h
32

47h
192  

0 0 0 ⋯ 0 0 0 0 0  

,

39

C =

−
297
4 −

117
2 −

9
4 0 0 0 0 ⋯ 0 0

c11 c12 c13 c14 0 0 0 ⋯ 0 0
c25 c26 c27 c28 c29 0 0 ⋯ 0 0
0 c35 c36 c37 c38 c39 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ cN−2
5 cN−2

6 cN−2
7 cN−2

8 cN−2
9

0 0 0 0 ⋯ 0 cN−1
10 cN−1

11 cN−1
12 cN−1

13

0 0 0 0 ⋯ 0 0 9
4

117
2

297
4

,

D =

−
9q
2 −5q −

q
2 0 0 0 0 ⋯ 0 0

d11 d12 d13 d14 0 0 0 ⋯ 0 0
d25 d26 d27 d28 d29 0 0 ⋯ 0 0
0 d35 d36 d37 d38 d39 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ dN−2
5 dN−2

6 dN−2
7 dN−2

8 dN−2
9

0 0 0 0 ⋯ 0 dN−1
10 dN−1

11 dN−1
12 dN−1

13

0 0 0 0 ⋯ 0 0 −
q
2 −5q −

9q
2
40

The initial vectors γ0i and ρ0i may be calculated from
Eq. (13) and the initial conditions (Eq. (4)) as follows:

120η1 xj = γ0j−2 + 26γ0j−1 + 66γ0j + 26γ0j+1 + γ0j+2, 120η2 xj = ρ0j−2 + 26ρ0j−1 + 66ρ0j + 26ρ0j+1 + ρ0j+2, 41

24hη1′ xj = −γ0j−2 − 10γ0j−1 + 10γ0j+1 + γ0j+2, 24hη2′ xj = −ρ0j−2 − 10ρ0j−1 + 10ρ0j+1 + ρ0j+2, 42

6h2η1″ xj = γ0j−2 + 2γ0j−1 − 6γ0j + 2γ0j+1 + γ0j+2, 6h2η2″ xj = ρ0j−2 + 2ρ0j−1 − 6ρ0j + 2ρ0j+1 + ρ0j+2 43
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Equation (41) creates two systems, each consisting of N
+ 1 equations and N + 5 unknown variables. So, using Eqs.

(42) and (43) at j = 0 and j =N to eliminate each γ0−2, γ
0
−1,

γ0N+1, γ
0
N+2, ρ

0
−2, ρ

0
−1, ρ

0
N+1, and ρ0N+2 from Eq. (41), we get

Systems (44) and (45) can be written in matrix form as
follows:

54 γ00 + 60 γ01 + 6 γ02 = 12 h2 η1″ x0 + 6hη1′ x0 + 120 η1 x0 , i = 0,

101 γ00 + 270 γ01 + 105 γ02 + 4 γ03 = 3 h2 η1″ x1 + 4hη1′ x1 + 480 η1 x1 , i = 1,

γ0i−2 + 26 γ0i−1 + 66 γ0i + 26 γ0i+1 + γ0i+2 = 120 η1 x2 , i = 2,⋯,N − 2,

4 γ0N−3 + 105 γ0N−2 + 270 γ0N−1 + 101 γ0N = 480 η1 xN−1 − 3 4hη1′ xN−1 − h2 η1″ xN−1 , i =N − 1,

6 γ0N−2 + 60 γ0N−1 + 54 γ0N = 120 η1 xN − 12 6hη1′ xN − h2 η1″ xN , i =N ,

44

54 ρ00 + 60 ρ01 + 6 ρ02 = 12 h2 η2″ x0 + 6hη2′ x0 + 120 η2 x0 , i = 0,

101 ρ00 + 270 ρ01 + 105 ρ02 + 4 ρ03 = 3 h2 η2″ x1 + 4hη2′ x1 + 480 η2 x1 , i = 1,

ρ0i−2 + 26 ρ0i−1 + 66 ρ0i + 26 ρ0i+1 + ρ0i+2 = 120η2 x2 , i = 2,⋯,N − 2,

4 ρ0N−3 + 105 ρ0N−2 + 270 ρ0N−1 + 101 ρ0N = 480 η2 xN−1 − 3 4hη2′ xN−1 − h2 η2″ xN−1 , i =N − 1,

6 ρ0N−2 + 60 ρ0N−1 + 54 ρ0N = 120 η2 xN − 12 6hη2′ xN − h2 η2″ xN , i =N

45

54 60 6 0 0 0 0 ⋯ 0
101 270 105 4 0 0 0 ⋯ 0
1 26 66 26 1 0 0 ⋯ 0
0 1 26 66 26 1 0 ⋯ 0
⋮ ⋮   ⋱ ⋱   ⋱   ⋮

0 0 ⋯ 0 1 26 66 26 1
0 0 ⋯ 0 0 4 105 270 101
0 0 ⋯ 0 0 0 6 60 54

γ00

γ01

γ02

γ03

⋮

γ0N−2

γ0N−1

γ0N

=

12 h2 η1″ x0 + 6hη1′ x0 + 120 η1 x0

3 h2 η1″ x1 + 4hη1′ x1 + 480 η1 x1

120 η1 x2

120 η1 x3

⋮

120 η1 xN−2

480 η1 xN−1 − 3 4hη1′ xN−1 − h2η1″ xN−1

120 η1 xN − 12 6hη1′ xN − h2η1″ xN

,

54 60 6 0 0 0 0 ⋯ 0
101 270 105 4 0 0 0 ⋯ 0
1 26 66 26 1 0 0 ⋯ 0
0 1 26 66 26 1 0 ⋯ 0
⋮ ⋮   ⋱ ⋱   ⋱   ⋮

0 0 ⋯ 0 1 26 66 26 1
0 0 ⋯ 0 0 4 105 270 101
0 0 ⋯ 0 0 0 6 60 54

ρ00

ρ01

ρ02

ρ03

⋮

ρ0N−2

ρ0N−1

ρ0N

=

−12 h2 η2″ x0 + 6h η2′ x0 + 120 η2 x0

3 h2 η2″ x1 + 4h η2′ x1 + 480 η2 x1

120 η2 x2

120 η2 x3

⋮

120 η2 xN−2

480 η2 xN−1 − 3 4h η2′ xN−1 − h2 η2″ xN−1

120 η2 xN − 12 6h η2′ xN − h2η2″ xN

46
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4. Stability Analysis

In this section, the stability of the suggested approach has
been investigated through the implementation of the von
Neumann technique. In order to execute this technique,
the nonlinear terms u x, t ∂u x, t /∂x , u x, t ∂v x, t
/∂x , and v x, t ∂u x, t /∂x in Eqs. (1) and (2) have been
linearized by regarding u x, t and v x, t as local constants
μ1 and μ2, respectively.

By implementing the L1-approximation method as
shown in Eqs. (8) and (9) and subsequently linearizing the
nonlinear terms using the linearization form given by Rubin
and Graves [40], the substitution of the approximate solu-
tions for u, v, and their respective derivatives at the knots
in the modified equation results in a difference equation with
the variables γi and ρi given as

a5 γ
n+1
i−2 + a6 γ

n+1
i−1 + a7 γ

n+1
i + a8 γ

n+1
i+1 + a9 γ

n+1
i+2 −

1
24h ρ

n+1
i−2 −

5
12h ρ

n+1
i−1 + 5

12h ρ
n+1
i+1

+ 1
24h ρ

n+1
i+2 = 2r 1

120 γ
n
i−2 +

13
60 γ

n
i−1 +

11
20 γ

n
i +

13
60 γ

n
i+1 +

1
120 γ

n
i+2

− 2r〠
n

k=1
δαk

1
120 γn−k+1i−2 − γn−ki−2 + 13

60 γn−k+1i−1 − γn−ki−1 + 11
20 γn−k+1i − γn−ki

+ 13
60 γn−k+1i+1 − γn−ki+1 + 1

120 γn−k+1i+2 − γn−ki+2 ,

47

c5γ
n+1
i−2 + c6γ

n+1
i−1 − c6γ

n+1
i+1 − c5γ

n+1
i+2 + d5ρ

n+1
i−2 + d6ρ

n+1
i−1

+ d7ρ
n+1
i + d8ρ

n+1
i+1 + d9ρ

n+1
i+2

= 2r 1
120 ρ

n
i−2 +

13
60 ρ

n
i−1 +

11
20 ρ

n
i +

13
60 ρ

n
i+1 +

1
120 ρ

n
i+2

− 2r〠
n

k=1
δαk

1
120 ρn−k+1i−2 − ρn−ki−2

+ 13
60 ρn−k+1i−1 − ρn−ki−1 + 11

20 ρn−k+1i − ρn−ki

+ 13
60 ρn−k+1i+1 − ρn−ki+1 + 1

120 ρn−k+1i+2 − ρn−ki+2 ,

48

where

a5 =
r
60 −

μ1
24h + q

6h2
,

a6 =
13r
30 −

5μ1
12h + q

3h2
,

a7 =
11r
10 −

q

h2
,

a8 =
13r
30 + 5μ1

12h + q

3h2
,

a9 =
r
60 + μ1

24h + q

6h2
,

c5 = −
μ2
24h −

p

2h3
,

c6 = −
5μ2
12h + p

h3
,

d5 =
2r
120 −

μ1
24h −

q

6h2
,

d6 =
13r
30 −

5μ1
12h −

q

3h2
,

d7 =
11r
10 + q

h2
,

d8 =
13r
30 + 5μ1

12h −
q

3h2
,

d9 =
r
60 + μ1

24h −
q

6h2
49

Now, we consider the solutions in terms of Fourier series
γnj = AξneI jθh and ρnj = BξneI jθh at a given point xj, where A
and B are the harmonic amplitude, θ and h are the mode
number and element size, respectively, and I = −1.
Substituting these solutions in Eq. (47) and simplifying the
terms, we get

ξn+1 A a5e
−2Iθh + a6e

−Iθh + a7 + a8e
Iθh + a9e

2Iθh

+ B
−1
24h e

−2Iθh −
5
12h e

−Iθh + 5
12h e

Iθh + 1
24h e

2Iθh

= 2A r
1
120 e

−2Iθh + 13
60 e

−Iθh + 11
20 + 13

60 e
Iθh + 1

120 e
2Iθh

ξn − 〠
n

k=1
δαk ξn−k+1 − ξn−k

= 2A r
1
120 e

−2Iθh + 13
60 e

−Iθh + 11
20 + 13

60 e
Iθh + 1

120 e
2Iθh

δαnξ
0 + 〠

n−1

k=0
δαk − δαk+1 ξn−k

50

After performing algebraic simplifications on the given
terms, we obtain

ξn+1 = Θ

Θ +Φ − Iψ
δαnξ

0 + 〠
n−1

k=0
δαk − δαk+1 ξn−k , 51

where ψ = B + Aμ1 /6h 5 + cos θh sin θh , Θ = A r/
30 33 + 26 cos θh + cos 2θh , and Φ = A q/3h2 3 − 2
cos θh − cos 2θh .

When we take the absolute value on both sides of
Eq. (51), we obtain

ξn+1 ≤
Θ2

Θ +Φ 2 + ψ2 δαn ξ0 + 〠
n−1

k=0
δαk − δαk+1 ξn−k ,

52

where δαk − δαk+1 > 0 using Lemma 4. The necessary and

sufficient condition for Θ2/ Θ +Φ 2 + ψ2 ≤ 1 is that

ΘΦ ≥ 0. Since q and r are positive, it follows that Θ ≥
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0 and Φ ≥ 0. Hence, ΘΦ ≥ 0 and

ξn+1 ≤ δαn ξ0 + 〠
n−1

k=0
δαk − δαk+1 ξn−k 53

Using Eq. (53), we get ξn+1 ≤ ξ0 for all n ≥ 0.
Similarly, by substitution of the solution in terms of

Fourier series into Eq. (48) and simplification, we get

ξn+1 = Θ

Θ +Φ + Iψ
δαnξ

0 + 〠
n−1

k=0
δαk − δαk+1 ξn−k , 54

where ψ = 1/6h3 sin θh h2 5 + cos θh B μ1 + A μ2 +
12Ap −1 + cos θh , Θ = B r/30 33 + 26 cos θh + cos
2θh , and Φ = B q/3h2 3 − 2 cos θh − cos 2θh , and
then, ξn+1 ≤ ξ0 for all n ≥ 0. As a result, the schemes are
unconditionally stable.

5. Error Analysis

Theorem 5 (see [41, 42]). Assume that the exact solutions
u x, t , v x, t ∈ C6 a, b , and P = a = x0, x1,⋯, xN = b
are an equidistant partition, each of length h, over the inter-
val a, b such that xi = ih, i = 1,⋯,N. Let U x, t and V x, t

be the unique spline approximations to the given problem at
the spatial grid points xi ∈P , i = 0,⋯,N ; then, for all t ≥ 0,
there exist κi, λi, independent of h, such that

Di u −U ≤ κih
6−i,

Di v −V ≤ λih
6−i,

i = 0, 1, 2, 3

55

Theorem 6. Let U and V be the numerical approximations
obtained by the redefined quintic B-spline method to the ana-
lytical exact solutions u and v, respectively, for Eqs. (1)–(4). If
f , g ∈ C2 a, b , then for sufficiently small h and τ, we have

U − u ≤ O h3 + τ2−α , V − v ≤ O h3 + τ2−α 56

Proof. Let U =∑N
j=0εj t Qj x , V =∑N

j=0ζj t Qj x be the
calculated spline for the approximate solutions U x, t ,
V x, t and the exact solution u x, t , v x, t , respectively.
Let Lu xi, t = LU xi, t = F xi, t , Lv xi, t = LV xi, t =
G xi, t , i = 0,⋯,N , be the collocating conditions. Then,
LU xi, t = F xi, t , LV xi, t = G xi, t , i = 0,⋯,N .

Using the difference system (32), the nth time step of L
U xi, t −U xi, t , L V xi, t −V xi, t can be written as

9q
2h2

ϱn+10 + 5q
h2

ϱn+11 + q

2h2
ϱn+12 =Fn+1

0 ,

−
99p
4h3

ϱn+10 −
39p
2h3

ϱn+11 −
3p
4h3

ϱn+12 −
9q
2h2

σn+10 −
5q
h2

σn+1
1 −

q

2h2
σn+1
2 =Gn+1

0 ,
, i = 0, 57

a11 ϱ
n+1
0 + a12 ϱ

n+1
1 + a13 ϱ

n+1
2 + a14 ϱ

n+1
3 −

47
192h σ

n+1
0 + 3

32hσ
n+1
1 + 27

64hσ
n+1
2 + 1

24h σ
n+1
3 =Fn+1

1 ,

c11 ϱ
n+1
0 + c12 ϱ

n+1
1 + c13 ϱ

n+1
2 + c14 ϱ

n+1
3 + d11 σ

n+1
0 + d12 σ

n+1
1 + d13 σ

n+1
2 d14 σ

n+1
3 =Gn+1

1 ,
, i = 1, 58

ai5 ϱ
n+1
i−2 + ai6 ϱ

n+1
i−1 + ai7 ϱ

n+1
i + ai8 ϱ

n+1
i+1 + ai9 ϱ

n+1
i+2 −

1
24hσ

n+1
i−2 −

5
12h σ

n+1
i−1 + 5

12h σ
n+1
i+1 + 1

24hσ
n+1
i+2 =Fn+1

i ,

ci5ϱ
n+1
i−2 + ci6ϱ

n+1
i−1 + ci7ϱ

n+1
i + ci8ϱ

n+1
i+1 + ci9ϱ

n+1
i+2 + di5σ

n+1
i−2 + di6σ

n+1
i−1 + di7σ

n+1
i + di8σ

n+1
i+1 + di9σ

n+1
i+2 =Gn+1

i ,
, i = 2,⋯,N − 2, 59

aN−1
10 ϱn+1N−3 + aN−1

11 ϱn+1N−2 + aN−1
12 ϱn+1N−1 + aN−1

13 ϱn+1N −
1
24h σ

n+1
N−3 −

27
64h σ

n+1
N−2 −

3
32hσ

n+1
N−1 +

47
192h σ

n+1
N =Fn+1

N−1,

cN−1
10 ϱn+1N−3 + cN−1

11 ϱn+1N−2 + cN−1
12 ϱn+1N−1 + cN−1

13 ρn+1N + dN−1
10 σn+1N−3 + dN−1

11 σn+1N−2 + dN−1
12 σn+1

N−1 + dN−1
13 σn+1N = Gn+1

N−1,
, i =N − 1, 60

q

2h2
ϱn+1N−2 +

5q
h2

ϱn+1N−1 +
9q
2h2

ϱn+1N =Fn+1
N ,

3p
4h3

ϱn+1N−2 +
39p
2h3

ϱn+1N−1 +
99p
4h3

ϱn+1N −
q

2h2
σn+1N−2 −

5q
h2

σn+1N−1 −
9q
2h2

σn+1
N =Gn+1

N ,
, i =N , 61
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where ϱni = γni − εni , σni = ρni − ζni , i = 0, 1,⋯,N , and Fn
i =

h2 Fn
i − F

n
i , Gn

i = h3 Gn
i −G

n
i , i = 0, 1,⋯,N

It is evident from Eq. (55) that

Fn
i = h2 Fn

i − F
n
i ≤ κh5, Gn

i = h3 Gn
i −G

n
i ≤ λh6 62

We define Fn =max Fn
i , 0 ≤ i ≤N and Gn =max

Gn
i , 0 ≤ i ≤N
Now, we can write Eqs. (57) to (61) in the matrix form as

QE = Z, 63

where , E = ϱn+1, σn+1 T , Z = Fn+1, Gn+1 T
, and

ϱn+1 =

ϱn+10

ϱn+11

⋮

ϱn+1N

,

σn+1 =

σn+1
0

σn+1
1

⋮

σn+1
N

,

Fn+1 =

Fn+1
0

Fn+1
1

⋮

Fn+1
N

,

Gn+1 =

Gn+1
0

Gn+1
1

⋮

Gn+1
N

64

The submatrices A, B, C, and D are defined by Eqs. (39)
and (40).

By defining

Ux
n =

r +Ux
n
0

⋮

r +Ux
n
N

,

Un =
Un

0

⋮

Un
N

,

Vn =
Vn

0

⋮

Vn
N

,

Vx
n =

Vx
n
0

⋮

Vx
n
N

, 65

we can rewrite A, C, and D as follows:

A = h2 Diag Un
x A0 + hDiag Un B − A1,

C = h3 Diag Vn
x A0 + h2 Diag Vn B − A2,

D = h2 Diag Un
x A0 + hDiag Un B + A1,

66

where A0, A1, and A2 are N + 1 × N + 1 matrices as
follows:

A0 =

0 0 0 0 0 0 ⋯ 0 0  
35
192

17
32

69
320

1
120 0 0 ⋯ 0 0  

1
120

13
60

11
20

13
60

1
120 0 ⋯ 0 0  

0 1
120

13
60

11
20

13
60

1
120 ⋯ 0 0  

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯
1
120

13
60

11
20

13
60

1
120  

0 0 0 ⋯ 0 1
120

69
320

17
32

35
192  

0 0 0 ⋯ 0 0 0 0 0  

,

A1 = q

−
9
2 −5 −

1
2 0 0 0 0 ⋯ 0 0

17
48

11
18

−5
16

−1
6 0 0 0 ⋯ 0 0

−1
6

−1
3 1 −1

3
−1
6 0 0 ⋯ 0 0

0 −1
6

−1
3 1 −1

3
−1
6 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯
−1
6

−1
3 1 −1

3
−1
6

0 0 0 0 ⋯ 0 −1
6

−5
16

11
8

17
48

0 0 0 0 ⋯ 0 0 −
−1
2 −5 −

9
2

,
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A2 = p

99
4

39
2

3
4 0 0 0 0 ⋯ 0 0

−49
16

−9
8

15
16

−1
2 0 0 0 ⋯ 0 0

1
2 −1 0 1 −1

2 0 0 ⋯ 0 0

0 1
2 −1 0 1 −1

2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯
1
2 −1 0 1 −1

2

0 0 0 0 ⋯ 0 1
2

−15
6

9
8

49
16

0 0 0 0 ⋯ 0 0 −3
4

−39
2

−99
4
67

The pentadiagonal matrices A and D are invertible and
hold the following condition:

BD−1
∞ C A−1

∞ < 1 68

According to [43], matrix Q is invertible. Moreover,

Q−1
∞ ≤

max A−1
∞, D−1

∞ 1 + BD−1
∞ 1 + C A−1

∞

1 − BD−1
∞ C A−1

∞

69

From Eq. (63) and norm inequalities, we have

E ∞ ≤ Q−1
∞ Z ∞ 70

From the classifications of the matrices A, C, and D
defined in Eq. (66) and the truncation error of time-
fractional discretization shown in Eqs. (8) and (9) and the
fact that Z ∞ ≤ O h5 , we have

E ∞ ≤ O h3 + τ2−α 71

Table 2: Maximum absolute error for Example 1 at t = 5, p = 3, q = 1, α = 0 5, M = 15, N = 10, and x ∈ 0, 1 .

xi
k = 5, l = 1

3 k = 10, l = 1
6

Eu1
Ev1

Eu1
Ev1

0.1 9 57704 × 10–8 8 872206 × 10–6 1 443626 × 10–9 1 343622 × 10–7

0.2 1 477581 × 10–7 4 894196 × 10–6 2 258622 × 10–9 7 30574 × 10–8

0.3 2 226532 × 10–7 4 081005 × 10–6 3 428509 × 10–9 5 952567 × 10–8

0.4 2 37724 × 10–7 1 936386 × 10–6 3 693375 × 10–9 2 62933 × 10–8

0.5 2 592446 × 10–7 3 772594 × 10–7 4 059209 × 10–9 1 473031 × 10–9

0.6 2 328105 × 10–7 1 250917 × 10–6 3 674178 × 10–9 2 361684 × 10–8

0.7 2 128223 × 10–7 3 336017 × 10–6 3 390102 × 10–9 5 66162 × 10–8

0.8 1 384045 × 10–7 4 285224 × 10–6 2 222081 × 10–9 7 067857 × 10–8

0.9 8 624864 × 10–8 8 096193 × 10–6 1 406435 × 10–9 1 313294 × 10–7

Time 7.78125 sec 8.875 sec

Table 3: Maximum absolute error for Example 1 at t = 1, p = 3, q = 1, α = 0 1, M =N = 10, and x ∈ 0, 1 .

xi
k = 5, l = 0 5 k = 30, l = 1

Eu2
Ev2

Eu2
Ev2

0.1 7 404186 × 10–8 6 474259 × 10–6 2 676951 × 10–9 2 426883 × 10–7

0.2 1 228618 × 10–7 3 460206 × 10–6 4 328953 × 10–9 1 305957 × 10–7

0.3 1 928312 × 10–7 2 650239 × 10–6 6 67696 × 10–9 1 035607 × 10–7

0.4 2 171545 × 10–7 9 071887 × 10–7 7 353315 × 10–9 4 147997 × 10–8

0.5 2 464134 × 10–7 6 065784 × 10–7 8 190674 × 10–9 7 802135 × 10–9

0.6 2 303387 × 10–7 2 011775 × 10–6 7 520783 × 10–9 5 568671 × 10–8

0.7 2 186918 × 10–7 4 14558 × 10–6 7 005586 × 10–9 1 226692 × 10–7

0.8 1 465566 × 10–7 4 957014 × 10–6 4 630311 × 10–9 1 496303 × 10–7

0.9 9 483132 × 10–8 9 101146 × 10–6 2 942323 × 10–9 2 758954 × 10–7

Time 4.78125 sec 5.546875 sec
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Based on the previous analysis, we deduce that E
⟶ 0 as h⟶ 0. Moreover, the convergence rate of the
proposed method is of third order.

6. Numerical Results

This section provides some illustrated cases to demonstrate
the applicability and efficiency of the proposed technique.
All the computations associated with the experiments dis-
cussed above were performed in Wolfram Mathematica
13.2 on a PC with Windows 11 64-bit OS + processor Intel
Core i7~2.4GHz.

In order to calculate the maximum absolute error Eu and
Ev, we use the following formula:

Eu = max
0≤i≤N
0≤n

u xi, tn −U xi, tn ,

Ev = max
0≤i≤N
0≤n

v xi, tn −V xi, tn
72

Accordingly [44], the convergence order (CO) of the
proposed approach is given by

CO = ln e1 − ln e2
ln h1/h2

= ln e1 − ln e2
ln N2/N1

, 73

where e1 and e2 are errors that correspond to grids with
mesh size h1 and h2, respectively, and h1 = b − a /N1 and
h2 = b − a /N2.

Example 1. Considering the system of the Whitham-Broer-
Kaup equations (Eqs. (1)–(4)) with f x, t = 0 and g x, t
= 0, we obtain the suggested equation in [13] taking into
account that α is only fractional for the temporal variable
and α = 1 for the spatial variable follows

∂αu x, t
∂tα

+ u x, t ∂u x, t
∂x

+ ∂v x, t
∂x

+ q
∂2u x, t

∂x2
= 0,

0.01272

0.01271

u 
(x

, t
)

0.01270

01.0

0.5

0.0
2

4

t

x

4

(a)

0.01272

0.01271

U
 (x

, t
)

0.01270

01.0

0.5

0.0
2

4

t

x

4

(b)

v 
(x

, t
)

0.0000694435

0.0000694440

0
1.0

0.5

0.0
2

4

t

x
0.5

0
2

4

t

x

(c)

V
 (x

, t
)

0.0000693
0.0000694

0.0000695
0.0000696

0
1.0

0.5

0.0
2

4

t

x
0.5

2

4

t

x

(d)

Figure 1: Comparison between (a, c) the exact solutions and (b, d) the approximate solutions of u x, t and v x, t for Example 1 at t = 5,
p = 3, q = 1, α = 0 5, M = 15, N = 10, k = 10, l = 1/6, and x ∈ 0, 1 .
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∂αv x, t
∂tα

+ u x, t ∂v x, t
∂x

+ v x, t ∂u x, t
∂x

+ p
∂3u x, t

∂x3
− q

∂2v x, t
∂x2

= 0
74

According to [13], the exact solutions for this system are

u1,2 x, t = ± l
k

tanh l

2k2 p + q2
kx −

l tα

Γ α + 1 + ξ0 ± 1 ,

v1,2 x, t = l2 p + q2 ∓ q

2k2 p + q2
sec h2 l

2k2 p + q2
kx −

l tα

Γ α + 1 + ξ0 ,

75

where k, l, and ξ0 are arbitrary constants. The initial and
boundary conditions (Eqs. (3) and (4)) can be obtained from
the exact solution.

In this example, we calculate the maximum absolute
error between the approximate solution obtained by the pro-
posed method and two exact solutions u1, v1 and u2, v2 com-
puted by Aminikhah et al. [45] by setting p = 3, q = 1, and
different values of k, l, α = 0 1 as shown in Tables 2 and 3.
Table 2 shows the maximum absolute error between the first
exact solutions u1, v1 and the solutions obtained by the
proposed method where t = 5, α = 0 5, M = 15, N = 10, and
x ∈ 0, 1 . Moreover, the exact and approximate solutions at
the same previous values in addition to k = 10, l = 1/6 are
represented for both u x, t and v x, t of Example 1 in

Table 4: Maximum absolute error for Example 1 at t = 1, p = 0, q = 1/2, α = 0 5, M =N = 10, and x ∈ 0, 1 .

xi
k = 5, l = 1

6 k = 20, l = 1
3

Eu2
Ev2

Eu2
Ev2

0.1 4 577737 × 10–7 3 888425 × 10–8 5 82965 × 10–8 2 44551 × 10–9

0.2 1 03076 × 10–6 8 846013 × 10–8 1 319732 × 10–7 5 556138 × 10–9

0.3 1 372999 × 10–6 1 18648 × 10–7 1 764323 × 10–7 7 444041 × 10–9

0.4 1 591104 × 10–6 1 379636 × 10–7 2 047178 × 10–7 8 647319 × 10–9

0.5 1 664434 × 10–6 1 443402 × 10–7 2 139754 × 10–7 9 038127 × 10–9

0.6 1 602753 × 10–6 1 385319 × 10–7 2 054294 × 10–7 8 666063 × 10–9

0.7 1 392487 × 10–6 1 196261 × 10–7 1 776245 × 10–7 7 47629 × 10–9

0.8 1 051622 × 10–6 8 958753 × 10–8 1 33253 × 10–7 5 593265 × 10–9

0.9 4 665763 × 10–7 3 958754 × 10–8 5 883528 × 10–8 2 468551 × 10–9

Time 4.859375 sec 5.421875 sec

Table 5: Maximum absolute error for Example 1 at t = 1, p = 3, q = 1, α = 0 1, and x ∈ 0, 1 .

xi, t j ADM [46] VIM [47] Present method
Eu Ev Eu Ev Eu Ev

(0.1. 0.1) 1 04892 × 10–4 6 41419 × 10–3 1 23033 × 10–4 1 10430 × 10–4 1 8389 × 10–9 1 483 × 10–7

(0.1, 0.3) 9 64474 × 10–5 5 99783 × 10–3 3 69597 × 10–4 3 31865 × 10–4 1 488 × 10–9 1 363 × 10–7

(0.1, 0.5) 8 88312 × 10–5 5 61507 × 10–3 6 16873 × 10–4 5 54071 × 10–4 1 4388 × 10–9 1 34 × 10–7

(0.2, 0.1) 4 25408 × 10–4 1 33181 × 10–2 1 19869 × 10–4 1 07016 × 10–4 3 3846 × 10–9 7 966 × 10–8

(0.2, 0.3) 3 91098 × 10–4 1 24441 × 10–2 3 60098 × 10–4 3 21601 × 10–4 2 3682 × 10–9 7 416 × 10–8

(0.2, 0.5) 3 60161 × 10–4 1 16416 × 10–2 6 01006 × 10–4 5 36927 × 10–4 2 2466 × 10–9 7 2915 × 10–8

(0.3, 0.1) 9 71922 × 10–4 2 07641 × 10–2 1 16789 × 10–4 1 03737 × 10–4 5 346 × 10–9 6 413 × 10–8

(0.3, 0.3) 8 93309 × 10–4 1 93852 × 10–2 3 50866 × 10–4 3 11737 × 10–4 3 615 × 10–9 6 039 × 10–8

(0.3, 0.5) 8 22452 × 10–4 1 81209 × 10–2 5 85610 × 10–4 5 20447 × 10–4 3 409 × 10–9 5 942 × 10–8

(0.4, 0.1) 1 75596 × 10–3 2 88100 × 10–2 1 13829 × 10–4 1 00579 × 10–4 6 1408 × 10–9 2 7807 × 10–8

(0.4, 0.3) 1 61430 × 10–3 2 68724 × 10–2 3 41948 × 10–4 3 02245 × 10–4 3 9297 × 10–9 2 658 × 10–8

(0.4, 0.5) 1 48578 × 10–3 2 50985 × 10–2 5 70710 × 10–4 5 04593 × 10–4 3 67 × 10–9 2 623 × 10–8

(0.5, 0.1) 2 79519 × 10–3 3 75193 × 10–2 1 10936 × 10–4 9 75385 × 10–5 6 7274 × 10–9 6 521 × 10–10

(0.5, 0.3) 2 56714 × 10–3 3 49617 × 10–2 3 33274 × 10–4 2 93107 × 10–4 4 3194 × 10–9 1 228 × 10–9

(0.5, 0.5) 2 36184 × 10–3 3 26239 × 10–2 5 56235 × 10–4 4 89335 × 10–4 4 0343 × 10–9 1 4237 × 10–9
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Figure 2: Comparison between (a, c) the exact solutions and (b, d) the approximate solutions of u x, t and v x, t for Example 2 at t = 1,
p = 3, q = 1, α = 0 1, M = 10, N = 20, and x ∈ 0, 1 .

Table 6: Maximum absolute error for Example 2 at t = 1, p = 3, q = 1, α = 0 1, and x ∈ 0, 1 .

xi
N = 20,M = 10 N = 50,M = 50 Convergence order

Eu Ev Eu Ev COu COv

0.1 3 426221 × 10–6 1 424237 × 10–4 1 701902 × 10–7 7 56968 × 10–6 3.28 3.20

0.2 8 796811 × 10–6 1 193187 × 10–4 4 08002 × 10–7 5 937313 × 10–6 3.35 3.27

0.3 1 477359 × 10–5 6 35068 × 10–5 6 719145 × 10–7 3 354831 × 10–6 3.37 3.21

0.4 1 96627 × 10–5 9 069374 × 10–5 8 858668 × 10–7 4 511937 × 10–6 3.38 3.27

0.5 2 154264 × 10–5 1 128726 × 10–4 9 663949 × 10–7 4 615728 × 10–6 3.39 3.49

0.6 1 918838 × 10–5 1 786663 × 10–4 8 610035 × 10–7 7 656247 × 10–6 3.39 3.44

0.7 1 301923 × 10–5 1 829759 × 10–4 5 885956 × 10–7 8 017675 × 10–6 3.38 3.41

0.8 5 513356 × 10–6 1 102128 × 10–4 2 565339 × 10–7 4 970789 × 10–6 3.35 3.38

0.9 4 292588 × 10–7 8 694919 × 10–6 2 576748 × 10–8 4 045807 × 10–7 3.07 3.35

Time 19.6875 sec 409.547 sec
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Figure 1. The maximum absolute error between the second
exact solutions u2, v2 and the approximate solutions for
two sets of parameters t = 1, p = 3, q = 1, α = 0 1,M =N = 10
and t = 1, p = 0, q = 1/2, α = 0 5,M =N = 10 are tabulated in
Tables 3 and 4, respectively. Table 5 compares the accuracy
of the proposed method and the other popular existing
methods for Example 1 at α = 1.

Example 2. Consider systems (1)–(4) with p = 3, q = 1, and

f x, t = 2qt2 1 − 3x + 2x2 1 − x t2−α

Γ 3 − α
+ t4x3 3x2 − 5x + 2

+ t sin πx + πx cos πx ,

g x, t = t −6pt + π cos πx −2q − t2 x − 1 x3

+ x sin πx π2q + t2x 3 − 4x + xt−α sin πx
Γ 2 − α

76

The exact solution to this problem is as follows:

u x, t = t2x2 1 − x ,
v x, t = tx sin πx

77

The initial and boundary conditions (Eqs. (3) and (4))
can be obtained from the exact solution. In this example,
we applied the proposed method for solving the nonhomo-
geneous systems (1)–(4) for two different sets N = 20,
M = 10 and N =M = 50. The calculated solutions using the
suggested approach are compared to the exact solutions
at t = 1, p = 3, q = 1, α = 0 1, and x ∈ 0, 1 , and the maxi-
mum absolute errors and convergence rates are tabulated
in Table 6. Figure 2 shows the exact and approximate solutions
of u x, t and v x, t of Example 2 at t = 1, p = 3, q = 1, α = 0 1,
M = 10, N = 20, and x ∈ 0, 1 .

7. Conclusion

In this study, the time-fractional WBK equations were success-
fully solved using the redefined quintic B-spline collocation
method. To achieve this, the L1-approximation technique in
time and the redefined quintic B-spline collocation scheme in
space have been combined.We conducted a vonNeumann sta-
bility analysis, which confirmed that the method used for solv-
ing the time-fractional WBK equations is unconditionally
stable. The order of convergence is shown to be O h3 + τ2−α .
To evaluate the accuracy of our approach, we compared our
solutions to the exact solutions obtained by Aminikhah et al.
[45]. The comparison revealed that our method is highly effec-
tive in solving the given equations, as it produced results that
closely matched the exact solutions.
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