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In this study, Secant Kumaraswamy family of distributions is proposed and studied. This is motivated by the fact that no one
distribution can model all types of data from different fields. Therefore, there is the need to develop distributions with
desirable properties and flexible enough for modelling data exhibiting different characteristics. Some properties of the new
family of distributions, including the quantile function, moments, moment generating function, and mean residual life
function, are derived. Five special cases of the family of distributions are presented, and their flexibility is shown by the varying
degrees of skewness and kurtosis and nonmonotonic hazard rates. The maximum likelihood estimation method is used to
obtain estimators of the family of distributions. Two location-scale regression models are developed for the Secant
Kumaraswamy Weibull distribution, which is a special case of the family of distributions. Six different real datasets are used to
demonstrate the usefulness of the family of distributions and the regression models. The results show that the family of
distributions can be used to model real datasets.

1. Introduction

Data is constantly being generated in all fields including
engineering, medicine, and finance. The understanding of
data is very important for making critical decisions in these
fields. Thus, it is extremely important for data to be appro-
priately modelled for this purpose. Finding a model that
can appropriately describe the data is crucial to unearthing
meaningful information from it. Probability distributions
are useful for modelling data. However, data from various
fields exhibit varying characteristics making it impossible
for any single distribution to be used in modelling data from

all fields. Thus, over the years, several distributions have
been developed that exhibit various degrees of flexibility
for the purposes of modelling data from various fields.

Over the years, several methods have been used to
develop distributions. A very popular method is the use of
generators or families of distributions. This involves modify-
ing a baseline distribution by substituting it into the families
of distributions. Some families of distributions developed
include Kumaraswamy-G (Kw-G) [1], Zubair-G family [2],
Sin-G [3, 4], Cos-G [3, 4], Tan-G [3], extended odd
Fréchet-G family [5], arcsine exponentiated-X family [6],
tangent Topp-Leone-G [7], Marshall-Olkin Zubair-G [8],
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secant-G class (Sec-G) [9], new cotangent-G [10], cosine
Topp-Leone-G [11], weighted cosine-G [12], transmuted
modified power-generated family [13], modified-half nor-
mal family [14], and logistic cotangent exponentiated gener-
alized family [15].

This study develops a new family of distributions by
using Kumaraswamy generator (Kw-G) developed by Cor-
deiro and De Castro [1] and the secant generator (Sec-G)
developed by Souza et al. [9]. Trigonometric extensions have
become very popular for the development of distributions in
recent years because of the advantage of modifying a distri-
bution without the addition of a new parameter and the
additional advantage of the varying nature of trigonometric
functions. Therefore, this study is motivated by the need to
obtain more flexible distributions with varying degrees of
kurtosis and skewness, including nonmonotonic hazard rate
shapes. Thus, the new family of distributions derived in this
study is more flexible and, hence, more useful in modelling
datasets with varying characteristics. The study also intro-
duces regression models with two different structures, which
take advantage of the flexibility of the developed family of
distributions.

The remainder of the study is organized as follows: Sec-
tion 2 presents the Secant Kumaraswamy family of distribu-
tions. The mixture representation of the family of
distribution is also presented in the section. Some statistical
properties of the distribution are presented in Section 3. Sec-
tion 4 presents five special cases of the family of distribu-
tions. Maximum likelihood estimators of the family of
distributions are presented in Section 5. Monte Carlo simu-
lation studies on the estimators are performed using a spe-
cial case of the family of distributions in the section. Real
datasets are used to demonstrate the usefulness of the family
of distributions in Section 6. Two location-scale regression
models are presented in Section 7 with applications to a real
datasets. The conclusion of the study is presented in Section
8. An illustration of the framework of the study is presented
in Figure 1.

2. Secant Kumaraswamy
Family of Distributions

Cordeiro and De Castro [1] developed the Kumaraswamy-G
(Kw-G) family of distributions with cumulative distribution

function (CDF) given as H x = 1 − 1 − G x ; θ a b , x ∈ℝ
, a > 0, b > 0. The CDF of the Sec-G family of distributions
proposed by Souza et al. [9] is given as F x = Sec π/3 H
x − 1.

Substituting the CDF of the Kw-G family of distributions
into the CDF of the Sec-G family of distributions gives the
CDF of the SKw-G family of distributions as

F x = sec π

3 1 − 1 −G x ; θ a b − 1, x ∈ℝ 1

Differentiating equation (1) gives the probability density
function (PDF) of the SKw-G family of distributions as

f x = πabg x ; θ
sec π/3 1 − 1 − G x ; θ a b tan π/3 1 − 1 −G x ; θ a b

3G x ; θ 1−a 1 − G x ; θ a 1−b , x ∈ℝ

2

For simplicity, let G x =G x ; θ and g x = g x ; θ .
The survival function and hazard rate function (HRF) of
the SKw-G family of distributions are given, respectively, as

S x = 2 − sec π

3 1 − 1 −G x a b , x ∈ℝ, 3

and

h x =
πab/3 g x sec π/3 1 − 1 −G x a b tan π/3 1 − 1 −G x a b

G x 1−a 1 −G x a 1−b 2 − sec π/3 1 − 1 −G x a b
, x ∈ℝ

4

2.1. Mixture Representation of SKw-G Family. Mixture rep-
resentations are useful in the derivation of some statistical
properties of the SKw-G family of distributions. The mixture
representation of the PDF of the SKw-G distribution is
obtained in this section.

Lemma 1. The mixture representation of the SKw-G family of
distributions is obtained as

f x = ab〠
∞

k=0
〠
∞

j=0
〠
∞

i=0
wijkg x G x a i+1 −1, 5

where

wijk =
−1 k+j+i π/3 2kE2k 2k

2k

2k − 1

j

b j + 1 − 1

i

6

Proof. From Souza et al. [9], the expansion of the Sec-G fam-
ily of distributions is given as sec π/3 G x =∑∞

k=0 E2k
−1 k / 2k π/3 G x 2k, where E2k is the Euler num-
ber. Thus, substituting the expansion into the PDF in equa-
tion (2) gives the expression

f x = ab〠
∞

k=0

π

3
2k E2k −1 k 2k

2k g x G x a−1 1 −G x a b−1

1 − 1 −G x a b 2k−1

7

Given that 0 < 1 −G x a b < 1, applying binomial series

expansion on 1 − 1 −G x a b 2k−1
gives

1 − 1 −G x a b 2k−1
= 〠

∞

j=0
−1 j

2k−1

j
1 −G x a bj

8
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Substituting equation (8) into equation (7) further gives
the PDF as

f x = ab〠
∞

k=0
〠
∞

j=0

π/3 2kE2k −1 k+j 2k
2k

2k−1

j
g x G x a−1 1 −G x a b j+1 −1

9

Further application of the binomial series expansion and
simplification of the PDF in equation (9) gives

f x = ab〠
∞

k=0
〠
∞

j=0
〠
∞

i=0

−1 k+j+i π/3 2kE2k −1 k 2k
2k

2k − 1

j

b j + 1 − 1

i
g x G x a i+1 −1

10

Letting

wijk =
−1 k+j+i π/3 2kE2k 2k

2k
2k − 1

j

b j + 1 − 1
i

, 11

in equation (10) completes the proof.

Special cases of the SKw-G
family of distributions

Using Sec-G and Kumaraswamy-G families of distributions to develop the
secant Kumaraswamy-G (SKw-G) family of distributions

Statistical properties of SKw-G family
of distributions

Moments and moment
generating function

Quantile function

Mean residual
life function

Secant Kumaraswamy weibull
distribution

Secant Kumaraswamy chen
distribution

Secant Kumaraswamy burr XII
distribution

Secant Kumaraswamy gompertz
distribution

Secant Kumaraswamy fréchet
distribution

Parameter estimation using maximum
likelihood method and simulation study

ApplicationsKevlar/epoxy data

Breast cancer data

Glass fibre strength data

Survival times of guinea
pigs data

Maximum flood data

Log-Secant Kumaraswamy weibull regression
model, with two regression structures, and

application to survival times of hypertension data

Conclusion

Figure 1: Flowchart of the study.
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3. Statistical Properties

In this section, some statistical properties of the SKw-G fam-
ily of distributions are derived. These properties include the
quantile function, moments, moments generating function,
and mean residual function.

3.1. Quantile Function. The quantile function of the SKw-G
distribution is presented in this subsection. The quantile
function is useful for random generation of numbers of a
given distribution. It can also be used to obtain the skewness
and kurtosis of a distribution.

Proposition 2. The quantile function of the SKw-G distribu-
tion is given by

Qx u =G−1 1 − 1 −
3
π

arcsec u + 1
1/b 1/a

, 0 ≤ u ≤ 1,

12

where G−1 ⋅ denotes the quantile function of the baseline
distribution.

Proof. Letting the CDF of the family of distributions in equa-
tion (1) to be equal to u and making x =Qx u the subject
yield the quantile function of the SKw-G family of distribu-
tions.

3.2. Moments and Moment Generating Function. This sec-
tion presents the ordinary moment, incomplete moment,
and moment generating function of the SKw-G family of
distributions. The functions can be used to characterize the
distribution.

3.2.1. Ordinary and Incomplete Moments. The ordinary
moments of a distribution are useful in obtaining the central
tendencies and dispersions of a distribution, among other
uses.

Proposition 3. The SKw-G family’s rth ordinary moment is
given as

μr′= ab〠
∞

k=1
〠
∞

j=0
〠
∞

i=0
wijk

ℝ
xrg x G x a i+1 −1dx, r = 1, 2, 3, ⋯

13

Proof. The rth ordinary moment of a distribution can be
defined as μr′= E Xr = ℝx

r f x dx.
The proof is complete when the mixture representation

in equation (5) is substituted into the definition of the rth

ordinary moment.

Proposition 4. The SKw-G family’s rth incomplete moment is
given by

φr t = ab〠
∞

k=0
〠
∞

j=0
〠
∞

i=0
wijk

t

−∞
xrg x G x a i+1 −1dx, r = 1, 2, 3, ⋯

14

Proof. The rth incomplete moment by definition is φr t =
t
−∞xrdF x The proof is complete when the mixture repre-

sentation in equation (5) is substituted into the definition of
the incomplete moments φr t .

3.2.2. Moment Generating Function. The moment generating
function of a distribution, if it exists, is useful for obtaining
the moments of a distribution. The moment generating
function of the SKw-G distribution is obtained in this
subsection.

Proposition 5. The moment generating function of the SKw-
G family is obtained as

MX t = ab〠
∞

r=0
〠
∞

k=0
〠
∞

j=0
〠
∞

i=0

wijkt
r

r ℝ
xrg x G x a i+1 −1dx, r = 1, 2, 3, ⋯

15

Proof. By definition MX t = E etX = ℝe
txdF x . Using the

Taylor series expansion, etX =∑∞
r=0t

rXr/r , then MX t =
∑∞

r=0 tr/r μr′ Substituting μr′ in equation (13) into the defi-
nition of the moment generating function completes the
proof.

3.3. Mean Residual Life. The mean residual life function of a
distribution is useful in describing the remaining life time of
a system. It has usefulness in many fields such as engineer-
ing, actuarial science, and biomedical sciences, among
others.

Proposition 6. The mean residual life of the SKw-G family of
distributions is obtained as

m t = 1
1 − F t

μ − ab〠
∞

k=0
〠
∞

j=0
〠
∞

i=0
wijk

t

−∞
xg x G x a i+1 −1dx − t

16

Proof. The mean residual life by definition is given as m t

= 1/ 1 − F t μ− t
−∞xf x dx − t. The substitution of

the mixture representation of f x in equation (5) into m t
completes the proof.

4. Some Special Cases of the SKw-G Family

Special cases of the SKw-G family of distributions are
presented in this section. These special distributions used
Weibull, Chen, Burr XII, Gompertz, and Fréchet distribu-
tions as the baseline distributions.
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4.1. Secant Kumaraswamy Weibull Distribution. Given the
Weibull distribution [16], with CDF and PDF given as G x
= 1 − e−λx

β
and g x = λβxβ−1e−λx

β
, x > 0, λ > 0, β > 0,

respectively. Substituting the CDF of the Weibull distribu-
tion into the CDF of the SKw-G family of distributions in
equation (1) gives the CDF of the Secant Kumaraswamy
Weibull (SKwW) distribution as

F x = sec π

3 1 − 1 − 1 − e−λx
β a b

− 1, x > 0, λ > 0, β > 0, a > 0, b > 0
17

The corresponding PDF of the SKwW distributions
can be obtained by either substituting the PDF and CDF
of the Weibull distribution into the PDF of the SKw-G
family of distributions in equation (2) or by differentiating
equation (17). Thus, the PDF of the SKwW distribution is
obtained as

The HRF of the SKwW distribution is obtained as

It should be noted that the SKwW distribution is the
same as the Sec-Kum-W distribution by Souza et al. [9].
Figure 2 shows the PDF and HRF of the SKwW distribution.
It can be observed that the PDF exhibits decreasing, increas-
ing, left skewed, right skewed, and approximately symmetric
shapes. Also, it can be observed that the HRF exhibits
decreasing, increasing, bathtub, and reverse bathtub shapes.

4.2. Secant Kumaraswamy Chen Distribution. Secant
Kumaraswamy Chen (SKwC) distribution is also presented
by substituting the Chen distribution [17]. The CDF and

PDF of the Chen distribution are given, respectively, as G

x = 1 − eβ 1−exλ and g x = λβxλ−1e β 1−exλ +xλ , x > 0, λ > 0,
β > 0. The CDF of the SKwC distribution is obtained by

substituting the CDF of the Chen distribution into the
CDF of the SKw-G family of distributions in equation (1).
Also, the PDF of the SKwC distribution is obtained by
substituting the CDF and PDF of the SKwC distribution into
the PDF of SKw-G family of distributions in equation (2).
Thus, the CDF and PDF of the SKwC distribution are given,
respectively, as

F x = sec π

3 1 − 1 − 1 − eβ 1−exλ
a b

− 1, x > 0, λ > 0, β > 0, a > 0, b > 0,
20

and

f x = πabβλ
sec π/3 1 − 1 − 1 − e−λx

β a b
tan π/3 1 − 1 − 1 − e−λx

β a b

3x1−βeλxβ 1 − e−λxβ
1−a 1 − 1 − e−λxβ

a 1−b , x > 0 18

h x = πabβλ
xβ−1e−λx

β sec π/3 1 − 1 − 1 − e−λx
β a b

tan π/3 1 − 1 − 1 − e−λx
β a b

3 1 − e−λxβ
1−a 1 − 1 − e−λxβ

a 1−b
2 − sec π/3 1 − 1 − 1 − e−λxβ

a b
19

f x = πabβλ

sec π/3 1 − 1 − 1 − eβ 1−exλ
a b

tan π/3 1 − 1 − 1 − eβ 1−exλ
a b

3x1−λe− β 1−exλ +xλ 1 − eβ 1−exλ 1−a
1 − 1 − eβ 1−exλ a 1−b , x > 0 21
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Also, the HRF of the SKwC distribution is given as

Figure 3 shows the plots of the PDF and HRF of the
SKwC distribution. The PDF exhibits decreasing, increasing,
right skewed, left skewed, and symmetric shapes. HRF shows
increasing, decreasing, bathtub, and modified bathtub
shapes.

4.3. Secant Kumaraswamy Burr XII Distribution. The Secant
Kumaraswamy Burr XII (SKwBXII) distribution is obtained
in this section by using the three-parameter Burr XII distribu-

tion [18] with CDF and PDF, respectively, given as G x = 1
− 1 + x/λ c −β and g x = cβ/λ x/λ c−1 1 + x/λ c − β+1 ,
x > 0, λ > 0, c > 0, β > 0. Using the CDF and PDF of the
SKw-G family of distributions given in equations (1) and (2),
respectively, the CDF and PDF of the SKwBXII distribution
are obtained, respectively, as

F x = sec π

3 1 − 1 − 1 − 1 + x
λ

c −β a b

− 1, x > 0, λ > 0, c > 0, β > 0, a > 0, b > 0,
23

and

f x = πabcβ
1 + x/λ c − β+1 1 − 1 + x/λ c −β a−1

1 − 1 − 1 + x/λ c −β a b−1

3λ x/λ 1−c 2 − sec π/3 1 − 1 − 1 − 1 + x/λ c −β a b

× sec π

3 1 − 1 − 1 − 1 + x
λ

c −β a b

tan

π

3 1 − 1 − 1 − 1 + x
λ

c −β a b

, x > 0

24
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Figure 2: PDF and HRF of SKwW distribution.

h x = πabβλ

e β 1−exλ +xλ sec π/3 1 − 1 − 1 − eβ 1−exλ
a b

tan π/3 1 − 1 − 1 − eβ 1−exλ
a b

3x1−λ 1 − eβ 1−exλ 1−a
1 − 1 − eβ 1−exλ a 1−b

2 − sec π/3 1 − 1 − 1 − eβ 1−exλ a b
, x > 0

22
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The HRF of the SKwBXII distribution is also given as

Figure 4 shows the PDF and HRF plots of the SKwBXII
distribution. It can be observed that the PDF exhibits
decreasing, increasing, right skewed, left skewed, and sym-
metric shapes, whiles the HRF exhibits increasing, decreas-
ing, bathtub, and modified bathtub shapes.

4.4. Secant Kumaraswamy Gompertz Distribution. The
Gompertz distribution [19] is used as the baseline distribu-
tion for the proposed secant Kumaraswamy Gompertz
(SKwG) distribution. The CDF and PDF of the Gompertz
distribution, respectively, are G x = 1 − e −λ eβx−1 and g x

= λβe λ+βx+λeβx , x > 0, λ > 0, β > 0. The CDF and PDF of the
SKwG distribution are obtained, respectively, as

F x = sec π

3 1 − 1 − 1 − e −λ eβx−1 a b

− 1, x > 0, λ > 0, β > 0, a > 0, b > 0,
26

and
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Figure 3: PDF and HRF of SKwC distribution.

h x = πabcβ
x/λ c−1 1 + x/λ c − β+1 sec π/3 1 − 1 − 1 − 1 + x/λ c −β a b

tan π/3 1 − 1 − 1 − 1 + x/λ c −β a b

3λ 1 − 1 + x/λ c −β 1−a
1 − 1 − 1 + x/λ c −β a 1−b

2 − sec π/3 1 − 1 − 1 − 1 + x/λ c −β a b
, x ∈ℝ

25

f x = πabβλ
sec π/3 1 − 1 − 1 − e −λ eβx−1 a b

tan π/3 1 − 1 − 1 − e −λ eβx−1 a b

3e− λ+βx+λeβx 1 − e −λ eβx−1 1−a
1 − 1 − e −λ eβx−1 a 1−b , x > 0 27
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The HRF of the SKwG distribution is obtained as

The PDF and HRF plots are shown in Figure 5 for the
SKwG distribution. It can be observed that the PDF exhibits
decreasing, increasing, right skewed, left skewed, and
approximately symmetric shapes whiles the HRF exhibits
increasing, decreasing, and bathtub shapes.

4.5. Secant Kumaraswamy Fréchet Distribution. The Secant
Kumaraswamy Fréchet (SKwF) distribution uses the Fréchet
distribution [20] with CDF and PDF, respectively, given as
G x = e−λx

−β
and g x = λβx− β+1 e−λx

−β
, x > 0, λ > 0, β > 0

as the baseline distribution. The CDF of SKwF distribution
is obtained as

F x = sec π

3 1 − 1 − e−aλx
−β b

− 1, x > 0, λ > 0, β > 0, a > 0, b > 0
29

The PDF of the SKwF distribution is obtained as
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Figure 4: PDF and HRF of SKwBXII distribution.

h x = πabβλ
e λ+βx+λeβx sec π/3 1 − 1 − 1 − e −λ eβx−1 a b

tan π/3 1 − 1 − 1 − e −λ eβx−1 a b

3 1 − e −λ eβx−1 1−a
1 − 1 − e −λ eβx−1 a 1−b

2 − sec π/3 1 − 1 − 1 − e −λ eβx−1 a b
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f x = πabβλ
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−β b
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−β b
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The HRF of the SKwF distribution is also obtained as

Figure 6 shows the PDF and HRF plots for the SKwF dis-
tribution. It can be observed that the PDF shows decreasing,
left skewed, right skewed, and approximately symmetric
shapes, whiles the HRF shows decreasing, increasing, and
upside-down bathtub shapes.

5. Parameter Estimation

The estimation of the parameters of the SKw-G family of
distributions is given in the section. The maximum likeli-
hood method is used for estimating the parameters of the
distribution. Also, a simulation study is conducted in this
section to ascertain the behavior of the parameter
estimators.

5.1. Maximum Likelihood Estimation. Let xi
n
i=1 be n sam-

ples from the SKw-G family of distributions with density
function f xi,Θ . Also, let Θ = a, b, θ ′ be a vector of
parameters. Then, the log-likelihood function is given as

ℓ Θ = log
n

i=1
f xi,Θ = 〠

n

i=1
logf xi,Θ 32

The log-likelihood function for the SKw-G family of dis-
tributions is obtained by substituting its PDF in equation (2)
into equation (32). The substitution, with some algebraic
manipulation, gives

ℓ Θ = n log π

3 + n log ab + 〠
n

i=1
log g xi, θ + a − 1

〠
n

i=1
log G xi, θ + b − 1 〠

n

i=1
log 1 − G xi, θ a

+ 〠
n

i=1
sec π

3 1 − 1 − G x a b

+ 〠
n

i=1
tan π

3 1 − 1 −G x a b

33
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Figure 5: PDF and HRF of SKwG distribution.
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Differentiating equation (33) with respect to each
parameter gives the score functions. This is obtained as

∂ℓ Θ

∂a
= n
a
+ 〠

n

i=1
log G xi, θ + 1 − b 〠

n

i=1

G xi, θ a log G xi, θ
1 −G xi, θ a

+ π

3〠
n

i=1

G xi, θ a log G xi, θ
1 −G xi, θ a 1−b sec π

3 1 − 1 −G x a b

× tan π

3 1 − 1 −G x a b + sec π

3 1 − 1 −G x a b ,

34

∂ℓ Θ

∂b
= n
b
+ 〠

n

i=1
log 1 −G xi, θ a −

π

3〠
n

i=1

log 1 −G xi, θ a

1 −G xi, θ a −b

sec π

3 1 − 1 −G x a b

× tan π

3 1 − 1 −G x a b + sec π

3 1 − 1 −G x a b ,

35

∂ℓ Θ

∂θ
= 〠

n

i=1

g′ xi, θ
g xi, θ

+ a − 1 〠
n

i=1

g xi, θ
G xi, θ

+ a 1 − b

〠
n

i=1

g xi, θ G xi, θ a−1

1 −G xi, θ a + ab
π

3〠
n

i=1

g xi, θ G xi, θ a−1

1 −G xi, θ a 1−b

sec π

3 1 − 1 −G x a b

× tan π

3 1 − 1 −G x a b + sec π

3 1 − 1 −G x a b ,

36

where g′ xi, θ = ∂g xi, θ /∂θ. Equating the score functions
presented in equations (34)–(36) to zero and solving them

simultaneously give the maximum likelihood estimators of
the distribution. The score functions can be observed to be
nonlinear functions. Therefore, numerical methods, such as
quasi-Newton-Raphson method, are employed to obtain
the estimates of the distribution.

For large sample sizes, the maximum likelihood estimates
for the SKw-G family of distributions converges to the normal
distribution. That is n Θ ,Θ ⟶D N 0, I−1 Θ , where
⟶D denotes convergence in distribution, I−1 Θ is the
inverse of the expected Fisher information matrix. According
to Lindsay and Li [21], the observed Fisher informationmatrix
is a consistent estimator of the expected Fisher information
matrix. Thus, the observed information matrix for the SKw-
G family of distributions is given as

I Θ =

∂2ℓ
∂a2

∂2ℓ
∂ab

∂2ℓ
∂aθ

∂2ℓ
∂ba

∂2ℓ
∂b2

∂2ℓ
∂bθ

∂2ℓ
∂θa

∂2ℓ
∂θb

∂2ℓ
∂θ2

37

The observed information matrix can be used for interval
estimation of the parameters of the family of distributions.
Given the standard error of the parameter set Θ as s e Θ
and the upper quantile of the normal distribution as Zα/2, the
100 1 − α % confidence intervals of the estimated parameters
can be obtained as Θ ± Zα/2 · s e Θ . The diagonal of the
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Figure 6: PDF and HRF of SKwF distribution.
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observed Fisher information matrix gives the variance-
covariance matrix for the parameters, whiles the square root
of the diagonal of the matrix gives the standard errors of the
parameters.

5.2. Simulation Study. To ascertain the behavior of the max-
imum likelihood estimators of the SKw-G family of distribu-
tions, Monte Carlo simulations are performed. The special
distribution SKwC is used for illustrative purposes. The fol-
lowing steps are used for the simulation study:

(a) Generate random samples of sizes n = 20, 50, 100,
250, 500 from the SKwC distribution using its
quantile function

(b) Estimate the parameters of the distributions using
maximum likelihood method

(c) Calculate the average estimate (AE), average bias
(AB), and root mean square error (RMSE) of the
parameters

(d) The process is repeated 2000 times

(e) The process is also repeated for the two set of param-
eters: I = β, λ, a, b = 1 5, 0 8, 1 2, 1 3 and I = β,
λ, a, b = 1 9, 1 1, 0 8, 0 9

The simulation results are presented in Table 1. The
results from the table show that the estimators are consistent
and asymptotically unbiased as the average estimates

approach the true values whiles the average bias and root
mean square errors decrease with increasing sample sizes.

6. Applications

The applications of the special distributions of the SKw-G
family of distributions are given in this section. This is to
illustrate the usefulness of the family of distributions.

The following datasets are used for the illustration: the
first dataset represents 101 observations that show the failure
times (in hours) of Kevlar 49/epoxy strands subjected to
constant sustained pressure at a 90 percent stress level. The
data was originally given by Barlow et al. [22] and has been
analyzed in several studies. The observations are as follows:
0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07,
0.08, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20,
0.23, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52,
0.54, 0.56, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73,
0.79, 0.79, 0.80, 0.80, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01,
1.02, 1.03, 1.05, 1.10, 1.10, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33,
1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.53, 1.54, 1.54, 1.55, 1.58,
1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.14, 2.17, 2.33, 3.03,
3.34, 4.20, 4.69, and 7.89.

The second dataset represents the survival times of
breast cancer patients obtained from 1929 to 1938. The data
can be found in Ramos et al. [23] and has been analyzed by
several studies including Yakubu et al. [24]. The observa-
tions are given as 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4,
7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2, 12.3, 13.5, 14.4, 14.4,
14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9,
19.8, 20.4, 20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0,
27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0,
37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0,
41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0,
48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0,
59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0,
69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0,
105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0,126.0, 127.0,
129.0, 129.0, 139.0, and 154.0.

The third dataset is obtained from Smith and Naylor
[25] and represents the strengths of 1.5 cm glass fibres, mea-
sured at the National Physical Laboratory, England. The
data are 0.55, 0.74, 0.77, 0.81, 0.84, 1.24, 0.93, 1.04, 1.11,
1.13, 1.30, 1.25, 1.27, 1.28, 1.29, 1.48, 1.36, 1.39, 1.42, 1.48,
1.51, 1.49, 1.49, 1.50, 1.50, 1.55, 1.52, 1.53, 1.54, 1.55, 1.61,
1.58, 1.59, 1.60, 1.61, 1.63, 1.61, 1.61, 1.62, 1.62, 1.67, 1.64,
1.66, 1.66, 1.66, 1.70, 1.68, 1.68, 1.69, 1.70, 1.78, 1.73, 1.76,
1.76, 1.77, 1.89, 1.81, 1.82, 1.84, 1.84, 2.00, 2.01, and 2.24.

The fourth dataset composes of 72 survival times, in
days, of guinea pigs, infected with tubercle bacilli. The
dataset can be found in Bjerkedal [26]. The observations
are as follows: 12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38,
43, 33, 48, 52, 53, 54, 54, 55, 56, 57, 58, 58, 59, 60, 60,
60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76,
81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127,
129, 131, 143, 146, 146, 175, 175, 211, 233, 258, 258,
263, 297, 341, 341, and 376.

The fifth dataset represents the maximum flood levels
obtained. The data can be obtained from Dumonceaux and

Table 1: Simulation results for SKwC distribution.

Parameter n
I II

AE AB RMSE AE AB RMSE

β

20 0.8437 0.8188 0.8993 1.1955 0.7595 0.9994

50 0.8338 0.7319 0.8034 1.3676 0.5841 0.8314

150 0.8142 0.7039 0.7677 1.5313 0.4007 0.6554

250 0.8564 0.6554 0.7234 1.6494 0.2692 0.5239

600 0.9411 0.5589 0.6576 1.8405 0.0633 0.2460

λ

20 0.7966 0.1751 0.2512 1.0233 0.2638 0.3639

50 0.7123 0.1235 0.1458 0.9466 0.1979 0.2431

150 0.7222 0.1412 0.1564 0.9530 0.1542 0.2109

250 0.7526 0.1491 0.1653 0.9951 0.1080 0.1757

600 0.7937 0.1434 0.1647 1.0725 0.0275 0.0891

a

20 1.7597 0.7324 0.7514 1.5621 0.8492 0.9657

50 1.8946 0.7263 0.7510 1.5186 0.7383 0.8941

150 1.8795 0.6797 0.7219 1.3767 0.5768 0.7929

250 1.8116 0.6125 0.6772 1.2083 0.4083 0.6632

600 1.6585 0.4599 0.5697 0.9052 0.1052 0.3410

b

20 1.3631 0.6299 0.7005 1.0987 0.5731 0.6862

50 1.3660 0.5746 0.6528 1.0038 0.4734 0.6068

150 1.3999 0.5082 0.5881 0.9700 0.3112 0.4865

250 1.3293 0.4440 0.5258 0.9342 0.2008 0.3837

600 1.3113 0.3621 0.4434 0.9020 0.0426 0.1682
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Antle [27]. The data consists of 20 observations and are
given as follows: 0.654, 0.613, 0.315, 0.449, 0.297, 0.402,
0.379, 0.423, 0.379, 0.324, 0.269, 0.740, 0.418, 0.412, 0.494,
0.416, 0.338, 0.392, 0.484, and 0.265.

The descriptive statistics of the four datasets are given in
Table 2. It can be observed that all the datasets are rightly
skewed, except the glass fibre dataset. Also, the Kevlar 49/
epoxy dataset is highly peaked as compared to the normal
distribution, whiles all the other datasets are less peaked with
the survival times of guinea pigs being moderately less
peaked as compared to the normal distribution.

The total time on test (TTT) transform plots of the data-
sets are shown in Figure 7. The TTT transform graph is used
to obtain the hazard failure rate shape for a given dataset.
The TTT transform plot of the Kevlar 49/epoxy data is given
in Figure 7(a). The failure rate is first convex in shape,
followed by a concave shape and then a convex shape again.
This indicates that the dataset exhibits a modified bathtub
shape. Figures 7(b), 7(c), and 7(e) give the TTT plot for

the breast cancer, glass fibre, and maximum flood datasets.
The plots show that the three datasets have an increasing fail-
ure rate since the curves are above the 45° line. Figure 7(d)
shows the TTT plot for the survival times of guinea pigs.
The plot shows a failure rate shape of a modified bathtub since
the curve initially goes above the diagonal, then goes below the
diagonal, and finally goes above the diagonal again.

The characteristics of the datasets suggest that the vari-
ous special cases of the SKw-G family of distributions can
be used to model them. The performances of the special
distributions of the SKw-G family of distributions are com-
pared with the performance of existing distributions.

The special cases of the SKw-G family of distributions,
SKwC, SKwW, SKwBXII, and SKwF distributions, are
compared with Weibull Nadarajah-Haghighi (WNH) [28],
generalized power Weibull (GPW) [29], exponentiated gen-
eralized Poisson inverse exponential (EGPIE) [30], Weibull
inverted exponential (WIE) [31], modified Weibull (MW)
[32], Kumaraswamy-Burr III (KB III) [33], complementary

Table 2: Descriptive statistics of datasets.

Data Mean Median Standard dev. Skewness Kurtosis

Kevlar 49/epoxy 1.025 0.800 1.119 3.080 14.470

Breast cancer patients 46.330 40.000 35.280 1.060 0.470

Strengths of glass fibres 1.507 1.590 0.324 -0.920 1.100

Survival times of guinea pigs 100.000 70.000 81.760 1.810 2.780

Maximum flood 0.4232 0.4070 0.125 0.990 0.250
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Figure 7: Total time on test plots of the datasets.
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exponential power (CEP) [34], and odd generalized expo-
nential Weibull (OGEW) [34] distributions. Others include
generalized odd inverse exponential Lomax (GOIEL) [24],
Kumaraswamy inverse exponential (KIE) [35], Weibull
(W) [16], odd inverse exponential Weibull (OIEW) [24],
exponentiated odd inverse exponential Weibull (EOIEW)
[24], new sine inverse Weibull (NSIW) [36], sine inverse
Weibull (SIW) [36], inverse Weibull (IW) [37], inverted
Nadarajah-Haghighi (INH) [38], the exponentiated general-
ized inverse Weibull (EGIW) [39], Kumaraswamy Burr III
[40], and new Weibull Pareto [41] distributions.

The performance of the fitted distributions is compared
using log-likelihood (ℓ), Akaike information criteria (AIC),
corrected Akaike information criteria (AICc), Bayesian
information criteria (BIC), and the Kolmogorov-Smirnov
(K-S) goodness-of-fit measure. In general, higher values of
the log-likelihood and smaller values of the AIC, AICc,
BIC, and K-S of a particular model, the better the fit of the
model to the dataset under consideration.

6.1. Dataset 1: Kevlar/Epoxy Data. Table 3 shows the maxi-
mum likelihood parameter estimates as well as their corre-
sponding standard errors in brackets for the Kevlar data.

The log-likelihood, goodness-of-fit statistics, and the
information criterion values of the SKwC and the other com-
peting models for the Kevlar data are presented in Table 4. It
can be observed that the SKwC gives a better fit to the data
than the other models since it has the highest log-likelihood
value and smallest values of the AIC, AICc, BIC, and K-S.

The estimated PDFs and CDFs of the fitted models, as
well as the empirical densities for the Kevlar data, are shown
in Figure 8. It can be observed that the PDF and CDF of the
SKwC follow the empirical density and the empirical CDF
closely as compared to the other models.

The probability-probability (P-P) plots of the SKwC and
the other competing models are shown in Figure 9. The plots

indicate that the SKwC fits the Kevlar dataset better than the
competing models since it has almost all of its points along
the diagonal line.

The variance-covariance matrix of the parameters of the
SKwC for the Kevlar data was estimated and presented
below as

I−1 =

4 3812 0 1700 −9 0556 −25 3550
0 1700 0 0144 −0 0546 −1 0885
−9 0556 −0 0546 0 3823 1 0796
−25 3550 −1 0885 1 0796 148 2565

38

The variance of the MLE of the parameters is as follows:

var β = 4 3812, var λ = 0 0144, var â = 0 3823, and
var b̂ = 148 2565. The 95% confidence intervals of the esti-
mated parameters are (0, 6.806), (0, 0.343), (0.399, 1.395),
(0.152, 2.276), and (0.120, 1.512).

6.2. Dataset 2: Breast Cancer Data. The MLE parameter esti-
mates and their corresponding standard errors in brackets
are shown in Table 5 for the fitted distributions.

Table 6 shows the ℓ , AIC, AICc, BIC, and K-S values for
the breast cancer data. From the table, the SKwW model fits
the breast cancer data better than the other competing
models according to the criteria given.

The PDF and CDF plots of the SKwW and the other
competing models are shown in Figure 10. It shows the flex-
ibility of the SKwW model since it is able to mimic the
empirical PDF and CDF of the cancer dataset better than
the other existing models.

The P-P plots are shown in Figure 11 for the models
under consideration. The plot of the SKwW distribution
shows how well the SKwW distribution fits the cancer

Table 3: Parameter estimates of fitted distributions for dataset 1.

Model β λ â b̂

SKwC 0.5757 (2.0931) 0.3169 (0.1201) 1.3933 (0.6183) 0.816 (0.355)

OGEW 2.6509 (1.2365) 0.5515 (1.6617) 0.3079 (0.3098) 1.4657 (2.4182)

WNH 1.145 (0.4310) 0.693 (0.189)

GPW 0.593 (0.465) 0.762 (0.125) 1.308 (0.645)

EGPIE 26.069 (0.009) 7.320 (1.770) 0.175 (0.019) 0.002 (0.002)

KIE 0.2237 (9.7003) 0.5117 (0.0650) 0.4200 (18.2146)

Table 4: Information criteria and goodness-of-fit measures for dataset 1.

Model ℓ AIC AICc BIC K-S

SKwC -93.08 194.1606 194.6203 204.2477 0.0812

OGEW -93.7300 195.4566 195.9164 205.5438 0.0869

WNH -103.3400 210.6830 211.3730 215.9130 0.0820

GPW -102.8000 245.1240 245.8140 252.9690 0.2050

EGPIE -116.6600 241.3140 241.9470 251.7740 0.1820

KIE -129.0100 264.0171 264.2899 271.5825 0.2541
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dataset. It has most of its plotted points on the diagonal as
compared to the existing models.

The variance-covariance matrix for SKwW distribution
using the cancer dataset is presented as follows.

I−1 =

0 9261 −0 2435 −0 2014 3 9996
−0 2435 0 0651 0 0475 −1 0853
−0 2014 0 0475 0 0793 −0 6937
3 9996 −1 0853 −0 6937 18 3373

39

The variance of the MLE of the parameters is as follows:

var β = 0 9261, var λ = 0 0651, var â = 0 0793, and
var b̂ = 18 3373. The 95% confidence intervals of the esti-
mated parameters of SKwW distribution are (0, 2.9665), (0,
0.5251), (0, 1.0831), and (0, 9.2683).

6.3. Dataset 3: Glass Fibre Strength Data. Table 7 shows the
MLE parameter estimates for the models under consider-
ation and their corresponding standard errors in brackets
for the glass fibre data.

Table 8 shows the values of the goodness-of-fit statistics
for the glass fibre data. From Table 8, the SKwBXII model
fits the glass fibre data better than the other competing
models according to the criteria given above.

Figure 12 shows the PDF and CDF plots of the SKwBXII
and the other competing distributions. It can be observed
that SKwBXII closely mimic the empirical PDF and CDF
of the dataset.

The P-P plots for the fitted distributions are shown in
Figure 13 for the models under consideration. The plot for
SKwBXII distribution indicates that the SKwBXII distribu-
tion well fits the cancer dataset.

The variance-covariance matrix for SKwBXII distribu-
tion is presented as follows.

I−1 =

0 3497 −0 0159 −0 0024 −0 0927
−0 0159 0 0051 0 0011 0 0144
−0 0024 0 0011 0 0009 0 0053
−0 0927 0 0144 0 0053 0 0599

40

The variance of the MLE of the parameters is as follows:

var β = 0 3497, var λ = 0 0051, var â = 0 0009, and
var b̂ = 0 0599. The 95% confidence intervals of the esti-
mated parameters are (0, 2.5880), (1.4864, 1.7652),
(10.4411, 41.5314), and (0.0706, 1.0298).

6.4. Dataset 4: Survival Times of Guinea Pig Data. Table 9
shows the parameter estimates and their corresponding
standard errors in brackets for the fitted dataset.

The fitted models are compared using log-likelihood,
AIC, BIC, and K-S. The results are shown in Table 10. SKwF
distribution can be observed to have performed better than
the other competing models as it has the least of the infor-
mation criteria and goodness-of-fit.

Figure 14 shows the PDF and CDF plots of the SKwF
distribution and the other competing distributions. The
PDF and CDF of the SKwF distribution closely mimic the
empirical PDF and CDF as compared to the other existing
distributions.

Figure 15 shows the P-P plots for the fitted distributions.
It can be observed that the data points on the plot for SKwF
lie more along the diagonal as compared to other distribu-
tions. This suggests that the SKwF distribution best fits the
data.
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Figure 8: Empirical and estimated PDF and CDF plots for dataset 1.
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Table 5: Parameter estimates of fitted distributions for dataset 2.

Model β λ â b̂

SKwW 1.0804 (0.9623) 0.0251 (0.2551) 0.5312 (0.2816) 0.8752 (4.2822)

OGEW 21.5700 (9 1458 × 10−5) 2 9678 × 102 (4 3273 × 10−7) 2 928 × 10−1 (2 0080 × 10−2) 4 204 × 10−3 (3 1483 × 10−4)
GOIEL 0 3081 (0 1124) 1 2127 (0 8184) 0 0065 (0 0122) 6 8388 (2 3970)
KIE 40.8090 (9 4117 × 10−5) 0.5595 (6 6034 × 10−2) 0.1569 (2 448 × 10−2)
OIEW 0.1344 (0.0145) 0.5734 (0.0.0302)

EOIEW 0.3217 (0.1383) 0.0021 (0.0055) 1.3725 (0.5139)

Table 6: Information criteria and goodness-of-fit measures for dataset 2.

Model ℓ AIC AICc BIC K-S

SKwW -579.1700 1166.3400 1166.6850 1177.524 0.0522

GOIEL -588.0100 1184.0100 1184.3610 1195.1990 0.1111

OGEW -597.2400 1202.4790 1202.8240 1213.6620 0.1248

KIE -664.1200 1334.2480 1334.4530 1342.6350 0.2793

OIEW -610.9700 1225.9440 1226.0460 1231.5360 0.1620

EOIEW -593.8000 1193.5900 1193.7950 1201.9780 0.1522
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Figure 9: P-P plots of fitted distributions for dataset 1.
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Figure 10: Empirical and estimated PDF and CDF plots for dataset 2.
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Figure 11: P-P plots of fitted distributions for dataset 2.
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The variance-covariance matrix for the dataset under
consideration for SKwF distribution is presented as follows.

I−1 =

0 0669 0 2068 0 3211 −0 0308
0 2068 0 6715 1 0426 −6 0362
0 3211 1 0426 1 6187 −9 3695
−0 0308 −6 0362 −9 3695 63 7807

41

The variance of the MLE of the SKwF distribution

parameters is as follows: var β = 0 0669, var λ = 0 6715,

var â = 1 6187, and var b̂ = 63 7807. The 95% confidence
intervals of the estimated parameters are (0.0450, 1.0591),
(3.6384, 6.8508), (0.8798, 5.8672), and (0, 23.0863).

6.5. Dataset 5: Maximum Flood Data. Table 11 shows the
estimated parameters and their corresponding standard
errors for the fitted models for maximum flood dataset.

The goodness-of-fit statistics is presented in Table 12. It
can be determined that all the proposed models have outper-
formed the existing models in fitting the maximum flood
data as they have the least of measures. It can be observed
that SKwBXII distribution is especially best in modelling
the data.

Table 7: Parameter estimates of fitted distributions for dataset 3.

Model β λ â b̂

SKwBXII 1.0990 (0.5913) 1.6258 (0.0711) 25.9862 (7.9312) 0.5502 (0.2447)

WIE 0.0107 (0.2644) 4.7926 (3.2487) 0.5322 (2.0392)

Weibull 5.7807 (0.5761) 0.6142 (0.0140)

MW 0.0087 (0.0126) 2.1608 (1.5418) 2.4027 (2.4173)

KB III 3.1876 (22.9780) 427.2200 (0.0006) 1.0764 (0.0094) 4.0478 (12.9179)

CEP 1.6932 (0.0961) 2.7908 (0.6707) 1.7899 (0.6947)

Table 8: Information criteria and goodness-of-fit measures for dataset 3.

Model ℓ AIC AICc BIC K-S

SKwBXII -9.6200 29.2405 30.2932 39.9562 0.0689

WIE -16.0100 38.0243 38.4311 44.4537 0.1623

Weibull -16.2000 34.5468 34.7468 38.8330 0.1584

MW -14.3500 40.7019 41.1087 47.1313 0.2231

KBIII -18.6100 45.2177 45.9073 53.7902 0.1864

CEP -15.0000 36.0037 36.4105 42.4331 0.1485
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Figure 12: Empirical and estimated PDF and CDF plots for dataset 3.
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Figure 13: P-P plots of fitted distributions for dataset 3.

Table 9: Parameter estimates of fitted distributions for dataset 4.

Model β λ â b̂

SKwF 0.5520 (0.2587) 5.2446 (0.8195) 3.3735 (1.2723) 7.4331 (7.9863)

NSIW 1.1873 (0.0975) 59.2779 (4.8994)

SIW 1.0873 (0.0901) 78.6790 (7.1222)

IW 1.4151 (0.1173) 54.1545 (4.7820)

INH 1.8372 (0.6196) 25.7772 (11.9194)

EGIW 4.4073 (3.2006) 5.5834 (14.3453) 65.6817 (77.7182) 0.5607 (0.4045)

Table 10: Information criteria and goodness-of-fit measures for dataset 4.

Model ℓ AIC AICc BIC K-S

SKwF -385.5700 779.1441 779.7502 788.1949 0.1025

NSIW -391.1140 786.228 786.8344 790.7813 0.1202

SIW -391.8296 787.6592 788.2656 792.2125 0.1270

IW -395.6491 795.4722 796.0786 799.8516 0.1523

INH -400.4679 804.9357 805.5417 809.4891 0.1412

EGIW -386.6600 781.3264 781.9324 790.3771 0.1265
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Figure 14: Empirical and estimated PDF and CDF plots for dataset 4.
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Figure 15: P-P plots of fitted distributions for dataset 4.
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The variance-covariance matrix for estimated parame-
ters of SKwBXII distribution is presented as

I−1 =

33 2733 0 1355 2 8031 18 1082 −0 9398
0 1355 0 0031 −0 0400 −0 3363 0 0008
2 8031 −0 0400 4 5470 −4 0738 −0 3245
18 1082 −0 3363 −4 0738 200 0419 −0 4924
−0 9398 0 0008 −0 3245 −0 4924 0 0430

42

The variance of the MLE of the SKwBXII distribution

parameters is as follows: var β = 33 2733, var λ =
0 0031, var â = 1 6187, and var b̂ = 63 7807. The 95%
confidence intervals of the estimated parameters are
(0.0450, 1.0591), (3.6384, 6.8508), (0.8798, 5.8672), and (0,
23.0863).

The empirical PDF and CDF as well as those of the fitted
models are shown in Figure 16. The proposed models have
been able to assume the empirical PDF and CDF better than
the existing models.

The P-P plots of the fitted models are presented in
Figure 17. It can be observed that all the proposed models
have almost all of their plotted points on the diagonal as
compared to the existing models.

7. The Log-SKwW Regression Model

Two new location-scale regression models are developed
from the SKwW distribution in this section. The basic struc-
ture of the two regression models is the same. The first
location-scale regression model, denoted by log-SKwW1
(LSKwW1), is developed by applying the transformation Y
= log X and considering the reparametrization λ = e− u/σ

and β = 1/σ. Given that the CDF of the SKwW distribution
is expressed as Fy y = P Y ≤ y , but Y = log X . Therefore,
Fy y = P X ≤ ey . Then

FY y = sec π

3 1 − 1 − 1 − e−e
y−μ /σ a b

− 1, 43

σ > 0, a > 0, b > 0, μ ∈ℝ and y ∈ℝ 44

The survival function of the LSKwW1 regression model
can also be expressed as

SY y = 2 − sec π

3 1 − 1 − 1 − e−e
y−μ /σ a b

, y ∈ℝ

45

Consequently, the PDF of LSKwW1, f Y y , can be
obtained by differentiating equation (43) as

f Y y = πab
3σ e y−μ /σ e−e

y−μ /σ 1 − e−e
y−μ /σ a−1

1 − 1 − e−e
y−μ /σ a b−1

sec π

3 1 − 1 − 1 − e−e
y−μ /σ a b

× tan π

3 1 − 1 − 1 − e−e
y−μ /σ a b

, y ∈ℝ

46

Let z = y − μ /σ in equation (46); then, the PDF of the
standardized random variable is obtained as

f Y z ; a, b, μ, σ = πab
3σ exp z exp −exp z

1 − exp −exp z a−1

1 − 1 − exp −exp z a b−1

× sec π

3 1 − 1 − 1 − exp −exp z a b

tan π

3 1 − 1 − 1 − exp −exp z a b , y ∈ℝ

47

Using the following structure, the density function can
be used to develop the LSKwW1 regression model:

yi = μi + σzi, i = 1, 2,⋯, n, 48

Table 11: Parameter estimates of fitted distributions for dataset 5.

Model β λ â b̂ ĉ

SKwW 15.5156 (5.8527) 0.0044 (0.0073) 0.1419 (0.0374) 22.9387 (3.7123)

SKwC 0.6168 (0.1221) 23.0356 (2.9876) 0.0900 (0.0218) 9.2964 (3.5206)

SKwBXII 6.8769 (5.7683) 0.2907 (0.0554) 4.4239 (2.1324) 8.5043 (14.1436) 0.1832 (0.2073)

SKwF 3.5576 (4.3620) 2.0156 (0.0589) 0.0082 (0.0528) 1.5805 (2.8857)

KBIII 1.8924 (0.0107) 11.7881 (5.3576) 69.6958 (0.0003) 0.0255 (0.0045)

NWP 3.5264 (0.5647) 0.3058 (18.0479) 0.3351 (5.6079)

Table 12: Information criteria and goodness-of-fit measures for
dataset 5.

Model ℓ AIC AICc BIC K-S p value

SKwW 13.67 -19.3446 -16.6779 -15.3617 0.1892 0.4710

SKwC 13.26 -18.5216 -15.8549 -14.5387 0.1980 0.4134

SKwBXII 16.34 -22.6858 -18.4001 -17.7071 0.1286 0.8954

SKwF 16.32 -24.6307 -21.9640 -20.6477 0.1304 0.8857

KBIII 12.87 -17.7371 -15.0704 -13.7542 0.2110 0.3353

NWP 13.27 -20.5329 -19.0329 -17.5457 0.1988 0.4078

20 Computational and Mathematical Methods



x

D
en

sit
y

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0

1

2

3

4

5

0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

x

CD
F

Empirical
SKwCD
SKwWD
SKwBXIID

SKwFD
KBIIID
NWPD

Figure 16: Empirical and estimated PDF and CDF plots for dataset 5.
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Figure 17: P-P plots of fitted distributions for dataset 5.
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where μi = xTi δ is the location parameter, xi = xi1, xi2,⋯,
xik

T is the set of covariates, δ = δ1, δ2,⋯, δk T is the vector
of unknown regression coefficients, and zi is the error term.
The error term follows the LSKwW1 distribution. The
parameters of the unknown regression model can be esti-
mated using the density function via maximum likelihood
estimation method. The parameter estimates can be
obtained by maximizing the log-likelihood function given as

ℓ = n log π

3 + n log ab
σ

+ 〠
n

i=1
zi − 〠

n

i=1
ezi

+ a − 1 〠
n

i=1
log 1 − e−e

zi + b − 1 〠
n

i=1
log 1 − 1 − e−e

zi
a

+ 〠
n

i=1
log sec π

3 1 − 1 − 1 − e−e
zi

a b

+ 〠
n

i=1
log tan π

3 1 − 1 − 1 − e−e
zi

a b

49

The second regression model, denoted LSKwW2, is
obtained by linking covariates to the distribution parameters
as

yi = xTi δ + σzi,
ai = xTi β + σzi,
bi = xTi α + σzi,

50

where β = β1, β2,⋯, βk
T and α = α1, α2,⋯, αk T are addi-

tional unknown regression parameters. Thus, the estimates
of the regression parameters can be obtained by maximizing
the log-likelihood function given as

ℓ = n log π

3 − n log σ + 〠
n

i=1
log aibi + 〠

n

i=1
zi − 〠

n

i=1
ezi

+ 〠
n

i=1
ai − 1 log 1 − e−e

zi + 〠
n

i=1
bi − 1

log 1 − 1 − e−e
zi

ai + 〠
n

i=1

log sec π

3 1 − 1 − 1 − e−e
zi

ai bi

+ 〠
n

i=1
log tan π

3 1 − 1 − 1 − e−e
zi

ai bi

51

7.1. Regression Application. The applications of the two
developed regression models are demonstrated in this sec-
tion. The dataset used for the application is obtained from
Zamanah et al. [42] and consists of the survival times (in
years) until the onset of hypertension of 119 random sam-
ples and their corresponding gender from the Bolgatanga
Regional Hospital in the Upper East Region of Ghana. The
effect of gender on the survival times is investigated using
the regression models. The survival times with gender
(male = 1, female = 0) are presented in Table 13.

Table 13: Hypertension Patients Data.

Time Gender Time Gender Time Gender Time Gender Time Gender Time Gender

71 1 62 1 47 1 36 1 45 0 73 0

70 1 35 0 45 1 61 1 27 1 39 1

19 1 76 0 25 1 59 1 67 0 37 0

40 0 47 0 66 0 53 0 63 1 78 1

26 0 24 0 62 0 4 1 18 1 58 0

68 0 67 0 56 0 34 1 17 0 73 1

65 0 63 1 38 0 51 0 35 0 49 1

58 0 57 0 56 1 46 1 39 1 44 0

54 1 50 0 74 0 42 0 56 0 60 1

58 1 52 0 48 0 69 0 51 0 54 1

5 1 71 1 46 1 61 0 38 0 42 1

52 0 76 0 60 1 59 0 19 0 69 1

76 0 47 0 55 0 53 0 53 0 66 1

43 1 29 0 62 0 52 0 66 0 62 0

60 0 52 0 37 1 71 1 69 1 19 1

67 1 62 0 52 1 76 1 75 1 64 0

65 0 57 0 35 1 46 2 46 0 59 1

58 0 75 0 74 1 20 1 43 0 53 1

66 0 71 0 48 0 69 1 66 0 55 0

49 0 41 0 28 0 68 0 64 0
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The two regression models fitted for i = 1, 2,⋯, 119 are
given as follows:

(a) LSKwW regression model 1 (LSKwW1): yi = δ0 +
δ1xi1 + σzi

(b) LSKwW regression model 2 (LSKwW2): yi = δ0 +
δ1xi1 + σzi, ai = β0 + β1xi1 + σzi, and bi = α0 + α1xi1
+ σzi

The performance of the models is compared with the
log-harmonic mixture Weibull Weibull (LHMWW) regres-
sion model developed by Zamanah et al. [42] using Akaike
information criteria (AIC) and Bayesian information criteria
(BIC). Also, the Cox-Snell residual analysis is used to assess
the adequacy of the fitted model. Given estimated parame-

ters as Θ and survival function as S yi ; Θ , the Cox-Snell

residual is defined as ri = log S yi ; Θ , i = 1, 2,⋯, n. If the
model is adequate, the residual is expected to follow the
standard exponential distribution. Again, the Wald test is
performed on the model parameters. The Wald test is used
to check if model parameters are significantly different from
a specific value. In this study, the Wald test is used to test if
gender contributes significantly to the survival times of the
hypertension patients. That is, the null hypothesis is used
to test if the parameter estimate is significantly different
from zero.

Table 14 shows the parameter estimates, standard errors,
p values, AIC, and BIC statistics of the fitted regression
models. It can be observed that LSKwW1 has the least statis-
tics as compared to the other regression models. This sug-
gests that the LSKwW1 fits the data better than the other
models. Also, it can be observed that gender (using female
as the reference) is statistically insignificant for LSKwW1
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Figure 18: Cox-Snell P-P plots for the regression models.

Table 14: Parameter estimates for regression models.

Parameter
LSKwW1 LSKwW2 LHMWW

Estimate Std. error p value Estimate Std. error p value Estimate Std. error p value

α0 5 339 × 1005 7 693 × 10−04 <2 2 × 10−16

α1 6 588 × 1002 5 749 × 10−04 <2 2 × 10−16

β0 3.214 1.671 <2 2 × 10−16

β1 -5.220 1.815 4 035 × 10−03

δ0 267.581 61.758 1 473 × 10−05 15.890 10.781 0.141 136.668 8.129

δ1 -0.171 2.553 0.947 46.607 17.589 8 055 × 10−03 0.410 7 2 × 10−02 1 0 × 10−08

σ 86.189 131.119 0.511 3 4648 × 1002 16.312 <2 2 × 10−16 4.240 1.079 8 5 × 10−05

a 4.318 7.325 0.556 0.322 9 3 × 10−02 5 1 × 10−04

b 82594.345 0.053 <2 2 × 10−16 345.273 0.290 <2 2 × 10−16

θ 0.026 0.721 0.971

AIC 998.965 1000.989 999.020

BIC 1012.860 1020.433 1015.695

Wald test (p value) 0.005 (0.95) 5 3 × 1013 <2 2 × 10−16 19.4 1 1 × 10−05
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regression model, whiles it is statistically significant for
LSKwW2 and LHMWW regression models. This is con-
firmed by performing a Wald test on the predictor. The test
statistic and p values are presented for each regression model
in Table 14. It can be observed that gender is not signifi-
cantly different from zero for LSKwW1 regression model
as the p value is greater than 5% significant level, whiles gen-
der is significant for LSWwW2 and LHMWW regression
models as the p values associated with the test for these
models are less than 5% significant level.

Figure 18 shows the Cox-Snell residuals for the fitted
models. It can be observed that LSKwW regression model
1 and LHMWW regression model compete in modelling
the dataset. Therefore, the LSKwW regression models can
serve as alternative regression models for modelling lifetime
data.

8. Conclusions

The Secant Kumaraswamy (SKw-G) family of distributions
was developed in this study. Statistical properties such as
the quantile function, moments, moment generating func-
tion, and mean residual life function were derived for the
family of distributions. Five special cases of the family of dis-
tributions were presented using Weibull, Chen, Bur XII,
Gompertz, and Fréchet distributions as the baseline distribu-
tions. The maximum likelihood estimation method was used
to obtain estimators of the family of distributions, and
Monte Carlo simulation was used to show the desirability
of the estimators. Two location-scale regression models were
developed for the Secant Kumaraswamy Weibull distribu-
tion. Using several real datasets, the usefulness and flexibility
of the family of distributions and the regression models are
demonstrated. The results showed that the special cases of
the family distributions and its regression models outper-
formed several competing distributions. This shows that
the SKw-G family of distributions can serve as alternative
distribution in modelling real datasets.
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