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The aim of this study was to explore the adoption of the variable model algorithm in magnetic resonance imaging (MRI) image
analysis and evaluate the effect of the algorithm-based MRI in the diagnosis of spinal metastatic tumor diseases. 100 patients with
spinal metastatic tumors who were treated in hospital were recruited as the research objects. All patients were randomly divided
into the experimental group (MRI image analysis based on variable model) and the control group (conventional MRI image
diagnosis), and the MRI of the experimental group was segmented using the conventional algorithm with variable model and the
improved algorithm with GVF force field. The accuracy index (Dice coefficient D) values were used to evaluate the vertebral
segmentation effect of the improved variable model algorithm with the introduction of GVF force field, and the recognition rate,
sensitivity, and specificity indexes were used to evaluate the effects of the two algorithms on the recognition of MRI image features
of spinal metastatic tumors. The results showed that the mean D value of the variable model improvement algorithm for the
segmentation of five vertebrae of spinal metastatic tumors was significantly improved relative to the conventional variable model
algorithm, and the difference was statistically significant (P < 0.05). At the number of 80 iterations, the recognition rate, sensitivity,
and specificity of MRI image segmentation of the traditional variable model algorithm processing group were 89.32%, 74.88%, and
86.27%, respectively, while the recognition rate, sensitivity, and specificity of MRI image segmentation of the variable model
improvement algorithm processing group were 97.89%, 96.75%, and 96.45%, respectively. The results of the latter were sig-
nificantly better than those of the former, and the differences were statistically significant (P < 0.05); and the comparison of MRI
images showed that the variable model improvement algorithm was more rapid and accurate in identifying the focal sites of
patients with spinal metastases. The accuracy of MRI images based on the variable model algorithm increased from 69.5% to 92%,
and the difference was statistically significant (P < 0.05). In short, MRI image analysis based on the variable model algorithm had
great adoption potential in the clinical diagnosis of spinal metastatic tumors and was worthy of clinical promotion.

1. Introduction

Spinal metastatic tumor is a common spinal disease at
present. The clinical symptoms include vertebral bone de-
struction and collapse, pathological fractures, kyphosis, and
severe spinal cord and nerve compression. Once the spinal
nerve is damaged, its function will be difficult to recover [1, 2].
Therefore, the early accurate identification, diagnosis, and
treatment of spinal metastatic tumors are of great significance

to reduce deformities, prevent permanent nerve damage, and
improve the quality of life of patients. At present, imaging-
guided lesion biopsy is the gold standard for preoperative
differential diagnosis of spinal metastatic lesions [3]. How-
ever, there are limitations in time, conditions, and so forth,
and there are risks of damage to the spinal cord and nerves, as
well as the possibility of false negatives, and it cannot be used
in large-scale clinical adoptions. Therefore, the technical
upgrade of early diagnosis of spinal metastatic tumors is a
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problem that needs to be solved urgently. The current di-
agnostic imaging methods for metastatic tumors of the spine
include conventional radiographs, nuclear scans, CT, and
MRI [4]. Among them, conventional radiographs can only
detect bone deformation or compression fracture changes,
which are not sensitive to metastatic tumors; the nuclear
concentration phenomenon of bone lesions in nuclear scans
makes the results lack specificity and be difficult to diagnose
qualitatively [5]; CT has radiation and radiation artifacts in
the nearby bone cortex [6], MRI has the advantages of no
ionizing radiation damage, better tissue resolution than CT,
and ability to be scanned in multiple directions in the
transverse sagittal corridor. It is sensitive to metastatic
changes in the spine and is gradually becoming the preferred
method for the diagnosis of spinal metastases in clinical
practice [7-9].

Currently, segmentation algorithms for medical images
emerge endlessly, and the adoption of variable model algo-
rithm in MRI image analysis has been mentioned in many
reports. A variable model is a model that uses internal and
external forces to push curves or surfaces in the image domain
to move relative to one another within a certain range [10]. The
internal force controls the model to remain smooth during the
deformation process, while the external force pushes the model
to move in the specified direction. Since the deformation model
allows the integrated boundary factors to perform continuous
operations on the image noise and boundary gaps on the
continuum, the accuracy of the image edge area reaches the
subpixel level, thereby improving the image quality [11, 12].
The variable model integrates information such as the location,
size, and shape of the target area when processing medical
images. The degree of fit between the medical image and the
variable model is regulated by the principle of energy function
minimization so as to complete the clear positioning of the
location of the lesion in the image [13]. The current research
showed that the variable model algorithm with active contour
(Snake) as the key parameter presents a good segmentation
effect in MRI image segmentation of brain tumors [14].
However, there is no report about the adoption of variable
model algorithm in MRI image analysis of spinal metastatic
tumors. Therefore, it was hoped to design an improved variable
model algorithm for MRI image analysis of spinal metastatic
tumors and evaluate the optimization effect of improved
variable model algorithm in image segmentation by comparing
it with traditional variable model algorithm in terms of image
segmentation effect and focus positioning accuracy. Then,
comprehensive evaluation of the degree of conformity of the
improved variable model algorithm compared with the di-
agnosis results of traditional MRI image manual analysis was
made through the comparative analysis of group diagnosis
results and postoperative pathological results so as to judge the
adoption value of the algorithm in the MRI imaging diagnosis
of clinical spinal metastatic tumors.

2. Materials and Methods

2.1. Research Objects. In this study, 100 patients with spinal
metastatic tumors admitted to hospital were selected as the
research objects. Among them, 61 were males and 39 were
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females, ranging in age from 23 to 71 years, with an average
age of 48.7 years. There were 35 cases in the cervical segment,
29 cases in the thoracolumbar segment, and 36 cases in the
thoracic segment. The study had been approved by the ethics
committee of the hospital, and the patients and their families
included in the study had known the situation and had
signed the informed consent. MRI scans were performed on
all patients, and the patients were divided into experimental
group (MRI image analysis diagnosis based on variable
model algorithm) and control group (conventional MRI
image analysis diagnosis) by random grouping. The number
of cases in each group was 50.

Inclusion criteria were as follows: (i) patients were di-
agnosed with spinal metastatic tumors by postoperative
pathological examinations; (ii) basic clinical data were
complete; and (iii) preoperative MRI images were clear.
Exclusion criteria were as follows: (i) those with incomplete
clinical data and (ii) those who were not diagnosed with
spinal metastatic tumors by postoperative pathological
examinations.

2.2. MRI Scanning. MRI examinations were performed on
all patients, and sagittal TIWI, T2WI, cross-sectional TIWI,
and gradient recalled echo (GRE) serial sagittal scans were
selected. MRI detection was performed via Anke ASM-015P
MRI system and the surface coil of the neck and spine. The
imaging included SE sequence conventional, coronal, sag-
ittal, or axial T1 weighted (TR/500-TE/30 ms), T2 weighted
(TR/1500-TE/90 ms), and GRF sequence (GR500/TE19/
FA38) sagittal scan.

2.3. Construction of MRI Image Analysis Model for Spinal
Metastatic Lesions Based on Variable Models. Using variable
model algorithm to process MRI images is of great adoption
value in clinical tumor diagnosis, which can greatly reduce
the degree of dependence on the subjective judgment of
physicians. The traditional variable model method defines a
closed curve (closed surface in the case of 3D) in the image
area. The initial envelope can move to the target contour
under the action of internal and external forces. When it
moves to the target contour, the envelope energy is the
smallest. The internal force that pushes the envelope to move
is determined by the smoothness and curvature of the en-
velope, and the external force is determined by the char-
acteristics of the image target. The mathematical model
expression is as follows:

Eue = [ 3 {0l 2%+ BV ()" + B0 (a2} 1)

In equation (1), « is the weight coefficient that controls
the degree of smoothness of the dynamic envelope and f
represents the weight coeflicient that controls the degree of
curvature of the dynamic envelope. The larger « is, the
stronger the smoothness of the envelope is and the stronger
the tensile capacity is. The larger 8 is, the stronger the
bending resistance of the envelope is. If § = 0, it means that
the envelope can converge at the corner. As the energy

potential function of the envelope, E, ;. is composed of the
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sum of internal energy and external energy. For the classic
grayscale image of MRI image (denoted as N (a,b)), when
the target contour is at the edge of the step, the calculation
equation of external energy is expressed as follows:

Ej (a,b) = -|VN (a,b)I, (2)

E; (a,b) = -|V(H,, (a,b)N (a,b))*. (3)

In equation (3), H,,(a,b) represents the Gaussian
function with two-dimensional standard deviation of m, and
V represents the gradient operator. When the image
background is white and the image is black, the external
energy is expressed as follows:

E} (a,b) = N(a,b), (4)

Ef,(a,b) = H,, (a,b)' N (a, ). (5)

According to equations (4) and (5), the larger m is, the
more blurred the edge of the MRI image is. However, a
relatively larger m should be selected to expand the range of
external force in the MRI image processing for spinal
metastatic tumors, based on which the variational method is
used to minimize equation (1), and Euler’s equation is
obtained, which is expressed as

aY" (z) - BY"" (z) - VE, = 0. (6)

The balanced form of the introduced force is expressed as
follows:

F,+Fo =0,
F,=aY"(2) - BY" (2), (7)
Fo = —VE,,

The partial differential equation of the number of iter-
ations c¢ is introduced to equation (6), and the following
equation is obtained:

Y, (a,b) = aY" (a,b) - BY"" (a,b) - VE,. (8)

When the position of the target contour is reached, the
value of Y (a,b) is determined; then Y, (a,b) = 0.

To solve the limited range of external force in the tra-
ditional deformable model algorithm, failures to converge to
the concave edge, the image blur, and edge positioning
accuracy decrease due to the increase of Gaussian standard
deviation & and so forth; the GVF force field (equation (9)) is
introduced, and the mapping range of the edge gradient is
expanded with the aid of the vector diffusion equation
(equation (10)) to improve the traditional variability model.

V(a,b) =[j(a,b),k(a,b)],
9)

e= ([l + 2+ 1) 4|v [PV = 9 £ )dad,
(10)

f =5

From equation (10), the value of |V JI will affect the
degree of ¢; that is, when the value of [V _[ | is too small, the
second-order partial derivative square term of the vector
field determines the energy. When the value of |V J | is too
large, the value of |V -V f |* determines the magnitude of
energy, and when V = V f, the value of ¢ is the smallest. Since
V in equation (9) includes both nonrotational and non-
dispersive components, the situation of nonconvergent
concave edge contours caused by the opposite horizontal
forces canceling each other out inside the concave edge is
changed.

The following Euler equations are solved by variation:

uVii-(-f)(fa+ f3) =0,
uVlk— (k= f)(fa+ f3) =0.

In the above equation, V? represents the Laplace oper-
ator, and j and k are calculated by the discrete iterative value
of the partial differential equation of the number of itera-
tions. The differential equation is expressed as follows:

re{l,2,3,4}. (11)

(12)

jla,b,c) = uV?j(a,b,c) - [j(a,b,c) - f,(a,b,0)][fa(a.b,c) + fi(a,b,0)],
k(a,b,c) = uV’k(a,b,c) - [k(a,b,c) - f,(a,b,0)][ fa(a,b,c) + f;(a,b,c)].

Through the above calculations, it is found that the GVF
algorithm has poor convergence for the corners of the zero-
order contour and the first-order contour, but it has a better
convergence effect when processing concave contours with
second-order continuity, based on which a dynamic vector
field is constructed, and edge gradients are used in the edge
area. The further algorithm improvement is made on the
uniform area in the MRI image via the advantages of the
GAF algorithm. The GAF algorithm equations before and
after the improvement are expressed as follows:

(13)

Y,(z,¢) =aY" (z,¢) - BY"" (z,¢) + V,
(14)

Y, (z,¢) =aY"(z,¢) - BY"" (z,¢) + P, (VF)V = P, (VF)VS,
(15)

P,(Vf)=2-¢"1,

P,(Vf) = ¥ (16)



The introduction of P, (V f) in equation (15) makes the
GAF algorithm in the consistency area play a major role, and
P, (Vf) is added to optimize the effect of |V f in the edge
area.

2.4. MRI Image Feature Acquisition and Vertebral Seg-
mentation of Patients with Spinal Metastatic Tumors.
The original MRI images of the experimental group were
segmented according to the above-mentioned upgrade al-
gorithm. The specific processing flowchart is shown in
Figure 1.

To evaluate the vertebral segmentation effect of the
improved variable model algorithm, the accuracy index
(Dice coefhicient (D)) was introduced, and the calculation is
shown in equation (17). D expressed the proportion of the
accurately segmented part in the segmentation result. The
segmentation effect of five vertebrae in the MRI image of 50
patients in the experimental group was evaluated by cal-
culating the pixel position when D was calculated, and the
calculation results were averaged.

_2[MNN|

=2 0 17
|M]| + |N| 7

2.5. Algorithm Evaluation Indexes. In this study, the rec-
ognition rate, sensitivity, and specificity indexes were used to
evaluate the algorithm processing effect of the traditional
variable model algorithm and the variable model im-
provement algorithm for MRI image segmentation of pa-
tients with spinal metastatic tumors. The equation for MRI
image recognition rate is shown in equation (18), sensitivity
in equation (19), and specificity in equation (20):

. A+D
recognitionrate = ————— (18)
A+B+C+D
sensitivity = 4_ 100%, (19)
A+D
ificit A x 100% (20)
Specliicity = >
pealdy =A™

where A is the number of true positives, B is the number of
false positives, C is the number of true negatives, and D is the
number of false negatives.

2.6. Diagnosis Results of Primary Lesions in the Two Groups.
The diagnosis results of the primary tumor of spinal me-
tastasis in each patient in the experimental group and the
control group were collected. These included but were not
limited to lung cancer, breast cancer, prostate cancer, kidney
cancer, liver cancer, cervical cancer, rectal cancer, colon
cancer, bladder cancer, thyroid cancer, nasopharyngeal
cancer, parotid ductal cancer, and ovarian cancer. The di-
agnosis results of the two groups were compared with the
postoperative pathological diagnosis results. The accuracy of
the MRI image analysis and diagnosis results of the two
groups of patients was evaluated, and the diagnostic coin-
cidence rate was calculated to measure the effect of improved
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variable model algorithm on MRI image diagnosis of pa-
tients with spinal metastatic tumors.

2.7. Statistical Methods. The test data processing was per-
formed using SPSS 19.0. Mean + standard deviation (x+s)
was how measurement data were expressed, and the com-
parison of the means between groups was performed by -
test. The count data was expressed by percentage (%), and
the y° test was used. P <0.05 indicated that the difference
was statistically significant.

3. Results

3.1. MRI Image Vertebra Segmentation Effect Based on Im-
proved Variable Model Algorithm. It was found that the
values of P; (Vf) and P, (V f) had a great influence on the
effect of MRI image processing when the active contour of
the MRI image was processed. It was also found that the
improved variable model algorithm had the best seg-
mentation effect on the spine when P, (Vf)=0.8 and
P,(Vf)=0.5 in the processing of MRI images for spinal
metastatic tumors. In addition, the segmentation effect was
the best when y = 0.06 in equation (10). The segmentation
of the five vertebrae in the MRI images of the experimenter
before and after the improvement of the variable model
algorithm was summarized and counted, and the seg-
mentation effect of the vertebrae in the MRI images was
evaluated according to the average D value of the seg-
mentation of the vertebrae in the MRI images, and the
comparison of the average D values of the segmentation of
the five vertebrae in the MRI images of the specific two
algorithms was shown in Figure 2. As can be concluded
from the figure, the average D values of the conventional
variable model algorithm for segmentation of the five
vertebrae in the MRI images of the experimenter were 71%,
80%, 80%, 71%|, and 91%, respectively, while the average D
values of the variable model improvement algorithm for
segmentation of the five vertebrae in the MRI images of the
experimenter were 96%, 90%, 98%, 95%, and 100%, re-
spectively, and the results showed that the variable model
improvement algorithm was significantly better than the
traditional algorithm in segmenting vertebrae in MRI
images of patients in the experimental group, and the
difference was statistically significant (P <0.05).

3.2. Comparison of MRI Image Processing Effect between
Traditional Variable Algorithm and Improved Variable Model
Algorithm. Figure 3 shows the MRI images of two patients
with spinal metastatic tumors. Figures 3(a)-3(c) show MRI
images of a 56-year-old female patient. Figures 3(d)-3(f)
show MRI images of a 49-year-old male patient. Figures 3(a)
and 3(d) show conventional MRI images, while Figures 3(b)
and 3(e) show MRI images processed by the traditional
variable model algorithm. Figures 3(c) and 3(f) show MRI
images processed by the improved variable model algorithm.
The clarity of MRI was improved after repeated iterative
segmentation of MRI images by variable model algorithm,
and the recognition speed of the patient’s lesions was greatly
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FiGure 1: MRI image processing flowchart based on variable model algorithm.
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FIGURe 2: Comparison of D values of the two algorithms. (a) The traditional variable model algorithm; (b) the improved variable model

algorithm.

FIGURE 3: Comparison of MRI images of patients with spinal metastatic tumors processed by different algorithms.

improved. It realized rapid and accurate positioning, which
can diagnose spinal metastatic tumors faster and more
accurately.

MRI images showed that patients with spinal metastatic
tumors had infiltrated and destroyed bone marrow tissue of
the vertebral body due to metastatic tumors. The replace-
ment of normal bone marrow cells by tumor tissue in

patients with spinal metastatic tumors caused prolonged T1
and T2 relaxation times. According to the degree of tumor
erosion and destruction, TIWI showed limited or diffuse low
signal, which was prominent in the background of normal
bone marrow signal. Metastases in T2WI were often fused
with the surrounding normal adipose bone marrow, making
it difficult to distinguish.



3.3. Comparison of MRI Image Evaluation Indexes between
Traditional Variable Model Algorithm and Improved Variable
Model Algorithm. Figures 4-6 represent the comparison of
recognition rate, sensitivity, and specificity indexes of the tra-
ditional variable model algorithm and the variable model im-
provement algorithm. As can be concluded from the figures, the
recognition rates of MRI image segmentation of the traditional
variable model algorithm at 40, 50, 60, 70, and 80 iterations were
88.31%, 90.24%, 90.31%, 89.32%, and 87.54%, respectively, and
the sensitivity of MRI image segmentation was 71.23%, 76.25%,
78.31%, 74.88%, and 75.48%, and MRI image segmentation
specificity was 65.32%, 74.25%, 68.89%, 86.27%, and 85.31%,
respectively; meanwhile the MRI image segmentation recog-
nition rates of the variable model improvement algorithm at 40,
50, 60, 70, and 80 iterations were 90.23%, 94.51%, 95.6%,
94.23%, and 97.89%, the image segmentation sensitivity was
89.32%, 80.21%, 85.65%, 90.37%, and 96.75%, and the MRI
image segmentation specificity was 94.3%, 92.3%, 93.21%,
95.43%, and 96.45%, respectively. It can be concluded that the
variable model improvement algorithm can improve the rec-
ognition rate, sensitivity, and specificity of MRI images of spinal
metastatic tumors compared with the traditional variable model
algorithm, and the comparison of the three indexes showed
significant differences with statistical significance (P < 0.05).
Therefore, the variable model improvement algorithm after the
introduction of GVF force field can significantly improve the
recognition rate, sensitivity, and specificity of lesion features in
MRI images of spinal metastatic tumors, which is more ben-
eficial to the clinical diagnosis of this disease.

3.4. Comparison of Diagnostic Coincidence Rate between
Improved Variable Model Algorithm and Traditional Manual
MRI Image Analysis. The diagnosis results of spinal meta-
static tumors on MRI images of the two groups of patients
were summarized. The diagnosis of primary lesions of spinal
metastatic tumors and the postoperative pathological di-
agnosis of the two groups of patients were made into a
comparison chart (Figure 7). As shown in Figure 7, there are
some differences between the diagnostic results of con-
ventional manual MRI image analysis methods for lung
cancer, breast cancer, prostate cancer, cervical cancer, rectal
cancer, colon cancer, kidney cancer, and hepatocellular
carcinoma in the control group and the postoperative
pathological diagnoses, among which the diagnostic results
of conventional manual MRI image analysis for metastatic
tumors of the spine with primary lesions belong to lung
cancer, prostate cancer, rectal cancer, and hepatocellular
carcinoma. There was a significant difference (P < 0.05). The
results in Figure 8 show that the diagnostic compliance rate
of conventional manual MRI image analysis was 69.5%, and
the diagnostic compliance rate of MRI images processed
based on the variable model algorithm was 92%. Compared
with the traditional manual MRI image diagnosis, the MRI
image diagnosis based on the variable model algorithm was
more accurate for the determination of the primary lesion
location, and the diagnostic compliance rate was signifi-
cantly improved. There was a significant difference
(P <0.05).
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FiGUure 4: Comparison of MRI image recognition rate of the two
algorithms.
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FiGure 5: Comparison of MRI image sensitivity of the two
algorithms.

4, Discussion

The spine is the central axis of the human body and is a
common site for bone tumors. There are many types of
tumors, which will seriously affect the quality of life of
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F1GURE 6: Comparison of MRI image specificity of the two algorithms.
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FiGure 7: Comparison of primary lesions between the two groups of patients. (a) The comparison between the diagnosis results of control
group and the postoperative pathological diagnosis results. (b) The comparison between the diagnosis results of experimental group and the
postoperative pathological diagnosis results. A, B, C, D, E, F, G, and H represent lung cancer, breast cancer, prostate cancer, cervical cancer,
rectal cancer, colon cancer, kidney cancer, and hepatocellular carcinoma, respectively. * indicates a statistically significant difference with

postoperative pathological findings (P <0.05).

patients. It can cause spinal pain, radiating pain, weakness of
the limbs, and even paraplegia in severe cases [15]. Due to
the complex anatomical structure of the spine and obvious
overlap, there will be missed and misdiagnosed clinical
imaging diagnosis. MRI is one of the effective diagnostic
methods for spinal metastatic tumors. Its soft tissue reso-
lution and sensitivity to intramedullary lesions are signifi-
cantly higher than those of plain radiographs and CT.
Moreover, it can detect abnormal signals in the early stage of
vertebral disease, showing significant advantages in the
diagnosis of paravertebral soft tissue masses, intraspinal
canal invasion, and spine skipping lesions. Coupled with its

own nonradiation, it is especially suitable for imaging the
spine [16]. However, the quality of MRI images is affected by
the image’s signal-to-noise ratio, image contrast, artifacts,
image spatial resolution, and inspection conditions, which in
turn affects the effectiveness of disease diagnosis [17].
Therefore, improving the quality of MRI images is a difficult
problem in current research.

In recent years, to improve the image quality and the
recognition rate of characteristic lesions in MRI images,
improved variable model algorithms were introduced in a
number of studies to realize effective segmentation of MRI
images [18]. The algorithm reduces human-computer
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FiGure 8: Comparison of the diagnosis coincidence rate between the two groups of patients. *indicates a statistically significant difference

with postoperative pathological findings (P < 0.05).

interaction by presetting the initial position of the model and
introduces an energy function to improve the segmentation
effect of the segmentation algorithm. The interactive and
variable segmentation of MRI images is completed, com-
bined with the typical characteristics of the disease and the
problems in conventional image segmentation [19]. At the
same time, the use of mathematical algorithm models to
analyze MRI images to assist physicians in diagnosing the
spread of metastatic lesions in the spine is a hot topic of
research. In this research, an MRI image analysis model for
spinal metastatic lesions is designed based on the variable
model algorithm and applied it to 50 cases of spinal met-
astatic lesions in the experimental group. The results showed
that MRI images processed by the variable model algorithm
were more effective than traditional variable model images
in the diagnosis of spinal metastatic lesions. The mean D
value of vertebral segmentation of spinal metastases was
significantly higher with statistically significant differences
(P<0.05) compared with the traditional variable model
algorithm, and the recognition rate, sensitivity, and speci-
ficity indexes of MRI images were significantly better than
those of the traditional variable model algorithm. In the
comparison of the MRI images, it was found that the variable
model algorithm was more accurate in identifying the focal
points of patients with metastatic tumors in the spine, and
the accuracy of the MRI images based on the variable model
algorithm was significantly improved when compared with
the traditional MRI images. The experimental results were in
agreement with those of Namias et al. [20]. In short, MRI
image analysis based on variable model algorithm was of
great adoption potential in the clinical diagnosis of spinal
metastatic tumors. This research is the clinical adoption and
promotion of improved variable model algorithm in MRI
image segmentation and disease diagnosis.

5. Conclusion

In this work, an improved variable model algorithm for
spinal metastatic tumors was designed based on the tradi-
tional variable model algorithm and was applied to the MRI

image analysis of 50 patients in the experimental group. It
was found that the improved variable model algorithm can
significantly improve the diagnostic coincidence rate of MRI
images compared with the control group, and the identi-
fication of lesion sites was more accurate. However, the
selection of patient samples in this study is small and the
source is single, which makes this work does not complete
enough data collection on the primary site of spinal met-
astatic tumors. Therefore, it fails to discuss the different
manifestations of spinal metastatic tumors of different types
of primary sites in detail, and it is impossible to verify the
influence of these characteristics on the accuracy of pre-
diction. In the future, we will consider increasing the sample
size of patients with spinal metastatic tumors and further
adopt a multicenter collaborative analysis method for re-
search. In conclusion, the results provide a good theoretical
basis for the adoption of variable model algorithm in MRI
imaging diagnosis of clinical spinal metastatic tumors.
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