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*e task of designing an Artificial Neural Network (ANN) can be thought of as an optimization problem that involves many
parameters whose optimal value needs to be computed in order to improve the classification accuracy of an ANN. Two of the
major parameters that need to be determined during the design of an ANN are weights and biases. Various gradient-based
optimization algorithms have been proposed by researchers in the past to generate an optimal set of weights and biases. However,
due to the tendency of gradient-based algorithms to get trapped in local minima, researchers have started exploring metaheuristic
algorithms as an alternative to the conventional techniques. In this paper, we propose the GGA-MLP (Greedy Genetic Algorithm-
Multilayer Perceptron) approach, a learning algorithm, to generate an optimal set of weights and biases in multilayer perceptron
(MLP) using a greedy genetic algorithm. *e proposed approach increases the performance of the traditional genetic algorithm
(GA) by using a greedy approach to generate the initial population as well as to perform crossover and mutation. To evaluate the
performance of GGA-MLP in classifying nonlinear input patterns, we perform experiments on datasets of varying complexities
taken from the University of California, Irvine (UCI) repository. *e experimental results of GGA-MLP are compared with the
existing state-of-the-art techniques in terms of classification accuracy. *e results show that the performance of GGA-MLP is
better than or comparable to the existing state-of-the-art techniques.

1. Introduction

Artificial Neural networks (ANNs) are computing models
inspired by the biological nervous system. An ANN
consists of an interconnected network of nodes called
artificial neurons which are organized in the form of
layers, namely, input layer, hidden layers, and output layer
[1]. A set of synaptic weights is used to interconnect the
nodes that form these layers. ANNs have been applied to a
broad range of problems like classification, regression,
prediction, pattern recognition, and disease diagnosis
[2–6]. Classification is one of the important areas of re-
search in the field of data science. Many classification

models exist, out of which ANNs are among the most
widely used models.

In this paper, our focus is on multilayer perceptron
(MLP) which is a multilayer feedforward neural network.
Classification using MLP is basically a two-step process. *e
first step is the learning (training) phase in which a classifier
is built to describe a predetermined set of data classes for a
given dataset (training data). In the second step, the model
which has been built in the training phase is used for the
classification of the unclassified data (test data) for esti-
mating the accuracy of the classifier. During the learning
phase, MLP learns by adjusting synaptic weights and biases
iteratively in an attempt to correctly predict the class labels

Hindawi
Contrast Media & Molecular Imaging
Volume 2022, Article ID 4036035, 14 pages
https://doi.org/10.1155/2022/4036035

mailto:baseemkh@hu.edu.et
https://orcid.org/0000-0002-0806-7125
https://orcid.org/0000-0002-5293-795X
https://orcid.org/0000-0002-0205-8412
https://orcid.org/0000-0002-7676-9014
https://orcid.org/0000-0003-1667-386X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4036035


of the input data. *e process of weight and bias update
continues until the acquired knowledge is sufficient and the
network reaches a specified level of accuracy; i.e., a pre-
defined error measure is minimized, or the maximum
number of epochs is reached [7]. After the completion of the
learning phase, it is mandatory to assess the performance of
MLP, i.e., its generalization and predictive capabilities, using
samples of data (test data) that are different from those used
during the training phase for the given dataset. To achieve
generalization, MLPs need to avoid the issues of both
underfitting and overfitting during the training phase. To
achieve the best results, it is therefore required that the
number of training patterns should be sufficiently larger
than the total number of connections in the neural network.
*e performance of MLP is highly dependent on the
learning method used to train it during the training phase.
Several learning algorithms exist in the literature with the
aim of finding an optimal MLP. *ese learning algorithms
can be broadly classified into three categories, namely,
conventional methods [8–12], metaheuristic-based methods
[13–37], and hybrid methods [20, 38–44].

Despite the existence of a large number of learning al-
gorithms, researchers continue to apply new optimization
techniques like multimean particle swarm optimization
(MMPSO) [28], whale optimization algorithm (WOA) [23],
multiverse optimizer (MVO) [34], grasshopper optimization
algorithm (GOA) [35], and firefly algorithm [36] to generate
an optimal set of synaptic weights in an attempt to further
improve the accuracy and performance of MLP. As stated in
No-Free-Lunch (NFL) theorem [45], there is no optimiza-
tion technique that solves all optimization problems. It is
quite possible that an existing learning algorithm may train
an MLP well for some datasets while it fails to do the same
for some other datasets. *is makes the field of generating
optimal connection weights a dynamic research area. *is is
the main motivation behind the work presented in this
paper, in which we propose a hybrid learning algorithm to
train MLP.

GA is an evolutionary algorithm (EA) and is one of the
most widely investigated algorithms among the meta-
heuristic algorithms in designing neural networks. Over the
years, GA and its variants have been successfully applied in
several domains for ANN weight [13–20], topology [46–48],
and feature set optimization [49, 50], as well as parameter
tuning [51, 52]. A comprehensive review of optimization of
neural networks using GA can be found in [53]. *e effi-
ciency, effectiveness, and ease of use of GA motivated us to
further improve the performance of GA in optimizing
weights of MLP by integrating greedy techniques with GA.
*e proposed algorithm Greedy Genetic Algo-
rithm–Multilayer Perceptron (GGA-MLP) improves the
performance of traditional GA by using a greedy approach to
generate the initial population as well as to perform
crossover and mutation. Some of the application areas of the
proposed work are disease identification, e-mail spam
identification, prediction of the stock market, and fruit
classification. *e main challenge with the proposed ap-
proach is that it may not work well with some of the datasets,
as stated by No-Free-Lunch (NFL) theorem [45] mentioned

above. Finally, the performance of GGA-MLP is compared
with various classifiers as well as the existing state-of-the-art
metaheuristic algorithms for training MLP. *e key con-
tributions of this paper are as follows:

(1) A hybrid learning algorithm, GGA-MLP, that inte-
grates greedy techniques with GA is proposed to
train MLP

(2) GGA-MLP is evaluated and compared with existing
state-of-the-art algorithms on 10 datasets of different
complexities

*e paper is organized as follows. Related work is
presented in Section 2. A brief overview of GA is given in
Section 3. In Section 4, the proposed GGA-MLP for opti-
mization of MLP weights and biases is presented. In Section
5, experiments conducted to evaluate the effectiveness of
GGA-MLP are presented, and results are discussed. Finally,
the conclusion and future work are discussed in Section 6.

2. Related Work

In conventional methods, backpropagation (BP) is the most
widely used algorithm to train multilayer feedforward
networks (MLFFNs). BP uses a gradient descent rule that
tries to minimize the error of the network by moving in a
direction opposite to that of the gradient of the error
function. However, BP has certain limitations. It has a
tendency to converge toward the local optima, as it is good
only at exploiting the current solution, which may result in
unsatisfactory classification accuracies. It also has slow
convergence as well as scaling problems [54]. To overcome
these problems, many improvements of BP such as quick-
prop [8], RPROP [9], and improved BP [10] have been
proposed by researchers in the past. Besides, conjugate
gradient methods [11] and other derivative-based conven-
tional methods such as Levenberg–Marquardt method [12]
are also used for weight optimization, but sometimes these
methods can be expensive. Conventional methods are
computationally faster as compared to their metaheuristic
counterparts because they operate on a single solution;
however, they have certain limitations as discussed above.

Due to the global search capabilities of metaheuristic
algorithms, they are being widely used by researchers to
generate optimal weights and biases in MLP. In [13–21], GA
was applied to train MLP, and its performance was com-
pared to BP. Valian et al. [22] proposed an improved cuckoo
search (ICS) to train MLFNN. Unlike cuckoo search, the
proposed ICS tunes the parameters of CS. *e performances
of ICS and CS are compared on two datasets. A number of
approaches have been proposed by researchers to train
MLFNN using differential evolution (DE) and evolutionary
strategies [23–26]. Apart from EA, bioinspired algorithms
and their variants are proposed and used by researchers to
generate optimal connection weights in MLFNN. Karaboga
et al. [27] applied artificial bee colony (ABC) algorithm to
train MLFNN and compared the performance of ABC with
that of GA. In [28], multimean particle swarm optimization
(MMPSO) is proposed by the authors to generate optimal
connection weights of MLFNN. MMPSO is derived from
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PSO, and unlike PSO it uses multiple swarms. *e perfor-
mance ofMMPSO is compared with PSO on 10 datasets, and
the results prove the effectiveness of MMPSO. In [29], krill
herd algorithm (KHA) is applied to train ANN and is
compared with BP, GA, and harmony search (HS). Bolaji
et al. [30] and Kattan et al. [31] used fireworks algorithm
(FWA) and HS, respectively, to train ANN. Mirjalili [32]
applied gray wolf optimizer (GWO) to train MLP, and the
comparison results on 8 datasets show the GWO algorithm’s
capability of avoiding local optima. Aljarah et al. [33] applied
a whale optimization algorithm (WOA) to generate an
optimal set of connection weights in MLP. *e performance
of the proposed WOA-based trainer is evaluated on 20
datasets by comparing it with the trainers obtained using ant
colony optimization (ACO), GA, PSO, DE, ES, population-
based incremental learning (PBIL), and BP. *e results
indicate that WOA-based trainer avoids premature con-
vergence and generates the best optimal weights in most of
the cases for binary pattern classification. In [34], nature-
inspired multiverse optimizer is used to train MLP. Heidari
et al. [35], proposed GOAMLP that uses GOA to train single
hidden layer MLP and is applied on five datasets. When
compared with state-of-the-art algorithms, MLP trained
using GOAMLP resulted in improved classification accu-
racy. Elakkiya and Selvakumar [36] used enhanced step size
firefly algorithm to generate optimal weights of feedforward
neural network for spam detection. In [37], adaptive GA has
been proposed for weight optimization of BPNN for ca-
pacitive accelerometers. *e optimized BPNN is used in the
capacitive accelerometer.

Sometimes, metaheuristic algorithms suffer from pre-
mature convergence. To overcome the problems faced by
conventional methods and metaheuristic algorithms, hybrid
approaches were proposed by researchers. In [38, 39], GA
and PSO, respectively, have been combined with BP, which
helped in fast convergence and avoidance of getting trapped
in local optima. In [40], a hybrid approach that combines
PSO and gravitational search algorithm is presented to train
feedforward networks. In [41], a hybrid training algorithm,
LPSONS, is proposed to train feedforward neural networks.
It combines the velocity operator of PSO with Mantegna
Levy distribution to increase the diversity of the population.
To avoid local optima and premature convergence, Man-
tegna Levy distribution is further combined with neigh-
borhood search. In [20], an improved GA coupled with BP
neural network (IGA-BPNN) is proposed to improve the
forecast performance of ANN. *is model uses improved
genetic adaptive strategies to avoid getting stuck in local
optima. *e experimental results show that IGA-BPNN
performs better than traditional GA-BPNN. In [42], a hybrid
algorithm, namely, constriction coefficient-based particle
swarm optimization and gravitational search algorithm
(CPSOGSA), is proposed to train MLP. It helps to avoid
premature convergence and getting stuck in local optima
problems of MLP. In [43], an optimized adaptive GA in the
backpropagation neural network (OAGA-BPNN) is pro-
posed to optimize BPNN for traffic flow prediction. In [44], a
hybrid grasshopper and new cat swarm optimization al-
gorithm was proposed for feature selection and weight and

architecture optimization of MLP. In a similar way, other
optimization approaches are also discussed by various re-
searchers like MLP-LOA [55], improved teaching learning
(TLB), and cat swarm optimization to get better results in
respect of similar applications [56, 57].

3. Genetic Algorithm

Genetic algorithm (GA) is a metaheuristic algorithm pro-
posed byHolland [58].*is algorithm imitates the process of
natural selection where the chances of survival of fitter
individuals are more as compared to other individuals in a
competing environment. It is a global search technique
characterized by evolution in every generation. GA starts
with a randomly generated initial population of chromo-
somes where each chromosome represents a possible so-
lution to the given problem. Each chromosome is associated
with a fitness value that is a measure of how good a solution
is for the given problem. In each generation, the population
evolves toward better fitness using evolutionary operators
such as selection, crossover, and mutation. *is process
continues until a solution is found or the maximum number
of iterations is reached.

4. Proposed Model: GGA-MLP

In this section, we present our proposed approach GGA-
MLP which applies a greedy GA to generate an optimal set of
synaptic weights and biases of MLP, keeping the architecture
and activation function fixed. *e various steps of GGA-
MLP are explained below.

4.1. Representation of Candidate Solutions and Fitness
Function. An important aspect that needs to be considered
during the design of GGA-MLP is the representation of the
possible solutions in the search space in the form of
chromosomes and the encoding scheme used to encode the
chromosomes. In GGA-MLP, each chromosome represents
a candidate MLP. A chromosome is basically divided into
different segments, where each segment contains the
encoded weights between two layers (input-hidden, hidden-
hidden (if any), hidden-output) and the last segment con-
tains the encoded bias values for the MLP. Chromosome
encoding for an MLP having two hidden layers is shown in
Figure 1. However, the length of the chromosome can easily
be changed to train MLP having one or more hidden layers.
A real value encoding scheme is used to encode the
chromosomes.

As it is clear from Figure 1, if there are n input nodes, m

hidden layers with h1, h2, . . . .., hm hidden nodes in each
hidden layer, and k output nodes, then the length of the
chromosome will be calculated using

Clength � n × h1(  + 

m−1

i�1
hi × hi+1

⎛⎝ ⎞⎠ + hm × k(  + 

m

i�1
hi + k. (1)

Each chromosome in the population is represented by
MLPj| 1≤ j≤PS where PS is the population size. Each
MLPj| 1≤ j≤PS in the population is associated with a
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fitness value which is the measure of its quality. In our case,
mean square error (MSE) is chosen as the fitness function.
To calculate the fitness of anMLP, the training data sample is
made to run on it and the mean square error value is cal-
culated using

Fitness(MLP) � MSE �
1
n



n

k�1
yk − yk( 

2
, (2)

where yk is the actual output, yk is the predicted output, and
n is the number of samples in the training dataset. *is
process is repeated for each MLPj. *e goal of GGA is to
find an MLP that minimizes the objective function
f | f: MLPj⟶ R+, where R+ represents a set of real
numbers. *e objective function f can be calculated using
(3), and it tells us about the quality of the solution.

f MLPj  � fitness MLPj . (3)

Now, GGA tries to find the best MLP that minimizes the
objective function f as shown in

MLPbest � MLPl| f MLPl( <f MLPj ∀j∧ j≠ l. (4)

4.2. Generation of Initial Population. In evolutionary algo-
rithms (EAs), the initial population plays a major role in
determining the quality of the final solution as well as the
convergence speed [59]. Several population initialization
methods exist in literature, but in most cases, the initial
population is generated randomly. However, due to the
dependence of the final solution’s quality on the initial
population, GGA uses a greedy population initialization
method that uses domain-specific knowledge to generate
good quality MLPs (chromosomes). Initially, the synaptic
weights and biases are chosen randomly in the interval [−2,
2]. After this, GGA analyzes the features of the dataset on
which theMLP needs to be trained. In most cases, it has been

observed that certain features contribute more than others to
determining the correct class of the input pattern. GGA
exploits this property of the dataset and finds important
features using domain-specific knowledge. *e weights of
these identified features are increased by a random number
in the interval [0.0,1.0) in the entire initial population,
thereby giving them a higher weightage as compared to
other features from the very beginning.

4.3. Mean-Based Crossover (MBC). After population ini-
tialization, the next step is the application of various op-
erators such as selection, crossover, and mutation repeatedly
to obtain an MLP with optimal weights and biases. Main-
taining diversity is important, but sometimes it is also vital to
retain the best individuals of one generation into the next.
GGA-MLP uses elitism to the transfer best chromosome(s)
from one generation to another. Crossover andmutation are
performed to generate offspring by selecting chromosomes
from the current generation. *e crossover operator takes
two chromosomes and combines them to produce new
offsprings. It is based on the idea that the exchange of in-
formation between good chromosomes will generate even
better offsprings. Extreme care should be taken while per-
forming selection and crossover operation as it may reduce
the genetic diversity, which may ultimately lead to prema-
ture convergence. To avoid premature convergence, we
present a crossover technique, known as mean-based
crossover (MBC), that aims at improving the fitness of the
top individuals of the population with the help of the worst
members of the population. *e proposed crossover tech-
nique involves the calculation of the mean of the fittest
chromosomes in the population, thereby generating off-
springs that are closer to the solution having minimum
losses. Before applying MBC, GGA-MLP sorts the chro-
mosomes in ascending order based on their fitness values.
MBC starts by selecting the top 30% of the chromosomes
and calculates the gene-wise mean of these chromosomes.
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Figure 1: Chromosome encoding of MLP for weight and bias optimization.
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*e mean chromosome Cmean is an indicator of the ideal
gene value which minimizes the MSE. In order to move
toward a global optimum, this mean chromosome is used as
a comparison parameter against individuals having low
fitness values in the population. From the top 30% chro-
mosomes, a chromosome Cbf is selected randomly for
crossover. Another parent Chs for crossover is chosen from
the worst 30% individuals in such a way that it can con-
tribute the most toward the fitness of chromosome Cbf. *e
method of selection of Chs is shown in Figure 2. After
selecting Cbf and Chs, MBC is performed by exchanging the
genes of Cbf and Chs as shown in Figure 2. Out of the two
children obtained from MBC, the offspring having higher
fitness improves the quality of the population. *e other
offspring adds randomness to the population, thereby de-
creasing the probability of the population converging to a
local optimum.

After crossover, Cbf is inserted into a set S to prevent it
from being selected again for MBC in the current iteration.
*is is done to ensure that a unique chromosome is selected
from the population each time MBC is performed, thereby
preventing the problem of generating duplicate children.
*is process continues till the desired number of offsprings
is generated. *e steps of MBC are shown in Figure 2.

4.4. Greedy Mutation. In GA, the mutation operator is vital
for maintaining diversity in the population. Mutation op-
erator introduces diversity in the evolving population. It
randomly modifies one or more genes of a chromosome
depending upon the mutation probability which avoids
getting stuck in the local minima. In traditional GA, every
chromosome has an equal probability of getting mutated
irrespective of its fitness [60]. It means both the best and the
worst chromosomes have an equal probability of getting
disrupted by mutation. In this paper, we propose a greedy
mutation that aims to (i) avoid disruption of good quality
chromosomes and (ii) at the same time maintain diversity in
the population by mutating low-quality chromosomes,
thereby improving the quality of the overall population.

Greedy mutation starts by calculating the gene-wise
mean of the top 30% (N) chromosomes to generate a mean
chromosome Cmean. It then selects a chromosome Cj ran-
domly from the worst 30% (M) chromosomes in the pop-
ulation for mutation. A random number R is generated for
every gene of Cj and is compared with the mutation
probability Pm. IfR> Pm, difference “d” between the value of
the selected gene of Cj and that of the corresponding gene of
the mean chromosome is calculated, and a random number
“r” is generated. *e product of r and d is then subtracted
from the corresponding gene value in Cj. *is helps the
chromosome in approaching good gene values, thereby
increasing its overall fitness.

Due to the use of greedy approaches at each step,
diversity of the population may decrease leading to
premature convergence. To avoid this, it is important to
introduce diversity in the population. GGA-MLP intro-
duces diversity in the population in each iteration by
generating 30% of the population using elitism, 50% of the

population using MBC and greedy mutation, and the
remaining 20% randomly by choosing synaptic weights
and biases within the range [−2, 2].

5. Results and Discussion

First, we present the datasets that are selected to evaluate the
effectiveness of GGA-MLP, in terms of accuracy achieved in
classifying the input data, in Section 5.1.*e implementation
details, experimental setup used for performing experi-
ments, and results are presented in Section 5.2.

5.1. Datasets. To evaluate the effectiveness of the proposed
approach GGA-MLP, ten standard binary classification
datasets are selected from the UCI Machine Learning Re-
pository [61]: Parkinson, Indian Liver Patient Dataset
(ILPD), Diabetes, Vertebral Column, Spambase, QSAR
Biodegradation, Blood Transfusion, HTRU2, Drug Con-
sumption: Amyl Nitrite, and Drug Consumption: Ketamine.
*e description of the selected datasets is shown in Table 1.
In each dataset, 80% of the instances are used for training
(out of which 20% is used for validation), and the remaining
20% are used for testing. It can easily be seen from Table 1
that the selected datasets have different numbers of features
ranging from 4 to 57 as well as instances ranging from 197 to
17898, which helps us to evaluate the proposed approach on
datasets of varying complexities. It also makes the task of
evaluating GGA-MLP even more challenging.

5.2. Experimental Design and Results. To evaluate the ef-
fectiveness of GGA-MLP, the performance of MLP trained
using GGA-MLP is compared with the classification accu-
racy of MLP trained using existing algorithms, namely, GA
[21], ABC [27], MMPSO [28], WOA [33], MVO [34], and
GOA [35], and on each dataset given in Table 1. All the
algorithms are implemented in Python 3.6.4 using the
Anaconda framework. As these are randomized algorithms,
30 runs of each algorithm are performed on every dataset.
After each run, the best MLP is selected, and its classification
accuracy on the test dataset is calculated using

Classification Accuracy �
NC

N
, (5)

where NC is the number of correctly classified testing data
samples and N is the total number of samples in the testing
dataset.

Before the start of the training phase, it is required to
decide the architecture of MLP for each dataset. To perform
a fair comparison, the architecture of MLP is kept the same
for each algorithm. Here, we take only one hidden layer, as
one hidden layer is sufficient to classify the datasets shown in
Table 1. *e number of neurons in the hidden layer is
decided by using the method proposed by [25]. *e number
of neurons in the hidden layer is calculated using the for-
mula 2 × N + 1, where N is number of relevant features of
the dataset. In some cases, the number of hidden neurons
taken is 5 × N + 1. *e architecture of MLP used for each
dataset is shown in Table 2.
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*e values of the controlling parameters of ABC, WOA,
MMPSO, MVO, GOA, GA, and GGA-MLP are listed in
Table 3. Various performance metrics such as classification
accuracy, specificity, and sensitivity are used to assess the
performance of GGA-MLP with respect to the existing state-
of-the-art algorithms. *e average, best, and standard de-
viation of classification accuracy, specificity, and sensitivity
of the best MLP trained using these metaheuristic algorithms
during 30 runs for the given datasets are shown in
Tables 4–6, respectively. Data is collected underWindows 10
on Intel core i5-7200U 3.1GHz processor with 8.00GB
DDR4 and Nvidia GT 940MX 2GB VRAM.

It is evident from Tables 4 and 5 that GGA-MLP gives the
highest average and best accuracy as well as specificity for the

datasets except Parkinson, QSAR Biodegradation, Drug
Consumption: Amyl Nitrite, and Drug Consumption:
Ketamine. Despite having low accuracies and specificity on
the four datasets, GGA-MLP achieves higher sensitivity as
compared to the existing algorithms, as evident from Table 6,
which shows the superiority of GGA-MLP in classifying the
positive samples correctly. GGA-MLP also has low standard
deviation as compared to existing state-of-the-art algo-
rithms.*is shows the robustness of the proposed approach.

In Figure 3, MSE values of MLP trained using ABC,
WOA, MMPSO, MVO, GOA, GA, and GGA-MLP for the
given datasets are calculated at an interval of 10 iterations
and plotted to visualize convergence rate. *e conver-
gence curves show that although GGA-MLP takes more

Table 1: Binary classification dataset.

# Dataset # features # instances # training instances # testing instances
1 Parkinson 22 195 158 37
2 ILPD 5 583 467 116
3 Diabetes 8 768 615 153
4 Vertebral Column 6 310 248 62
5 Spambase 57 4601 3681 920
6 QSAR Biodegradation 41 1055 844 211
7 Blood Transfusion 4 748 598 150
8 HTRU2 8 17898 14318 3580
9 Drug Consumption: Amyl Nitrite 12 1885 1508 377
10 Drug Consumption: Ketamine 12 1885 1508 377

1. Calculate the gene-wise mean of top 30% (N) chromosomes to generate a mean chromosome
Cmean 

Cmean= ⌒C (k)mean =
1
N ∑

i=1

N
C (k)i

Where, C (k)mean represents the kth gene of the mean chromosome, C (k)i represents the kth

gene of ith chromosome.
2. Select a chromosome Cbf randomly from the N chromosomes selected in step 1.
3. Check if Cbf is in set S, where set S is a set of all chromosomes which have already participated
in crossover. If (Cbf ∈S) go to 2 else go to 4.
4. Calculate the absolute difference between the gene values of chromosome selected in step 2
with the corresponding gene values of the mean chromosome to generate a difference
chromosome Cdiff

Cdiff = ⌒C (k)diff = |C (k)bf − C (k)mean |

C j diff = ⌒C (k) jdiff = |C (k)j − C (k)mean |

5. Select the worst 30% (M) chromosomes of the population.
6.For each chromosome Cj | 1 ≤ j ≤ M,

a. Calculate the difference chromosome C jdiff by subtracting the gene values of Cj from the
corresponding gene values of the mean chromosome.

b. Create a variable scorej and set its value to 0. The variable scorej is an indicator of how
significantly Cj can improve the fitness of the chromosome Cbf .

c. Compare the corresponding gene values of Cdiff and C jdiff , for each gene k. If C (k) jdiff <
C (k)diff , then scorej←scorej +1.

7. The chromosome having the highest score (Chs) is selected for crossover. 
8. Crossover is now performed between Cbf and Chs by interchanging the genes for which
C (k) hs

diff <C (k)diff . 
9. Add Cbf to set S.
10. Repeat Steps 2-9 until desired number of off-springs are generated.

Figure 2: Pseudocode for MBC.

6 Contrast Media & Molecular Imaging



time to converge as compared to other metaheuristic
algorithms, it avoids getting trapped in local minima. In
most of the cases, the performance of GGA-MLP is better
than the existing algorithms. To assess the efficacy of MLP
trained using GGA-MLP as a classifier, we compare the

classification accuracy of GGA-MLP with that of the
classifiers built using other machine learning algorithms
such as logistic regression, Naı̈ve Bayes, and decision tree,
as well as the MLP trained using BP. Similar to decision
tree algorithms, BP algorithms like GGA-MLP are also

Table 2: MLP architecture and selected attributes for each dataset.

# Dataset MLP architecture (input-
hidden-output) Selected attributes for greedy population initialization

1 Parkinson 22-111-1 Average vocal fundamental frequency, minimum vocal fundamental
frequency, maximum vocal fundamental frequency

2 ILPD 5-26-1 SGPT alanine aminotransferase, SGOT aspartate aminotransferase, direct
bilirubin

3 Diabetes 8-17-1 Blood pressure, insulin, BMI
4 Vertebral Column 6-31-1 Lumbar lordosis angle, sacral slope, pelvic radius

5 Spambase 57-115-1
Length of the longest uninterrupted sequence of capital letters, average length
of uninterrupted sequences of capital letters, total number of capital letters in

the e-mail

6 QSAR Biodegradation 41-83-1 SpMax_L: leading eigenvalue from Laplace matrix, J_Dz(e): Balaban-like index
from Barysz matrix weighted by Sanderson electronegativity

7 Blood Transfusion 4-9-1 R (recency - months since last donation), F (frequency - total number of
donation), M (monetary - total blood donated in c.c.)

8 HTRU2 8-17-1 Mean of the DM-SNR curve, standard deviation of the DM-SNR curve, excess
kurtosis of the DM-SNR curve, skewness of the DM-SNR curve

9 Drug Consumption:
Amyl Nitrite 12-25-1 Nscore, Escore, Oscore, Ascore, Cscore

10 Drug Consumption:
Ketamine 12-25-1 Nscore, Escore, Oscore, Ascore, Cscore

Table 3: Controlling parameters of metaheuristic algorithms.

Optimization algorithm Parameter Value
GGA-MLP, GA, ABC, WOA,
MMPSO, MVO, GOA

Initial population size 30
# iterations 200

GA, ABC, WOA, MMPSO, MVO,
GOA Initial population generation Random population initialization (synaptic weights and biases are

initialized randomly in the range [−2, 2])
GGA-MLP Initial population generation Greedy population initialization

GA, GGA-MLP
Probability of crossover (Pc) 0.8
Probability of mutation (Pm) 0.05

Elitism 30%
ABC Random number (ɸ) [−1, 1]

WOA

Vector ( a
→

) Linearly decreasing from 2 to 0
Random vector ( r

→
) [0, 1]

Constant (b) 1
Random number (p) [0, 1]
Random number (l) [−1, 1]

MMPSO

Acceleration coefficients
(c1, c2)

1.48

Inertia weights (w) 0.729
Number of swarms 3

Swarm size 10

MVO

Minimum wormhole
existence probability 0.2

Minimum wormhole
existence probability 1

GOA

cmax 1
cmin 0.00001
L 1.5
F 0.5

Contrast Media & Molecular Imaging 7



Table 4: Comparison results of classification accuracy of MLP trained using ABC, WOA, MMPSO, MVO, GOA, GA, and GGA-MLP.

Dataset\algorithm ABC [27] WOA [33] MMPSO [28] MVO [34] GOA [35] GA [21] GGA-MLP

Parkinson
Avg 0.8042 0.7538 0.7481 0.9023 0.9294 0.8209 0.8666
Std 0.062 0.0955 0.0609 0.0667 0.0531 0.0670 0.0772
Best 0.9189 0.8649 0.8378 0.9459 0.9730 0.8919 0.9189

ILPD
Avg 0.6991 0.7009 0.7006 0.7000 0.7141 0.7018 0.7196
Std 0.0047 0.0000 0.0016 0.0021 0.0201 0.0208 0.0302
Best 0.7009 0.7009 0.7009 0.7094 0.7607 0.7265 0.7863

Diabetes
Avg 0.7416 0.7246 0.6647 0.7568 0.7576 0.7563 0.7697
Std 0.0317 0.0296 0.0615 0.0263 0.0285 0.0267 0.0255
Best 0.8039 0.7516 0.7647 0.7843 0.7778 0.7974 0.8301

Vertebral Column
Avg 0.8376 0.8504 0.7954 0.8453 0.8631 0.8317 0.8851
Std 0.0632 0.0472 0.0639 0.0389 0.0353 0.0467 0.0365
Best 0.8871 0.9032 0.8387 0.8710 0.8710 0.9032 0.9355

Spambase
Avg 0.7639 0.7491 0.8202 0.8432 0.8564 0.8465 0.9176
Std 0.0295 0.0409 0.0279 0.0327 0.0239 0.0214 0.0176
Best 0.7935 0.8152 0.8533 0.8761 0.9120 0.9022 0.9370

QSAR Biodegradation
Avg 0.7166 0.7329 0.7216 0.7564 0.8656 0.8049 0.8498
Std 0.0698 0.0777 0.0563 0.0538 0.0302 0.0336 0.0422
Best 0.8104 0.8246 0.7867 0.8104 0.9052 0.8483 0.8957

Blood Transfusion
Avg 0.7613 0.7800 0.7736 0.7976 0.8345 0.8342 0.8479
Std 0.03503 0.00526 0.0210 0.005 0.0045 0.0059 0.0039
Best 0.7800 0.7867 0.7933 0.8133 0.8533 0.8400 0.8667

HTRU2
Avg 0.9454 0.9678 0.9747 0.9656 0.9786 0.9799 0.9805
Std 0.0225 0.0037 0.0015 0.0014 0.0022 0.0012 0.0010
Best 0.9701 0.9763 0.9779 0.9712 0.9810 0.9816 0.9827

Drug Consumption: Amyl Nitrite
Avg 0.8298 0.8363 0.8359 0.8168 0.8242 0.8198 0.8356
Std 0.0219 0.0013 0.0087 0.0202 0.0410 0.0113 0.0012
Best 0.8435 0.8488 0.8462 0.8329 0.8541 0.8355 0.8462

Drug Consumption: Ketamine
Avg 0.8243 0.8216 0.8221 0.8032 0.8268 0.8111 0.8204
Std 0.0162 0.0121 0.0129 0.0264 0.0301 0.0119 0.0116
Best 0.8462 0.8435 0.8462 0.8276 0.8541 0.8276 0.8382

Table 5: Comparison results of specificity of MLP trained using ABC, WOA, MMPSO, MVO, GOA, GA, and GGA-MLP.

Dataset\algorithm ABC [27] WOA [33] MMPSO [28] MVO [34] GOA [35] GA [21] GGA-MLP

Parkinson
Avg 0.7914 0.6734 0.7583 0.8460 0.8126 0.7865 0.7914
Std 0.0805 0.0845 0.0632 0.0668 0.0798 0.0521 0.0601
Best 0.9310 0.8276 0.8621 0.9655 0.9655 0.8621 0.8966

ILPD
Avg 0.4570 0.4222 0.4565 0.4126 0.4218 0.3546 0.4788
Std 0.0064 0.0000 0.0031 0.0040 0.0083 0.0092 0.001
Best 0.4889 0.4222 0.4667 0.4222 0.4444 0.3778 0.4889

Diabetes
Avg 0.6934 0.6521 0.5987 0.6965 0.7012 0.7051 0.7124
Std 0.0621 0.0264 0.0743 0.0086 0.0043 0.0218 0.0723
Best 0.7670 0.6990 0.7184 0.7184 0.7184 0.7476 0.7767

Vertebral Column
Avg 0.8026 0.8126 0.7962 0.8264 0.8556 0.8432 0.8643
Std 0.0756 0.0316 0.0528 0.0254 0.0404 0.031 0.0264
Best 0.8889 0.8519 0.8519 0.8519 0.8889 0.8889 0.8889

Spambase
Avg 0.6653 0.6521 0.7587 0.7865 0.7917 0.7664 0.8942
Std 0.0085 0.0321 0.0262 0.0322 0.0853 0.0912 0.0010
Best 0.7040 0.7291 0.7943 0.8227 0.8763 0.8629 0.9064

QSAR Biodegradation
Avg 0.6514 0.6954 0.7256 0.7381 0.8216 0.7021 0.8126
Std 0.0954 0.0732 0.0063 0.0057 0.0156 0.0378 0.0054
Best 0.7826 0.7899 0.7681 0.7681 0.8768 0.7826 0.8478

Blood Transfusion
Avg 0.7265 0.7355 0.7543 0.7632 0.8123 0.8011 0.8268
Std 0.0765 0.0032 0.0082 0.0028 0.0014 0.0032 0.0021
Best 0.7653 0.7551 0.7959 0.7857 0.8265 0.8265 0.8367
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randomized algorithms; every dataset is run 30 times on
each of them, and the average, best, and standard devi-
ation of classification accuracy are reported in Table 7. To
prevent overfitting, validation set is used for early stop-
ping during training of logistic regression, Naı̈ve Bayes,
and decision tree as well as the MLP using BP. It is clear

from Table 7 that GGA-MLP gives the best result in all the
cases. However, the standard deviation over 30 runs is
least in case of decision tree. From Tables 4–7, it is clear
that GGA-MLP performance is better than or comparable
to the existing algorithms in classifying input patterns
correctly.

Table 5: Continued.

Dataset\algorithm ABC [27] WOA [33] MMPSO [28] MVO [34] GOA [35] GA [21] GGA-MLP

HTRU2
Avg 0.9452 0.9542 0.9702 0.9678 0.9721 0.9724 0.9742
Std 0.0031 0.0026 0.0016 0.0015 0.0018 0.0015 0.0014
Best 0.9724 0.9771 0.9802 0.9712 0.9814 0.9820 0.9824

Drug Consumption: Amyl Nitrite
Avg 0.8165 0.8321 0.8256 0.7982 0.7920 0.7814 0.7925
Std 0.0076 0.0021 0.0062 0.0075 0.0168 0.0062 0.0047
Best 0.8517 0.8486 0.8454 0.8265 0.8423 0.8297 0.8297

Drug Consumption: Ketamine
Avg 0.8945 0.9207 0.9112 0.8765 0.8965 0.8643 0.8621
Std 0.0322 0.0051 0.0443 0.0556 0.0065 0.0234 0.0186
Best 0.9366 0.9437 0.9401 0.9120 0.9190 0.8944 0.8944

Table 6: Comparison results of sensitivity of MLP trained using ABC, WOA, MMPSO, MVO, GOA, GA, and GGA-MLP.

Dataset\algorithm ABC [27] WOA [33] MMPSO [28] MVO [34] GOA [35] GA [21] GGA-MLP

Parkinson
Avg 0.0864 0.9821 0.0715 0.8476 0.9820 0.9776 0.9845
Std 0.0028 0.0032 0.0072 0.0068 0.0032 0.0036 0.0021
Best 0.875 1.0000 0.7500 0.875 1.0000 1.0000 1.0000

ILPD
Avg 0.7945 0.8520 0.8025 0.8768 0.9327 0.9122 0.9543
Std 0.0094 0.0046 0.0069 0.0038 0.0029 0.0037 0.0025
Best 0.8333 0.8750 0.8472 0.8889 0.9583 0.9444 0.9722

Diabetes
Avg 0.8356 0.8432 0.7965 0.8976 0.8898 0.8657 0.9316
Std 0.0412 0.0142 0.0684 0.0002 0.0002 0.0053 0.0001
Best 0.8800 0.8600 0.8600 0.9200 0.9000 0.9000 0.94

Vertebral Column
Avg 0.8256 0.9206 0.7681 0.8542 0.8321 0.8765 0.9543
Std 0.0209 0.0051 0.0564 0.0034 0.0032 0.0026 0.0010
Best 0.8857 0.9429 0.8286 0.8857 0.8571 0.9143 0.9714

Spambase
Avg 0.8675 0.9342 0.9125 0.9430 0.9532 0.9355 0.9785
Std 0.0622 0.0332 0.0204 0.0031 0.0025 0.0078 0.0021
Best 0.9596 0.9752 0.9627 0.9752 0.9783 0.9752 0.9938

QSAR Biodegradation
Avg 0.7217 0.8536 0.7621 0.8765 0.9332 0.9452 0.9720
Std 0.0721 0.0501 0.0420 0.0028 0.0024 0.0032 0.0001
Best 0.8630 0.8904 0.8219 0.8904 0.9589 0.9726 0.9863

Blood Transfusion
Avg 0.8575 0.8921 0.8543 0.8965 0.9329 0.9056 0.9486
Std 0.0022 0.0002 0.0036 0.0003 0.0002 0.0004 0.0002
Best 0.8824 0.9024 0.8764 0.9167 0.9419 0.9205 0.9535

HTRU2
Avg 0.8970 0.9432 0.9123 0.9547 0.9589 0.9546 0.9698
Std 0.0107 0.0037 0.0068 0.0041 0.0028 0.0030 0.0026
Best 0.9486 0.9686 0.9571 0.9714 0.9771 0.9771 0.9857

Drug Consumption: Amyl Nitrite
Avg 0.7886 0.8222 0.7986 0.8443 0.9065 0.8245 0.9124
Std 0.0310 0.0230 0.0865 0.0020 0.0003 0.0048 0.0022
Best 0.80 0.85 0.85 0.8667 0.9167 0.8667 0.9333

Drug Consumption: Ketamine
Avg 0.7589 0.7234 0.7308 0.7765 0.9010 0.8438 0.9216
Std 0.0076 0.0037 0.0083 0.0045 0.0037 0.0043 0.0010
Best 0.8030 0.7576 0.7879 0.8030 0.9242 0.8788 0.9394
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Figure 3: Continued.
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Figure 3: Convergence graph of MSE of MLP trained using ABC, WOA, MMPSO, MVO, GOA, GA, and GGA-MLP for 10 classification
datasets.
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6. Conclusion and Future Work

In this paper, a greedy genetic algorithm, GGA-MLP, is
presented to train MLP. *e use of domain-specific
knowledge enables the generation of good quality initial
population. Mean-based crossover and greedy mutation
help algorithm in moving toward global optima by exploring
the search space thoroughly. Datasets of varying complex-
ities are used to evaluate the performance of GGA-MLP and
to compare it with existing state-of-the-art algorithms as
well as existing classifiers such as Naı̈ve Bayes, decision tree,
logistic regression, and MLP trained using BP. *e results
show that although GGA-MLP takes more time to converge
as compared to other metaheuristic algorithms, the per-
formance of GGA-MLP is better than or comparable to the
existing techniques in classifying datasets, especially large
datasets, as GGA-MLP searches the solution space properly
by maintaining a balance between exploration and
exploitation.

In future, we plan to extend our work to train other
types of ANNs and incorporate architecture optimization
in it.

Data Availability

No data were used to support this study.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] X. Xin Yao, “Evolving artificial neural networks,” Proceedings
of the IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[2] L.-H. Chen and X.-Y. Zhang, “Application of artificial neural
network to classify water quality of the yellow river,” Journal
0f Fuzzy Information and Engineering, pp. 15–23, 2009.

[3] H. Altun, A. Bilgil, and B. C. Fidan, “Treatment of multi-
dimensional data to enhance neural network estimators in
regression problems,” Expert Systems with Applications,
vol. 32, no. 2, pp. 599–605, 2007.

[4] D. D. Silalahi, C. E. Reaño, F. P. Lansigan, R. G. Panopio, and
N. C. Bantayan, “Using genetic algorithm neural network on
near infrared spectral data for ripeness grading of oil palm

Table 7: Comparison of performances of classifiers.

Dataset\algorithm Logistic regression Naı̈ve Bayes Decision tree BP GGA-MLP

Parkinson
Avg 0.8205 0.6154 0.8162 0.8496 0.8666
Std — — 0.0316 0.0089 0.0772
Best 0.8205 0.6154 0.8718 0.8718 0.9189

ILPD
Avg 0.7094 0.5128 0.6786 0.7179 0.7196
Std — — 0.0203 — 0.0302
Best 0.7094 0.5128 0.7179 0.7179 0.7863

Diabetes
Avg 0.7403 0.7597 0.6541 0.7558 0.7697
Std 0.0113 0.0122 0.0255
Best 0.7403 0.7597 0.6818 0.7857 0.8301

Vertebral Column
Avg 0.8065 0.7097 0.6398 0.8500 0.8851
Std — — 0.0191 0.0128 0.0365
Best 0.8065 0.7097 0.6774 0.8871 0.9355

Spambase
Avg 0.9054 0.8239 0.9092 0.9241 0.9176
Std — — 0.0040 0.0022 0.0176
Best 0.9054 0.8239 0.9185 0.9283 0.9370

QSAR Biodegradation
Avg 0.8436 0.6682 0.8052 0.8561 0.8498
Std — — 0.0107 0.0105 0.0422
Best 0.8436 0.6682 0.8246 0.8720 0.8957

Blood Transfusion
Avg 0.7867 0.7733 0.8267 0.7600 0.8479
Std — — — 0.0063 0.0039
Best 0.7867 0.7733 0.8267 0.7733 0.8667

HTRU2
Avg 0.9765 0.9411 0.9624 0.9703 0.9805
Std — — 0.0013 0.0014 0.0010
Best 0.9765 0.9411 0.9645 0.9724 0.9827

Drug Consumption: Amyl Nitrite
Avg 0.7931 0.6976 0.6943 0.7926 0.8356
Std — — 0.0088 0.0098 0.0012
Best 0.7931 0.6976 0.7135 0.8090 0.8462

Drug Consumption: Ketamine
Avg 0.7931 0.7454 0.7080 0.7724 0.8204
Std — — 0.0243 0.0216 0.0116
Best 0.7931 0.7454 0.7268 0.8011 0.8382

12 Contrast Media & Molecular Imaging



(elaeis guineensis jacq.) fresh fruit,” Information Processing in
Agriculture, vol. 3, no. 4, pp. 252–261, 2016.

[5] X. Ma and X. Gan, “Condition monitoring and faults rec-
ognizing of dish centrifugal separator by artificial neural
network combined with expert system,” in 2009 Fifth Inter-
national Conference on Natural Computation, vol. 2,
pp. 203–207, Tianjian, China, 14-16 Aug. 2009.
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