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,is study aimed to explore the application value of computed tomography (CT) imaging features based on the deep learning
batch normalization (batch normalization, BN) U-net-W network image segmentation algorithm in evaluating and diagnosing
glioma surgery. 72 patients with glioma who were admitted to hospital were selected as the research subjects. ,ey were divided
into a low-grade group (grades I-II, N� 27 cases) and high-grade group (grades III-IV, N� 45 cases) according to postoperative
pathological examination results.,e CTperfusion imaging (CTPI) images of patients were processed by using the deep learning-
based BN-U-net-W network image segmentation algorithm. ,e application value of the algorithm was comprehensively
evaluated by comparing the average Dice coefficient, average recall rate, and average precision of the BN-U-net-W network image
segmentation algorithmwith the U-net and BN-U-net network algorithms.,e results showed that the Dice coefficient, recall, and
precision of the BN-U-net-W network were 86.31%, 88.43%, and 87.63% respectively, which were higher than those of the U-net
and BN-U-net networks, and the differences were statistically significant (P< 0.05). Cerebral blood flow (CBF), cerebral blood
volume (CBV), and capillary permeability (PMB) in the glioma area were 56.85mL/(min·100 g), 18.03mL/(min·100 g), and
8.57mL/100 g, respectively, which were significantly higher than those of normal brain tissue, showing statistically significant
differences (P< 0.05). ,e mean transit time (MTT) difference between the two was not statistically significant (P> 0.05). ,e
receiver operating characteristic (ROC) curves of CBF, CBV, and PMB in CTPI parameters of glioma had area under the curve
(AUC) of 0.685, 0.724, and 0.921, respectively. PMB parameters were significantly higher than those of CBF and CVB, and the
differences were statistically obvious (P< 0.05). It showed that the BN-U-net-W network model had a better image segmentation
effect, and CBF, CBV, and PMB showed better sensitivity in diagnosing glioma tissue and normal brain tissue and high-grade and
low-grade gliomas, among which PBM showed the highest predictability.

1. Introduction

Glioma is a commonmalignant tumor in the cranial nervous
system, and its incidence accounts for about 40% of all
intracranial tumors. At present, the pathogenesis of the
disease is not clear. ,e common types are astrocytoma,
oligodendroglioma, ependymoma, neuronal tumor, and
medulloblastoma [1, 2]. Due to the different locations of the
tumor in the brain, the clinical symptoms are also different.
Most patients have headache, vomiting, and memory loss as

the main symptoms of increased intracranial pressure [3].
Most of glioma grow infiltratingly, so the boundary with
normal brain tissue is unclear; and the higher the tumor
grade, the more unclear the boundary, the more serious the
infiltration of peritumoral brain tissue [4, 5]. According to
the classification criteria of glioma issued by the World
Health Organization (WHO), it can be divided into grades
I–IV, which were benign, borderline with a trend towards III
and IV, and malignant [6]. Surgical resection is the main
method for the treatment of glioma, but due to the different
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tumor grades, the prognosis varies greatly. ,erefore,
obtaining accurate glioma classification information is of
great significance for the selection of treatment methods,
surgical guidance, and the improvement of prognosis [6–8].

Clinically, the commonly used diagnostic methods for
glioma are computed tomography (CT), magnetic resonance
imaging (MRI), and other imaging examinations. However, the
imaging characteristics of glioma lack specificity. ,e imaging
of grades I–IV can be manifested as mixed signal images with
different degrees of necrosis or cystic transformation. ,ere-
fore, conventional imaging examinations cannot accurately
provide specific conditions that are not conducive to glioma
grading, such as tumor angiogenesis, metabolism, and
micronecrosis [9–12]. In recent years, CT perfusion imaging
(CTPI) has shown superiority in reflecting the blood perfusion
of tumors. Clinical scholars have used it in the diagnosis and
classification of glioma patients, and the results have been
significantly improved [13, 14]. However, each patient’s cra-
niocerebral condition is complex and changeable, with dif-
ferent manifestations in CT imaging. Clinicians diagnose and
analyze the patient’s condition by observing and analyzing each
CT image. ,ey are easily affected by certain objective factors,
such as the doctor’s experience, mental state, and the quality of
CT imaging. ,is is not only time-consuming and labor-in-
tensive but also causes risk of misdiagnosis and missed diag-
nosis [15–17].

With the development of science and technology and the
enhancement of artificial intelligence computing capabil-
ities, deep learning has begun to be widely used in visual
image processing, data mining, and other fields and has
achieved good results [18]. In clinical practice, some scholars
use deep learning technology to analyze medical image maps
to assist doctors in segmenting lesions, completing target
detection and classification, and achieving good results
[19, 20]. However, the traditional deep learning technology
is difficult to achieve the purpose of more complex image
segmentation such as glioma. ,erefore, a 128-slice CT
whole brain perfusion image segmentation method based on
the U-net network was proposed in this study, which was
used in the diagnosis and analysis of glioma patients.

In conclusion, obtaining accurate glioma grading infor-
mation is of great significance for the selection of treatment
methods, the guidance of surgery, and the improvement of
prognosis. However, the U-net network in the clinical deep
learning technology has shown good results in the processing
of medical CTimages at present.,erefore, this work proposed
a segmentation algorithm of CTperfusion images based on the
U-net network and applied it to the clinical diagnosis and
analysis of glioma patients. It was hoped to explore the clinical
practical value of the algorithm by comparing the imaging
effects with the U-net and BN-U-net network algorithms that
have been clinically proven to have good image segmentation
effects, providing an effective reference for the diagnostic
analysis and surgical treatment of glioma patients.

2. Materials and Methods

2.1. Research Objects and 0eir Grouping. In this study, 72
patients with glioma admitted to the hospital from July 2018

to June 2020 were selected as the research subjects. All
patients were confirmed to be glioma by postoperative
pathological biopsy and immunohistochemistry. Among
them, 40 were males and 32 were females; and patients were
15–76 years old (with an average value of 42.75± 14.32 years
old). All patients underwent 128-slice CT whole brain
perfusion scan (Siemens SOMATOMdefinition AS 128-slice
spiral CT machine) before surgery, and pathological ex-
amination was performed after operation to determine the
pathological type and pathological grade. 72 patients were
rolled into two groups based on postoperative pathological
examination results and WHO pathological grading stan-
dards: 27 cases in the low-grade group (I-II) and 45 cases in
the high-grade group (III-IV).,is study had been approved
by the ethics committee of hospital, and the patients and
their families had understood the situation of the study and
signed the informed consent forms.

Inclusion criteria: patients who were diagnosed as pri-
mary glioma by pathological examination, patients whose
imaging data were well preserved, and patients with no
contraindication to CT examination.

Exclusion criteria: patients who were allergy to iodine
contrast agent, patients with hyperthyroidism, patients with
intracranial tumor metastasis or multiple intracranial tumors,
patients in the late stage of glioma with obviously increased
intracranial pressure, patients with tendency to brain hernia-
tion, and patients with cardiopulmonary insufficiency.

2.2. CTPI. Before scanning, the patients had an iodine
allergy test. Allergy rescue materials were prepared (epi-
nephrine, dexamethasone, and nasal oxygen tube) for
rescue at any time. 0.1mL of iodine contrast agent was
adopted for intradermal injection, and whether the subjects
had allergic reactions should be observed after 15–20
minutes. ,e elbow vein was punctured with a 16G needle
to ensure that the contrast agent was injected quickly and
stably. ,e patient was instructed to lie supine, a routine
brain scan was performed with the ear canthus line as the
baseline to determine the extent of the lesion, and then a
CT whole brain perfusion scan was performed. A high-
pressure syringe was used to inject the contrast medium
through the cubital vein at a speed of about 5.5mL/s
according to the subject’s weight (1–1.5mL/kg). ,en,
centering on the lesion, a continuous dynamic scan of
96mm of the whole brain was performed. ,e scanning
parameters were set as follows: scanning time was 40
seconds, scanning layer thickness was 0.6mm, layer
thickness was 1.0mm, tube voltage was 80 kV, tube current
was 120mA, and 0.33 seconds for 1 cycle of tube rotation.

A three-dimensional postprocessing workstation was
adopted to process the acquired data with a whole brain
volume perfusion software package to obtain the pseudo-
color maps of cerebral blood flow (CBF), cerebral blood
volume (CBV), mean transit time (MTT), and capillary
permeability (PMB).

2.3. Glioma CT Image Segmentation Algorithm Based on the
U-netNetwork. ,eU-net network is an extension of the full
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convolutional neural network (FCN), which can be divided
into two parts. ,e first half was used to extract image
features, and the second half was used for sampling. Taking
into account that the U-net network may have slower
convergence speed and disappearance of gradients during
training, the research had added a part of the norm layer to
normalize it. At the same time, the research replaced the
ordinary convolution in the U-net network with the depth
separable convolution to improve the calculation speed,
which improved the calculation speed of the model by re-
ducing the network parameters and reducing the size of the
network model. ,erefore, a BN-U-net-W network model
was designed.

,e batch normalization (BN) was adopted for the
normalization process to process the input value distribution
of any neuron in each layer of the neural network into a
standard normal distribution with a mean of 0 and a var-
iance of 1, so as to improve the convergence speed and
shorten the training time of the model. ,e process of BN
normalization processing was mainly as follows.

It was assumed that the input was s, which was the
number of all samples, and β was the parameter. If
α � x1 . . . xs􏼈 􏼉, the equation for calculating the mean value
of the batch data can be expressed as follows:

ρα �
1
s

􏽘

s

i�1
x1 . (1)

,e data variance of each training batch can be expressed
as

σ2α �
1
s

􏽘

s

i�1
xi − ρα( 􏼁

2
. (2)

,e mean and variance of the data were adopted to
perform BN on the training data to obtain a 0-1 normal
distribution. In addition, ε was adopted to represent a very

small positive number; then, the equation can be expressed
as

􏽢x �
xi − ρα�����

σ2α + ε
􏽱 .

(3)

It could multiply xi by c to adjust the size of the integer
value and then add α to increase the offset to getmi, where c

represents the scale factor, α represents the translation
factor, and mi can be expressed as

mi � c􏽢xi + α. (4)

Depth separable convolution can decompose the stan-
dard convolution into depth convolution and an l× 1 point-
by-point convolution.,e principle is shown in Figure 1. Let
Ac be the spatial dimension of the convolution kernel, and Pv

be the size of feature map inputted by the convolution layer.
,e calculation amount of the standard convolution is as
follows:

Standard convolution � Ac × Ac × H × L × Pv × Pv. (5)

,e amount of calculation for deep convolution is as
follows:

Deep convolution � Ac × Ac × Pv × Pv. (6)

,e calculation amount of 1× 1 point-by-point convo-
lution is as follows:

1 × 1 pointwise convolution � H × L × Pv × Pv. (7)

Based on equations (5)–(7), the calculated ratio of depth
separable convolution nuclear standard volume data can be
obtained:

1
L

+
1

A
2
c

�
Ac × Ac × H × Pv × Pv + H × L × Pv × Pv

Ac × Ac × H × L × Pv × Pv

. (8)

,e training dataset of the BN-U-net network model was
the CT image, and the glioma standard was performed by
experienced clinicians. Network training used NVIDIA
GTX Titan V GPU for acceleration, the number of iterations
was set to 50 epochs, the learning rate was 0.001, the batch
size was set to 4, and the optimization function was
RMSProp. ,e training process is shown in Figure 2. ,e
training dataset was input to the BN-U-net network model
for training after data enhancement, filtering, and histo-
gram, and the segmentation results were output after seg-
mentation. After the test dataset was filtered and histogram
processed, it was directly segmented to output the seg-
mentation results.

2.4. Observation Indicators. To compare the sensitivity,
specificity, and accuracy of CTPI to the pathological clas-
sification of glioma, TP was used as the true positive of the
test result, FN was false negative, FP was false positive, and
TN was true negative:
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…
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Figure 1: Schematic diagram of depth separable convolution.
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Accuracy �
TP + TN

TP + TN + FP + FN
,

Sensitivity �
TP

TP + FN
,

Specificity �
TN

FP + TN
.

(9)

,e effect of CTPI image segmentation was evaluated
mainly using Dice similarity coefficient (DSC), recall, and
precision, which could be calculated as follows:

DSC �
2|Z∩D|

|Z| +|D|
. (10)

In equation (10), Z was the result of manual segmen-
tation by experts, and D was the segmentation result of the
algorithm designed in this research. ,e value of Dice co-
efficient ranged from 0 to 1. ,e larger the value, the better
the segmentation effect of the algorithm. ,e smaller the
value, the poor the performance of the algorithm’s glioma
segmentation or the segmentation error. Precision and recall
are calculated as follows.

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
.

(11)

2.5. Statistical Analysis. SPSS 18.0 statistical software was
adopted for data analysis, and the measurement data were
expressed as mean± standard deviation (x ± s). ,e indepen-
dent sample t-test was used for comparison between groups, and
P< 0.05 was considered statistically significant. ,e receiver
operating characteristic (ROC) analysis was used to calculate the
area under the ROC curve (AUC) and compare the diagnostic
accuracy of CTPI parameters. ,e maximum value of Youden
index (sensitivity+ specificity-1) was selected as the cutoff point
for diagnosing high and low-grade glioma, and the corre-
sponding sensitivity and specificity were calculated.

3. Results

3.1. Basic Data. Figure 3 shows a comparison chart of the
general data of the two groups of patients. As illustrated in
the figure, the number of male patients in the low-dose
group and the high-dose group was 24 and 16, respectively,
and the number of female patients was 17 and 15, respec-
tively. ,e average ages of the patients in the two groups
were 42.96± 13.45 years old and 42.57± 15.13 years old,
respectively; and the body mass index (BMI) was
22.15± 2.14 kg/m2 and 22.08± 2.09 kg/m2, respectively. Af-
ter comparison, it was found that there was no significant
difference in the ratio of male to female, average age, and
BIM between patients in the two groups (P> 0.05).

3.2.0eProcessingResults of theBN-U-net-WNetworkModel.
,e Dice coefficient, recall rate, and precision of the BN-U-
net-W network model in training sets 1, 2, and 3 were
compared, and the results are shown in Figure 4. As shown
in Figure 4, the Dice coefficient, recall rate, and precision of
the BN-U-net-W network model algorithm in training set 1
were 92.13%, 94.41%, and 89.03%, respectively. In training
set 2, the Dice coefficient, recall rate, and precision were
89.32%, 95.27%, and 89.94%, respectively. In training set 3,
the Dice coefficient, recall rate, and precision were 77.26%,
92.16%, and 78.42%, respectively. Figure 4(d) shows the
average values of Dice coefficient, recall rate, and precision
for the three training sets, which were 86.24%, 93.95%, and
85.79%, respectively.

3.3. Comparison on Performances of Different Algorithms.
In order to verify the performance of the algorithm, the
U-net [21] and BN-U-net [22] networks were introduced
and compared with the proposed algorithm in terms of the
average Dice coefficient, average recall, and average preci-
sion of the three when testing 400 glioma CT images. ,e
results are shown in Figure 5.,eDice coefficient, recall, and
precision of the BN-U-net-W network were 86.31%, 88.43%,
and 87.63%, respectively, which were higher than those of
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results
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Figure 2: ,e training process of the BN-U-net-W network.
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U-net and BN-U-net networks, and the differences were
statistically significant (P< 0.05).

,e model sizes and the shortest time of the three
networks required to segment a glioma CT image were
calculated. ,e results are shown in Figure 6. Among the
three types of networks, the U-net network took the shortest

time to split a glioma CT, followed by the BN-U-net-W
network, and the BN-U-net network took the longest time to
be 0.59 seconds. Among the three networks, the model of the
BN-U-net-W network was 142M, which was significantly
smaller than the other two, and the difference was statis-
tically significant (P< 0.05).
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Figure 3: Comparison of the general data of the two groups of patients. (a) ,e gender distribution of the two groups of patients. (b) ,e
comparison of the average age of the two groups of patients. (c) ,e comparison of the BMI of the two groups of patients.
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3.4. Comparison of CTPI Parameters between Normal Brain
Tissue and Glioma Area. It statistically analyzed the CBF,
PMB, CVB, and MTT of normal brain tissue and glioma
tissue of 72 glioma patients, and the results are shown in
Figure 7. ,e CBF, PMB, and CVB of glioma tissue were
56.85 (mL/(min 100 g)), 18.03 (mL/(min 100 g)), and 8.57
(mL/100 g), respectively, which were significantly higher
than those in the normal brain tissue (19.87 (mL/(min-
·100 g)), 3.27 (mL/(min·100 g)), and 2.68 (mL/100 g),

respectively), and the difference was statistically significant
(P< 0.05). ,e MTT of normal brain tissue and glioma
region of patients was 10.09 s and 9.02 s, respectively, and
there was no significant difference between the two
(P> 0.05).

3.5. Comparison onCTPI Parameters of Low-Grade andHigh-
Grade Normal Brain Tissues. A total of 27 cases in the low-
grade group (grades I-II) and 45 cases in the high-grade
group (III-IV) of CBF, PMB, CVB, and MTT were counted
in the study. ,e results are shown in Figure 8. ,ere was no
obvious difference in CBF, PMB, CVB, and MTT between
low-grade normal brain tissue and high-grade normal brain
tissue, and there was no statistical significance (P> 0.05).

3.6. Comparison onCTPIParameters betweenLow-Grade and
High-Grade Glioma Areas. A total of 45 cases in the low-
grade group (grades I-II) and 45 cases in the high-grade
group (III-IV) of CBF, PMB, CVB, and MTT were counted
in the study. ,e results are shown in Figure 9. ,e CBF,
PMB, and CVB in the glioma area were 81.04mL/(min-
·100 g), 24.63mL/(min·100 g), and 11.23mL/100 g, respec-
tively, which were significantly higher than those of normal
brain tissue, and they were statistically significant (P< 0.05).
,ere was no significant difference in MTT between the two
(P> 0.05).

3.7. ROC Analysis on CTPI Parameters between Low-Grade
andHigh-GradeGliomaAreas. ,e study analyzed the ROC
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curves of CBF, CBV, and PMB in the high-grade and low-
grade glioma CTPI parameters, and the results are shown in
Figure 10. ,e AUC of CBF, CBV, and PMB was 0.685,
0.724, and 0.921, respectively.

3.8. Imaging Data of Patients. Figure 11 shows the CT im-
aging data of a 68-year-old female patient. ,e clinical
symptoms of the patient were headache and nausea for 2
weeks, which worsened for two days. Figures 11(a) and 11(b)
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show the normal CT, Figure 11(c) shows a brain enhanced
CT, and Figures 11(d) and 11(e) show CTperfusion imaging.
,e figures demonstrated that the patient’s glioma showed

mixed density shadows, the glioma was irregular in shape,
the boundary was unclear, and there were a small amount of
cystic degeneration, hemorrhage, and necrosis. On contrast-
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Figure 10: ROC analysis on CTPI parameters between low-grade and high-grade glioma areas. (a)–(c) ,e ROC results of CBF, CBV, and
PMB, respectively.
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Figure 11: Imaging data of patients. (a)-(b) Ordinary CT. (c) Cranial enhanced CT. (d)-(e) CTPI.
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enhanced CT, there were uneven enhancement, cystic de-
generation, and hemorrhage, which showed that the pa-
tient’s cerebral blood flow and surface infiltration were
significantly aggravated.

4. Discussion

Glioma is a relatively common type of brain malignant
tumors, which mainly occur in the central nervous system.
Investigations have shown that the disease accounts for
40–50% of primary central nervous system tumors [7, 8].
,e pathogenesis of glioma is not clear, but it is highly
aggressive and has a high recurrence rate, so the clinical
mortality rate is relatively high. Among the common glioma
cell types, glioblastoma is the most common, accounting for
about 50% of all gliomas, and the prognosis is extremely
poor, with a recurrence rate close to 100% [23]. How to
accurately obtain the specific type and classification of the
patient’s glioma is of great significance. ,erefore, this study
proposed a 128-slice CT whole brain perfusion image seg-
mentation method based on the U-net network. In order to
avoid the slowing down of the algorithm and the disap-
pearance of the gradient, the research had added part of the
norm layer and normalized it. At the same time, the ordinary
convolution in the U-net network was replaced with depth
separable convolution, which improved the speed of cal-
culation, so a BN-U-net-W network model was designed.

In this study, the Dice coefficient, recall, and precision of
the BN-U-net-W network model were calculated, and the
average values were 86.24%, 93.95%, and 85.79%, respec-
tively. In addition, in order to verify the performance of the
algorithm, the study also introduced U-net and BN-U-net
networks and compared the average Dice coefficient, average
recall, and average precision of 400 glioma CT images tested
by three network models. ,e results showed that the Dice
coefficient, recall, and precision of the BN-U-net-W network
were 86.31%, 88.43%, and 87.63%, respectively, which were
higher than those of the U-net and BN-U-net networks,
showing statistically obvious differences (P< 0.05). Such
results were similar to the results of Wang et al. (2020) [24].
,e BN-U-net-W network is added a norm layer to the full
convolutional neural network (FCN) for normalization,
which solved the problem that the U-net network may
experience a decrease in convergence speed during training
and testing. Slowness and gradient disappearance, in ad-
dition, the use of depthwise separable convolutional net-
works to replace ordinary convolutions can greatly reduce
the size of the network model, reduce the parameters used in
the network operation process, and greatly shorten the
running time.

In addition, it also counted the model sizes of the three
networks and the shortest time required to segment a glioma
CT image in this study. Among them, the U-net network
required the shortest time to segment a glioma CT, followed
by the BN-U-net-W network. ,e longest time required for
the BN-U-net network was 0.59 seconds; the model of the
BN-U-net-W network was 142M, which was much smaller
than the other two, and the difference was statistically
significant (P< 0.05). ,e study statistically analyzed the

CTPI parameters of normal brain tissue and glioma area of
72 glioma patients. ,e results showed that the CBF, PMB,
and CVB of glioma area were 56.85mL/(min·100 g),
18.03mL/(min·100 g), and 8.57mL/100 g, respectively,
which were much higher than those of normal brain tissue,
and the differences were statistically significant (P< 0.05).
,is shows that these three parameters have better sensitivity
in the diagnosis of glioma tissue and normal brain tissue,
high-grade, and low-grade gliomas. ,e results of the study
by Ahmad et al. (2016) [25] are also consistent with this
work, indicating that CBF, PMB, and CVB show good
detection sensitivity as monitoring indicators of neo-
vascularization in patients with clinical glioma. In addition,
using the correlation between the above indicators and
glioma, the biological behavior of patients can be well
evaluated. Finally, the study analyzed the ROC curves of
CBF, CBV, and PMB in the high-grade and low-grade
glioma CTPI parameters, and the AUCs were 0.685, 0.724,
and 0.921, respectively. PMB parameters were significantly
higher than CBF and CVB, and the differences were sta-
tistically significant, which showed that PBM had high
predictability.

5. Conclusion

,is study proposes a CT perfusion image segmentation
algorithm based on the BN-U-net network and applies it to
evaluate the application value of CT images in the diagnosis
of glioma diseases. In order to verify the performance of the
algorithm, the U-net and BN-U-net networks were intro-
duced and compared with other algorithms in terms of Dice
coefficient, recall, and precision. ,e results showed that the
image segmentation effect of the BN-U-net-W network
model designed in this study was better. Among the glioma
CTPI parameters, CBF, CBV, and PMB were more sensitive
in diagnosing glioma tissue and normal brain tissue and
high-grade and low-grade glioma, and PBM had high
predictability. However, this study did not make a detailed
division of the pathological types of the study subjects and
ignored the influence of different pathological types on CTPI
parameters. In the follow-up study, the sample size can be
increased to explore the impacts of different pathological
types on CTPI parameters. In general, this study provided an
effective reference for improving the survival rate and
quality of life of patients with glioma.

Data Availability
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