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-e purpose of this study was to explore the diagnostic value of different sequence scanning of nonparametric variable model-
based cranial magnetic resonance imaging (MRI) for ischemic stroke. A histogram analysis-based nonparametric variable model
was proposed first, which was compared with the parametric deformation (PD) model and geometric deformation (GD) model.
-en, 116 patients with acute ischemic stroke were selected as the research subjects. Routine MRI (T2WI, T1WI, FLAIR, DWI,
SWI, and 3D TOF MRA) and MR SCALE-PWI were performed. -e results showed that the nonparametric variable model
algorithm was relatively complete in the actual segmentation results of MRI images, and the display clarity of lesions was better
than PD and GD algorithms. -e diagnostic sensitivity, specificity, and overall performance of the variable model algorithm were
significantly higher than those of the other two algorithms (P< 0.05). According to ROC curve analysis, the AUC areas of DWI,
SWI, 3D TOF MRA, and MR SCALE-PWI for the diagnosis of ischemic penumbra were 0.793, 0.825, 0.871, and 0.933, re-
spectively. In summary, the segmentation results of MRI images by the nonparametric variable model based on histogram analysis
were relatively complete, and the clarity of lesions was better than that of the traditional model. MRI images can effectively identify
the occurrence of ischemic stroke. Moreover, MR SCALE-PWI had a good early identification effect on ischemic penumbra,
which can reduce unnecessary treatment for patients.

1. Introduction

Stroke is the most common neurological disease that
threatens human health and life in modern society [1].
Stroke refers to an acute cerebrovascular disease caused by a
sudden rupture or obstruction of cerebral vessels that leads
to cerebral blood circulation disorder, thereby causing brain
tissue damage, which can be divided into ischemic stroke or
hemorrhagic stroke [2, 3]. -ere are many causes of stroke,
such as atherosclerosis, atrial fibrillation, heart valve disease,
neck or brain tumors, and congenital vascular malforma-
tion. Hypertension, hyperlipidemia, diabetes, and bad habits
are risk factors for stroke [4, 5]. -e disease has the char-
acteristics of high mortality, high incidence, high recurrence
rate, high disability rate, and high prevalence rate, which has

become the second leading cause of death in the world after
ischemic heart disease. -erefore, it is necessary to diagnose
and treat stroke early in clinic [6].

Medical imaging technology can present the internal
structure of the human body in a noninvasive manner.
Researchers and physicians can obtain potential information
to save lives through it [7]. With the development of imaging
technology these years, the use of imaging means to check
stroke has been widely used [8–10]. With the improvement
of imaging technology, doctors widely use computed to-
mography (CT) and magnetic resonance imaging (MRI) to
show lesions. However, early brain CT examinations of
stroke patients are mostly normal, and low-density lesions
usually appear after 24–48 hours, which increases the dif-
ficulty of diagnosis and treatment [11]. MRI, an examination
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that uses strong magnets, radio waves, and a computer to
generate detailed pictures of the human body, can accurately
display early ischemic infarcts and has a high detection rate
in the examination of cerebellar and brainstem infarcts
[12, 13]. However, the original MRI images often have
problems such as blurred tissue boundaries, spatial aliasing,
and partial volume effect, which need to be enhanced by
image segmentation technology [14]. -e nonparametric
deformation model can adapt to the variability of the an-
atomical structure over time and different individuals, so it
can segment, match, and track anatomical structure targets
and can consider the constraints from the image and the
constraints on the location, size, and shape of the anatomical
structure. -erefore, this study intends to optimize the skull
MRI images of stroke patients with nonparametric variable
model.

In summary, it is necessary to improve the quality of
skull MRI images by using various image segmentation
algorithms, but its effect still needs to be further improved.
-erefore, a histogram analysis-based Gaussian mixture
model was adopted in this research to fit the histogram, and
a nonparametric variable model based on histogram analysis
was proposed. 116 patients with acute ischemic stroke were
selected as the research subjects for multisequence MRI
scanning. By analyzing the diagnostic performance of MRI
multimodal images for ischemic stroke, the evaluation value
of different sequence scanning of skull MRI images based on
a nonparametric variable model for ischemic stroke was
discussed.

2. Materials and Methods

2.1. Research Objects. One hundred and sixteen patients
with acute ischemic stroke admitted to the hospital from
February 20, 2019, to July 10, 2021, were selected as subjects
aged 25–71 years. -e average age was 44.87± 2.6 years,
including 73 males and 43 females. -is study was approved
by the ethics committee of the hospital and the patients and
their families understood the study and signed informed
consent.

Inclusion criteria were as follows: (i) patients with the
first onset; (ii) patients without claustrophobia; (iii) patients
with focal neurological deficits; (iv) patients only receiving
medication; and (v) patients with good compliance.

Exclusion criteria were as follows: (i) patients with
mental diseases; (ii) patients with poor image quality; (iii)
patients with incomplete clinical data; and (iv) patients who
quit the experiment halfway.

2.2. MRI Examination. Patients were examined by a 1.5 T
superconducting magnetic resonance system with an 8-
channel head coil. During the examination, the patient was
in the supine position, wearing a matching headphone, and
then, the sponge pad was placed between the subject’s head
and the MRI coil.

Conventional MRI examination included fast spin-echo
sequence (T2WI), gradient-echo sequence (T1WI), fast spin-
echo sequence (FLAIR), plane echo sequence (DWI), 3D

gradient echo sequence (SWI), and 3D time of flight,
magnetic resonance angiography (3D TOF MRA). -e
scanning parameters of each sequence are shown in Table 1.

MR SCALE-PWI scan: after routine scans, gadolinium
injection of a glumine contrast agent (0.15mmol/kg at
3.5mL/s) was automatically injected with a high-pressure
syringe 45 seconds later, followed by injection of 20mL of
normal saline at the same rate. -e scan parameters are
shown in Table 2. -e generated qCBF and qCBV images
were transferred to the workstation for processing; the in-
telligent segmentation model was used to delineate the re-
gion of interest (ROI) of lesions, and the size and
quantitative values of the ROI were calculated.

2.3. Nonparametric Variable Model Based on Histogram
Analysis. Based on the histogram analysis of the images, the
Gaussian mixture model was employed to fit the histogram,
and the obtained image’s statistical characteristic parameters
were taken as the constraint conditions to replace the stop
term regarding image gradient information in the traditional
method, thus guiding and controlling the evolution of the
curve and completing the image segmentation.

Gaussian mixture model (GMM) is a probabilistic
clustering method [15], which belongs to the generative
model. It assumes that all data samples are generated by
multivariate Gaussian distribution of a given parameter
(Figure 1). Its definition can be expressed as follows:
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can be expressed as follows:
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πl � p(l) represents the prior probability that a data
sample produces the l Gaussian component and R(x/μl, 􏽐l) �

p(x/l) represents the x probability under a given l rule. For a
given GMM, it is also necessary to determine the unknowns
contained in each Gaussian component of the model, such as
mean, covariance, and mixing coefficient. -is study uses the
expectation-maximization algorithm based on maximum
likelihood estimation to estimate the model parameters [16]. It
is assumed that the sample set is X � x1, x2, x3, · · · , xm􏼈 􏼉 and
the value set of the implied variable r is R � r1, r2, r3, · · · , rm􏼈 􏼉,
and then, the logarithmic likelihood function of the sample set
can be expressed as follows:

K(α) � 􏽘
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p(X, R/α) represents a probability model with an un-
known parameter α as the parameter, and
α � μl, 􏽐l, πl/l � 1, 2, · · · , L􏼈 􏼉.
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By maximizing the logarithmic likelihood function, the
maximum likelihood solution of the parameter can be ob-
tained. -e iterative process of the expectation-maximiza-
tion algorithm is mainly divided into two steps.-e first step
is to calculate the expectation of the likelihood function
according to the initial value of the parameter or the last
iteration value.-e second step is to maximize the likelihood
function to obtain new parameter values.

When the sample size is M, the expectation obtained
through the first step can be expressed as follows:
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ρl(xi/αl) corresponds to the l Gaussian component and
ρ(l/xi,αm) represents the posterior probability of the l

Gaussian component.
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After obtaining the expectation, the second step is used
to calculate the model parameters.
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-e first step and the second step are iterated until the
model parameters converge. -erefore, the nonparametric
variable model image segmentation process based on his-
togram analysis is shown in Figure 2.

2.4. Algorithm Performance Indicators. -e segmentation
performance of the algorithm was assessed regarding sen-
sitivity, specificity, and overall performance. Parametric

Table 1: Conventional MRI parameters.

Parameter Axis position
T2WI

Axis position
T1WI

Axis position
FLAIR

Sagittal position
T1WI

Axis position
DWI SWI 3D TOF

MRA
TR (ms) 4500 400 8400 200 2400 25 21
TE (ms) 97 2.5 105 2.48 50 18.5 3.5
FOV (mm) 250× 250 250× 250 250× 250 250× 250 250× 250 250× 250 220× 220
Layer thickness
(mm) 6 6 6 6 6 2 0.5

Number of
incentives 1 1 1 1 1 1 1

Matrix 320× 320 320× 320 320× 320 320× 320 160×160 521× 521 320× 320
Scanning time (s) 62 48 115 50 64 216 216

Table 2: MR SCALE-PWI scan parameters.

Parameter MR SCALE-PWI
TR (ms) 1500
TE (ms) 32
FOV (mm) 230× 230
Layer thickness (mm) 6
Number of incentives 1
Matrix 125×125
Scanning time (s) 135
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Figure 1: Gaussian mixture model (three Gaussian components).
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Figure 2: Nonparametric variable model image segmentation
process based on histogram analysis.
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deformation (PD) [17] and geometric deformation (GD)
models [18] were compared with the proposed algorithm:

sensitivity �
TP

TP + FN
,

specificity �
TN

FP + TN
,

overall performance �
TP + TN

FN + FP + TP + TN
,

(7)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

2.5. Clinical Data Collection. -e age, gender, time interval
from the onset of the first symptom to the follow-up MRI
examination, past history (heart disease, stroke, transient
ischemic attack, atherosclerosis, and other related diseases),
National Institutes of Health Stroke Scale (NIHSS) score,
and modified Rankin scale (mRS) score were collected.

2.6. Statistical Method. -e data in this study were analyzed
by SPSS 19.0. -e measurement data were expressed as
mean± standard deviation (x ± s), and the count data were
expressed as percentage. One-way analysis of variance was used
for pairwise comparison. ROC curves were used to analyze the
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Figure 3: Basic information of patients. (a) Gender ratio; (b) the time interval from the onset of the first symptom to the follow-up MRI
examination; (c) age; (d) BMI; (e) past medical history.
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Figure 4: MRI image of a 58-year-old female patient. -e arrows in the images indicate the relevant stroke area.
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diagnostic effects of DWI, SWI, 3D TOF MRA, and MR
SCALE-PWI sequences on ischemic penumbra in patients.-e
difference was statistically significant with P< 0.05.

3. Results

3.1. Basic Data of Patients. Figure 3 shows that the pro-
portion of male patients (62.9%) was higher than that of
female patients (37.1%).-e proportion of patients with the
first symptom onset to follow-up MRI examination interval
greater than 5 days (57.42%) was higher than that of pa-
tients within 5 days (42.53%). -e proportion of patients
older than 45 years (58.18%) was higher than that of pa-
tients younger than 45 years (41.82%). -e proportion of
patients with BMI less than 18.5 kg/m2 (45.74%) was the
highest, followed by patients with BMI 18.5–23.9 kg/m2

(42.53%), and the proportion of patients with BMI greater
than 24 kg/m2 (19.72%) was the lowest.

According to the past medical history of the 116 patients,
56 patients had hypertension, accounting for 48.51%. -ere
were 38 patients with hyperlipidemia, accounting for
32.86%. -ere were 22 patients with hyperglycemia, ac-
counting for 18.62%. -ere were 15 smokers, accounting for
13.09%. -ere were 8 drinkers, accounting for 6.96%.

3.2.MRI Images of Patients. Figure 4 shows MRI images of a
58-year-old female patient with early subacute ischemic
stroke. FLAIR in image A shows hyperintensity in the
corresponding area, T1W1 in image B shows hypointensity
in the corresponding area, T1 enhanced scan in image C
shows parenchymal enhancement in the affected area, and
T2W1 in image D shows hyperintensity in the corre-
sponding area.

3.3. Algorithm Performance Analysis. Figure 5 shows the
comparison of the diagnostic sensitivity, specificity, and
overall performance of the algorithm. -e diagnostic sen-
sitivity of the algorithm in this study was 98.41%, the
specificity was 93.06%, and the overall performance was
95.58%. -e diagnostic sensitivity of the GD algorithm was
91.07%, the specificity was 83.57%, and the overall perfor-
mance was 85.02%. -e diagnostic sensitivity, specificity,
and overall performance of the PD algorithm were 89.93%,
85.91%, and 88.25%, respectively. -e diagnostic sensitivity,
specificity, and overall performance of the proposed algo-
rithm were significantly higher than those of the GD al-
gorithm and PD algorithm, and the difference was
statistically significant (P< 0.05).

Figure 6 shows the segmentation effect of the algorithm
on MRI images. -e segmentation results of the algorithm
on MRI images were relatively complete, the display clarity
of the lesion was better than other algorithms, and the
overall quality was the best.

3.4. ROC Curve Analysis. Figure 7 shows the ROC curve
analysis of DWI, SWI, 3D TOF MRA, and MR SCALE-PWI
sequences in the diagnosis of ischemic penumbra in patients.

-e AUC of the DWI sequence in the diagnosis of ischemic
penumbra was 0.793, that of SWI was 0.825, that of 3D TOF
MRAwas 0.871, that of MR SCALE-PWI was 0.933, and that
of MR SCALE-PWI was the highest.

4. Discussion

Cerebral ischemia is caused by the decrease of local or diffuse
cerebral blood flow. When the blood flow is lower than a
certain value, ischemia becomes irreversible infarction. Is-
chemic stroke refers to an acute neurological dysfunction
caused by a single or multiple focal cerebral infarction [19].
At present, neuroimaging examination is a common clinical
method for the diagnosis of ischemic stroke. Early use of CT,
CT angiography, conventional MRI, DWI, and other means
is helpful to prevent the occurrence and development of
stroke, andMRImultimodal imaging is themost widely used
[20]. -e original image often has the problems of more
noise, more artifacts, and low quality. It is necessary to
introduce a mathematical model for enhancement pro-
cessing. A nonparametric variable model based on histo-
gram analysis is proposed, and its performance is compared
with the PD and GD models. -e diagnostic sensitivity,
specificity, and overall performance of the proposed algo-
rithm are significantly higher than those of the GD and PD
algorithms, and the difference is statistically significant
(P< 0.05), which is similar to the results obtained by
Mathukumalli et al. [21]. It shows that the nonparametric
variable model based on the histogram analysis designed in
this study has a good segmentation effect onMRI images and
can effectively improve the quality of the original image. By
comparing the segmentation results of the algorithm for
MRI images, the segmentation results of the algorithm in
this study for MRI images are relatively complete, and the
clarity of the lesion is better than that of other algorithms.
-e overall quality is the best, which is consistent with the
results of quantitative data [22].

116 patients with acute ischemic stroke were selected as
the subjects. RoutineMRI (T2WI, T1WI, FLAIR, DWI, SWI,
and 3D TOF MRA) and MR SCALE-PWI were performed.
-e data of patients were analyzed, and it was found that the
proportion of male patients (62.9%) was higher than that of
female patients (37.1%), which may be due to the large
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Figure 5: Diagnostic sensitivity, specificity, and overall perfor-
mance of the algorithm. ∗Compared with the algorithm, P< 0.05.

Contrast Media & Molecular Imaging 5



number of male smokers [23]. -e proportion of patients
older than 45 years(58.18%) was higher than that of patients
younger than 45 years (41.82%), indicating that the inci-
dence of ischemic stroke in the elderly population was
higher. Among 116 patients, 56 patients were with hyper-
tension, 38 patients with hyperlipidemia, 22 patients with
hyperglycemia, 15 cases of smokers, and 8 cases of drinkers.
-e medical history was correlated with the occurrence of
ischemic stroke [24]. ROC curve analysis showed that the
AUC area of the DWI sequence in the diagnosis of ischemic
penumbra was 0.793. -e AUC area of the SWI sequence in
the diagnosis of ischemic penumbra was 0.825. -e AUC
area of the 3D TOF MRA sequence in the diagnosis of is-
chemic penumbra was 0.871. -e AUC area of the MR

SCALE-PWI sequence in the diagnosis of ischemic pen-
umbra was 0.933. -is indicates that MR SCALE-PWI has a
good effect on the early identification of ischemic penumbra,
which can reduce unnecessary treatment and prolong the
time window for patients to receive recanalization or neu-
roprotective treatment [25].

5. Conclusion

In this work, the nonparametric variable model based on
histogram analysis was compared with PD and GD models,
and 116 patients with acute ischemic stroke were given
routine MRI scans at the same time. -e results showed that
the variable model algorithm had a strong ability to

(a) (b) (c) (d)

Figure 6: Segmentation effect of MRI images by the algorithm. (a)-e original image; (b) the algorithm result; (c) the segmentation result of
the GD algorithm; (d) the segmentation result of the PD algorithm.
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Figure 7: ROC curves of DWI, SWI, 3D TOFMRA, and MR SCALE-PWI sequences in the diagnosis of ischemic penumbra in patients. (a)
DWI sequence; (b) SWI sequence; (c) 3D TOF MRA sequence; (d) MR SCALE-PWI sequence.
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completely segment MRI images and display lesions and can
effectively identify the occurrence of ischemic stroke.
Moreover, the MR SCALE-PWI sequence had a better early
identification effect on the ischemic penumbra, regarding
which an effective treatment plan can be formulated.
However, the disadvantage is that the sample size of patients
is small, and the results may be biased. -e PET data of
patients are not collected, and the evaluation value of the
gold standard andMRI cannot be compared.-ird, the MRI
equipment used is the latest purchase, and the LOVARSMRI
data are not collected. In the future, the sample size of
patients will be expanded, and the identification perfor-
mance of the MR SCALE-PWI sequence in ischemic core
and ischemic penumbra will be further explored. In con-
clusion, this study provides a reference for the clinical di-
agnosis of ischemic stroke patients.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare no conflicts of interest.

Authors’ Contributions

ZhenghongWu andDongqiuWu contributed equally to this
work.

References

[1] E. Zhang and P. Liao, “Brain-derived neurotrophic factor and
post-stroke depression,” Journal of Neuroscience Research,
vol. 98, no. 3, pp. 537–548, Mar 2020.

[2] C. Sampaio-Baptista, Z.-B. Sanders, and H. Johansen-Berg,
“Structural plasticity in adulthood with motor learning and
stroke rehabilitation,” Annual Review of Neuroscience, vol. 41,
no. 1, pp. 25–40, Jul 8 2018.

[3] P. E. Turkeltaub, “A taxonomy of brain-behavior relationships
after stroke,” Journal of Speech, Language, and Hearing Re-
search, vol. 62, no. 11, pp. 3907–3922, 2019.

[4] A. Baldassarre, L. E. Ramsey, J. S. Siegel, G. L. Shulman, and
M. Corbetta, “Brain connectivity and neurological disorders
after stroke,” Current Opinion in Neurology, vol. 29, no. 6,
pp. 706–713, Dec 2016.

[5] A. Crofts, M. E. Kelly, and C. L. Gibson, “Imaging functional
recovery following ischemic stroke: clinical and preclinical
fMRI studies,” Journal of Neuroimaging, vol. 30, no. 1,
pp. 5–14, Jan 2020.

[6] X. Ayrignac, N. Gaillard, C. Carra-Dallière, and P. Labauge,
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