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-e aim of this study was to explore the application value of dynamic contrast-enhancedmagnetic resonance imaging (DCE-MRI)
based on a convolutional neural network (CNN) algorithm in glioma diagnosis and tumor segmentation. 66 patients with gliomas
who were diagnosed and treated in the hospital were selected as the research objects. -e patients were rolled into the high-grade
glioma group (HGG, 46 cases) and the low-grade glioma group (LGG, 20 cases) according to the World Health Organization
glioma grading standard. All patients received a conventional plain scan and a DCE-MRI. Parameters such as volume transfer
constant (Ktrans), rate constant (Kep), extracellular volume (Ve), andmean plasma volume (Vp) were calculated, and the parameters
of patients of each grade were analyzed. -e efficacy of each parameter in diagnosing glioma was analyzed through a receiver
operating characteristic curve. All images were segmented by the CNN algorithm.-e CNN algorithm showed good performance
in DCE-MRI image segmentation. -e mean, standard deviation, kurtosis, and skewness of Ktrans and Ve, the standard deviation
and skewness of Kep, and the mean and standard deviation of Vp were statistically considerable in differentiating HGG and LGG
(P< 0.05). ROC analysis showed that the standard deviation ofKtrans (0.885) had the highest diagnostic accuracy in distinguishing
HGG and LGG. -e values of Ktrans, Ve, and Vp were positively correlated with Ki-67 (r� 0.346, P� 0.014; r� 0.335, P� 0.017;
r� 0.323, P� 0.022). In summary, the CNN-based DCE-MRI technology had high application value in glioma diagnosis and
tumor segmentation.

1. Introduction

Glioma is one of the most common primary tumors in
clinical practice. Clinical statistics showed that it is re-
sponsible for 81% of central nervous system malignancies
[1–3]. In general, tumors are classified into low grade (grades
I and II) and high grade (grades III and IV) according to the
degree of malignancy. Clinical data showed that more than
half of patients with glioma have glioblastoma, the most
malignant form of brain cancer. In recent years, surgery and
radiotherapy and chemotherapy have made continuous
progress, but clinical data showed that the survival time of
patients with comprehensive treatment is still less than 15
months, and their prognosis is also one of the worst among

all tumor patients [4–6]. Almost all gliomas develop into the
highest-grade gliomas. Clinical data showed that the average
time for grade II and III gliomas to progress to IV is five
years and two years, respectively. -e incidence and mor-
tality of glioma are high. Relevant clinical studies showed
that the annual incidence of glioma in China is 3–6/100,000,
and the annual death rate is as high as 30,000. In recent years,
the incidence of this disease is also showing an increasing
trend year by year. Statistics showed that the incidence of
glioma in China is increasing by 1.2%. -is disease poses a
huge threat to human life and health [7, 8].

Once a glioma is diagnosed, patients do not survive for
more than two years.-erefore, the early diagnosis of glioma
is very important for the treatment and prognosis of the
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disease. At present, glioma can be graded by detecting
molecular markers of glioma [9]. However, these methods
are not widely used because of their high cost, the need for a
large amount of tumor tissue, and the subjective influence of
staining reagents and doctors. And these tests are invasive
and cannot be used again in living tissue, which is why they
are not widely available. With the rapid development of
imaging technology, diseases can be diagnosed by various
imaging methods. Magnetic resonance imaging (MRI) is one
of the most important methods for the diagnosis of glioma
[10–12].

How to segment tumor regions from brain MRI images
of patients has always been a key and difficult point in the
clinical diagnosis of glioma. At present, the most important
method for regional segmentation of tumors is still manual
segmentation by doctors. Such a segmentation method not
only requires doctors to master strong professional
knowledge but also wastes a lot of time and increases the
workload of doctors. -erefore, the study of an automatic
segmentation method of glioma has great positive signifi-
cance for the diagnosis and treatment of glioma. However,
the infiltration of tumor cells into surrounding tissues makes
the tumor boundary blurred [13]. In addition, affected by the
imaging principle of the MRI image itself, the grayscale
range of images obtained by the same patient under different
conditions is different.-ese characteristics of glioma lead to
increased difficulty in image segmentation, so the traditional
image segmentation methods cannot achieve good seg-
mentation results. In recent years, the deep convolutional
neural network (CNN) algorithm has shown considerable
advantages in computer vision compared with other tra-
ditional machine learning algorithms. When the CNN al-
gorithm performs image segmentation, it directly takes the
original image as input and does not need to manually
extract features. It can directly extract representative features
from the image [14]. At present, many scholars have applied
the CNN algorithm to glioma image segmentation [15, 16].
However, its segmentation effect varies greatly for different
patients. In general, the CNN algorithm has a high appli-
cation prospect and value in the segmentation of glioma.
However, there is still a long way to go before it can be put
into clinical application [17].

In this research, patients with glioma were taken as the
research object, and dynamic contrast-enhanced (DCE)-
MRI under the CNN algorithm was used to diagnose and
segment patients with tumors, and the differences between
the DCE-MRI-related parameters of patients with glioma of
different grades were discussed and analyzed, to provide a
good reference and basis for the diagnosis and treatment of
clinically related diseases.

2. Research Methods

2.1. Research Objects. From March 2019 to March 2020, 66
patients with gliomas in hospital were selected as the re-
search objects, including 36 male patients and 30 female
patients. -e mean age of the patients was 53.6± 11.3 years.
According to the World Health Organization (WHO) gli-
oma grading standard, the patients were rolled into the high-

grade glioma group (HGG, 46 cases) and the low-grade
glioma group (LGG, 20 cases). All studies obtained patient
informed consent and this study had been approved by the
ethics committee of the hospital.

Inclusion criteria were as follows: patients diagnosed
with glioma after case diagnostic screening; patients with
complete imaging and follow-up data; and patients with
complete follow-up records. Exclusion criteria were as
follows: patients with other malignant tumors at the same
time; patients with other serious underlying diseases or
with dysfunction of important organs such as the heart,
lung, liver, and kidney; those who died of diseases or ac-
cidents other than glioma; and those who suffered from
claustrophobia.

2.2. Imaging Studies. All cases were scanned by 3.0TMR
with an 8-channel phased-array head coil. All patients
underwent a routine plain scan and a DCE-MRI before
surgery. Specific scanning parameters of conventional se-
quences were T1WI (TR/TE: 400ms/2.48ms, FOV:
230× 230mm2, matrix: 320× 256, and bandwidth: 360Hz/
Px) and T2WI (TR/TE: 5,090ms/91ms, FOV:
230× 230mm2, matrix: 320× 320, and bandwidth: 203Hz/
Px), with a layer thickness of 5mm. DCE-MRI used cross-
sectional T1 gradient 3D sequence scanning, and three
groups of Tl-Vibe plain scans were performed before the
examination (TR/TE: 3.89/1.31ms, layer thickness: 3mm,
FOV: 230× 230mm2; matrix: 224×161; flip angles: 5°, 10°,
and 15°). A dynamic enhanced examination was then
performed, including a total of 40 acquisitions. After the
third collection, the contrast agent was injected through the
cubital vein at a rate of 2.0–4.0mL/s and a total amount of
0.1mmol/kg. All localization levels of the DCE-MRI ex-
amination were consistent. -e flip angle of the dynamic
acquisition sequence was 15°, and the other parameters were
the same as the previous plain scan sequence.

2.3. Image Processing. All MRI images were processed using
the CNN algorithm. -e specific image processing process
includes the input image, CNN, heat map, CRF, output
image, and other steps. -e specific image processing pro-
cess is shown in Figure 1. -e CNN algorithm mainly in-
cludes a convolutional layer, a pooling layer, a fully
connected layer, and a Softmax classification layer. -e
detailed CNN model is shown in Figure 2.
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where l is the number of layers, K is the convolution kernel,
xl−1

j is the feature map output by the previous layer, Kl
ij is the

weight of the convolution kernel, b is the bias value, and
f(•) is the activation function. -e convolution operation
has three modes of full convolution, same convolution, and
valid convolution. -e specific definitions are as follows.

(I) Full convolution
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(II) Same convolution
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-e pooling layer can reduce the possibility of overfitting
and improve the fault tolerance of the model.-e calculation
of the pooling layer is as follows:

x
l
j � f βl

jdown x
l−1
j  + b

l
j . (5)

do wn(•) is the downsampling function, and β and b are
the multiplicative bias and the additive bias, respectively.
-ere are two common pooling operations in deep learning-
based multifeature fusion classification algorithms, namely,
average pooling andmaximum pooling.-e average pooling
refers to taking the mean value within the filter range as the
pooled output. -e maximum value pooling refers to using
the maximum value within the filter range as the pooling
output.

As for the full connection process, in the multifeature
fusion classification algorithm under deep learning, the full
connection layer is a network node arranged linearly and
encodes the output result of the previous layer into a one-
dimensional vector. -e fully connected layer is defined as
follows:
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Figure 1: Image processing flow.
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Figure 2: CNN model.
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In the above equation, wl is the network weight coef-
ficient, xl− 1 is the output feature map of the previous layer,
and bl is the fully connected layer bias item.

Softmax classification layer is a multiclassifier connected
to the fully connected layer, which can complete more than
two classification tasks and convert multiple outputs into
probability values in the (0,1) interval. In logistic regression,
the training set is T � (x(1), y(1)), . . . , (x(m), y(m)) , the
input sample is xi ∈ Rn, and y(i) is the sample label. -en, it
is assumed that the function (hypothesis function) is defined
as follows:

hθ(x) �
1

1 + e
− θT

X 

.
(7)

-e cost function J(θ) is minimized as follows:
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1
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-e calculation of Softmax is as follows:
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Learning on the training sample Tminimizes the damage
function of Softmax. -e expression of the minimum loss
function is as follows:
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where 1 y(i) � j  indicates that if y � j, the value is 1;
otherwise, it is 0; that is, the smaller the loss function, the
closer the expected target.

-e mean square error (MSE), peak signal-to-noise ratio
(PSNR), and structural similarity (SSIM) are used to evaluate
the segmentation effect quantitatively. -e specific calcu-
lation methods of the three indicators are as follows:
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(11)

2.4. Pathological Specimen Analysis. All patients’ tumors
were surgically removed, then the tumor specimens were
analyzed, and the gliomas were classified into grades I to IV.
Ki-67 immunohistochemical staining was performed on the
obtained specimen, the whole specimen was browsed, and
then the area with the highest positive expression density
was selected. 1,000 tumor cells were counted under a 200×

microscope, and the positive percentage of tumor cells was
taken as the highest Ki-67 labeling index. -e specific
staining methods of Ki-67 were as follows: I. After samples
were taken, the tissues were fixed with neutral formaldehyde
for 24–48 hours, followed by conventional paraffin em-
bedding treatment. II. -e sample was sliced to 5∼7 μm. III.
-e samples were put into 10mM citric acid buffer and
microwaved for 10 minutes. IV. -e slices were cooled at
room temperature for 20minutes. V. Steps III and IV were
repeated. VI. Slices were cooled at room temperature for 20
minutes before being removed from citric acid, washed twice
with Tris-HCl buffer, and then left in Tris-HCl for staining.
VII. Finally, Ki-67 labeling was carried out according to the
conventional method.

2.5. Statistical Methods. Statistical analysis of all data relied
on SPSS 11.0 to complete. Measurement data were expressed
as the mean± standard deviation (x ±s), and t-test was used
to test the significance of patient data before and after
surgery. -e count data were expressed as actual number
and percentage, and the significance test was carried out by
χ2 test. P< 0.05 was considered statistically considerable.

3. Results

3.1. Typical Case Image Display. -e typical case images are
shown in Figure 3. Analysis of Figure 3 shows that MRI can
distinguish different grades of gliomas well. -e CNN al-
gorithm can segment lesions from MRI images of glioma
patients more accurately.

3.2. Comparison of Histogram Parameters of Ktrans, Kep, Ve,
and Vp Values in HGG and LGG. -e comparison results of
the histogram parameters of Ktrans, Kep, Ve, and Vp values of
HGG and LGG are shown in Figure 4. Figure 4 shows that
there were significant differences in mean value, standard
deviation, kurtosis, and skewness of Ktrans between the HGG
group and the LGG group (P< 0.05). -e mean value,
kurtosis, and skewness of Kep were significantly different
between the two groups, P< 0.05. -e mean value, standard
deviation, kurtosis, and skewness of Ve were significantly
different between the two groups, P< 0.05. -ere were
significant differences in the mean and standard deviation of
Vp between the two groups, P< 0.05.

3.3. Comparison of Histogram Parameters of Different Grades
of Glioma. -e comparison results of the histogram pa-
rameters of different grades of glioma are shown in Figure 5.
-ere were significant differences in Ktrans standard devia-
tion, kurtosis, and skewness between grades II and III. Kep
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Figure 3: Typical case images.
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Figure 4: Comparison of histogram parameters of Ktrans, Kep, Ve, and Vp in HGG and LGG. (a) Ktrans; (b) Kep; (c) Ve; (d) Vp compared with
the LGG group, ∗P< 0.05.
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kurtosis and skewness were significantly different. -e mean
values of Ve were significantly different with P< 0.05. -ere
were significant differences in Ktrans average, kurtosis, and
skewness between grades III and IV gliomas. Kep standard
deviation was significantly different. -ere were significant
differences in mean value, standard deviation, kurtosis, and
skewness of Ve, all P< 0.05.

3.4. Receiver Operating Characteristic (ROC) Analysis of
Ktrans, Kep, Ve, and Vp Histogram Parameters in Glioma
Grading. Table 1 and Figure 6 show the results of the efficacy
analysis of Ktrans, Kep, Ve, and Vp histogram parameters for
diagnosing glioma. -e histogram parameters of Ktrans, Kep,
Ve, and Vp all showed good performance in the diagnosis of
glioma, especially the Ktrans value had the best performance,
and its standard deviation had the best diagnostic perfor-
mance among all parameters.

3.5. Correlation between Ki-67 Index and Various Parameters
in HGG and LGG. Figures 7 and 8 show the comparison
results of the correlation between the Ki-67 index of HGG

and LGG and various parameters, and the results of Ki-67
immunohistochemical staining. Analysis of Figure 7 shows
that the Ki-67 index of patients with HGG was higher than
that of patients with LGG. Analysis of Figure 8 shows that
Ktrans, Ve, and Vp were positively correlated with Ki-67, and
Kep had no correlation with Ki-67.

4. Discussion

Glioma is the most common intracranial primary tumor,
which is characterized by high vascularization, high het-
erogeneity, and strong invasiveness. In recent years, despite
the continuous advancement of surgical and chemotherapy
techniques, the survival of glioma patients after compre-
hensive treatment is still very low [16]. Clinical studies
showed that the survival of patients with gliomas will not
exceed two years after diagnosis, and almost all LGG will
develop into HGG [17]. -e incidence of glioma has also
shown an upward trend year by year. Glioma has high
morbidity and mortality, which poses a huge threat to
human life safety [18]. -e diagnosis and grading of gliomas
in the early stages of the disease have an important impact on
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Figure 5: Comparison of histogram parameters of different grades of gliomas. (a) Ktrans; (b) Kep; (c) Ve; (d) Vp compared with grade III
glioma, ∗P< 0.05.
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the determination of the disease treatment plan and the
prognosis of the disease. Many clinical studies suggested that
microvascular proliferation is an important histological
characteristic of gliomas in the brain, and the degree of
microvascular proliferation also increases with the increase
of tumor grade. Compared with normal blood vessels, tumor

neovascularization is immature and its permeability is high,
so it is easy to cause leakage of intravascular contrast agent.
-e above changes are one of the important indicators for
the diagnosis of glioma [19].

In recent years, with the continuous progress and de-
velopment of imaging technology, many new technologies

Table 1: -e results of analysis of the efficacy of Ktrans, Kep, Ve, and Vp histogram parameters in diagnosing glioma.

95% confidence interval (CI) Sensitivity (%) Specificity (%)

Ktrans

Mean 0.88 (0.65,0.99) 88.6 85.1
Standard deviation 0.88 (0.65,0.99) 84.2 85.7

Kurtosis 0.88 (0.65,0.99) 93.8 77.7
Skewness 0.88 (0.65,0.99) 95.5 77.7

Kep
Standard deviation 0.88 (0.65,0.99) 44.3 100

Skewness 0.81 (0.77,0.90) 88.1 86.2

Ve

Mean 0.83 (0.72,0.96) 83.9 94.1
Standard deviation 0.78 (0.71,0.89) 77.2 68.8

Kurtosis 0.85 (0.69,0.90) 74.4 85.5
Skewness 0.83 (0.78,0.94) 79.8 86.7

Vp
Mean 0.88 (0.65,0.99) 88.2 77.3

Standard deviation 0.77 (0.63,0.92) 95.5 70.1
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Figure 6: ROC curves of each parameter for diagnosing glioma. (a) Ktrans; (b) Kep; (c) Ve; (d) Vp.
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have been developed in the diagnosis of craniocerebral
diseases. DCE-MRI is a novel functional MR imaging
technique based on microvascular permeability and phar-
macokinetic model assumptions. Based on the magnetic
field changes caused by the leakage of contrast agent, it can

quantitatively measure the microvascular permeability of
gliomas and then noninvasively, dynamically, and quanti-
tatively evaluate the functional properties of microvessels
and improve the accuracy of glioma grading [20–22].
Quantitative parameters derived from the DCE-MRI
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Figure 7: Comparison of Ki-67 index between HGG and LGG.
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Figure 8: Correlation comparison between Ki-67 index and various parameters in HGG and LGG. (a) Ktrans; (b) Ve; (c) Vp.
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hemodynamic model include the Ktrans, Kep, Ve, and Vp. In
recent years, DCE-MRI has been widely used in the dif-
ferential diagnosis of single brain metastases, primary
central nervous system lymphoma (PCNSL), and glioma
[23]. At present, the results are not uniform for the selection
of optimal parameters and optimal thresholds for DCE-MRI
in glioma grading. -e reason may be that the quantitative
parameters and arterial input function (AIF) are obtained in
different ways in different studies, and the number of study
cases will also have a certain impact on the results [24].
-erefore, the application value of DCE-MRI in the diag-
nosis of glioma needs further exploration and in-depth
research. In this study, patients with glioma were diagnosed
by DCE-MRI. -e results showed that the mean, standard
deviation, kurtosis, and skewness of Ktrans and Ve, standard
deviation and skewness of Kep, and mean and standard
deviation of Vpwere statistically significant in differentiating
HGG from LGG (P< 0.05). ROC analysis showed that the
above values had good diagnostic performance for differ-
entiating HGG from LGG, and Ktrans had the highest
standard deviation diagnostic accuracy. -e standard de-
viation, kurtosis, and skewness of Ktrans, kurtosis and
skewness of Kep, and mean value of Ve were statistically
significant in differentiating grade II and III gliomas
(P< 0.05). -e mean, standard deviation, kurtosis, skewness
of Ktrans and Ve, and standard deviation of Kep were sta-
tistically significant in differentiating grade III and IV gli-
omas (P< 0.05). Ktrans, Ve, and Vp were positively correlated
with Ki-67. -is indicates that DCE-MRI histogram-related
indicators are of great significance in the diagnosis and
grading of glioma. -is can provide important reference
information for clinical treatment.-is is consistent with the
results of some previous studies.

In addition to grading gliomas after diagnosis, how to
segment tumors from MRI images is also a focus and a
difficulty in clinical research. At present, clinical segmen-
tation of glioma tumor regions mainly relies on manual
selection and division by doctors.-is segmentation method
is not only time-consuming and labor-intensive, but also the
segmentation results are greatly influenced by the doctor’s
subjective opinion and require the doctor to have a strong
professional knowledge reserve [25, 26]. -is is a huge waste
of time, manpower, and material resources. -erefore, it is
necessary to develop an automatic tumor segmentation
system. In recent years, deep CNN models have received
extensive attention and applications in the field of medical
image segmentation [27]. Abundant related research results
showed that the CNN-based algorithm can directly use the
original image as input, and automatically extract the
characteristics of image features. It presented considerable
advantages compared with traditional segmentation algo-
rithms in the field of computer vision [28, 29]. At present,
scientists have also done a lot of research on its application in
glioma segmentation. For example, some scholars proposed
a complex two-channel CNN model and applied it to the
segmentation of glioma [30]. In this work, the CNN algo-
rithm was applied to the segmentation of DCE-MRI images
of glioma patients. -e research results showed that CNN
can better segment glioma lesions from the perspective of

visual observation. In objective indexes, the CNN algorithm
performed better than traditional segmentation algorithms
on quantitative indexes such as MSE, PSNR, and SSIM. -is
shows that the CNN algorithm has high application value in
DCE-MRI image segmentation.

5. Conclusion

Patients with glioma were taken as research objects, andMRI
with the CNN algorithm was used to classify glioma and
segment glioma.-e results showed that the CNN algorithm
had good performance in DCE-MRI image segmentation of
glioma patients. -e DCE-MRI histogram of glioma of
different grades showed significant differences in Ktrans, Kep,
Ve, andVp, and other indicators, and the correlation between
Ktrans , Kep, Ve, and Vp, and other indicators in Ki-67 also
showed significant differences. In summary, CNN and DCE-
MRI have high clinical application value in the diagnosis and
differentiation of glioma. Nevertheless, there are still some
defects in this work. For example, this research only ana-
lyzed the effect of DCE-MRI on the diagnosis of glioma and
did not compare it with other diagnostic methods, which did
not prove that DCE-MR is the best method for the diagnosis
of glioma. In future studies and work, we will improve the
above problems and further address them.
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[2] M. L. Suvà and I. Tirosh, “-e glioma stem cell model in the
era of single-cell genomics,” Cancer Cell, vol. 37, no. 5,
pp. 630–636, 2020.

[3] O. Gusyatiner and M. E. Hegi, “Glioma epigenetics: from
subclassification to novel treatment options,” Seminars in
Cancer Biology, vol. 51, pp. 50–58, 2018.

[4] T. J. C. Wang and M. P. Mehta, “Low-grade glioma radio-
therapy treatment and trials,” Neurosurgery Clinics of North
America, vol. 30, no. 1, pp. 111–118, 2019.

Contrast Media & Molecular Imaging 9



[5] C. J. Przybylowski, S. L. Hervey-Jumper, and N. Sanai,
“Surgical strategy for insular glioma,” Journal of Neuro-On-
cology, vol. 151, no. 3, pp. 491–497, 2021.

[6] Z. Peng, C. Liu, and M. Wu, “New insights into long non-
coding RNAs and their roles in glioma,” Molecular Cancer,
vol. 17, no. 1, p. 61, 2018.

[7] P. de Blank, P. Bandopadhayay, D. Haas-Kogan, M. Fouladi,
and J. Fangusaro, “Management of pediatric low-grade gli-
oma,” Current Opinion in Pediatrics, vol. 31, no. 1, pp. 21–27,
2019.

[8] J. Bai, J. Varghese, and R. Jain, “Adult glioma WHO classi-
fication update, genomics, and imaging,” Topics in Magnetic
Resonance Imaging, vol. 29, no. 2, pp. 71–82, 2020.

[9] A. M. Miller, R. H. Shah, E. I. Pentsova et al., “Tracking
tumour evolution in glioma through liquid biopsies of ce-
rebrospinal fluid,” Nature, vol. 565, no. 7741, pp. 654–658,
2019.

[10] T. M. Malta, C. F. de Souza, T. S. Sabedot et al., “Glioma CpG
island methylator phenotype (G-CIMP): biological and
clinical implications,” Neuro-Oncology, vol. 20, no. 5,
pp. 608–620, 2018.

[11] S. L. Hervey-Jumper and M. S. Berger, “Insular glioma sur-
gery: an evolution of thought and practice,” Journal of
Neurosurgery, vol. 130, no. 1, pp. 9–16, 2019.

[12] A. Poff, A. P. Koutnik, K. M. Egan, S. Sahebjam,
D. D’Agostino, and N. B. Kumar, “Targeting the Warburg
effect for cancer treatment: ketogenic diets for management of
glioma,” Seminars in Cancer Biology, vol. 56, pp. 135–148,
2019.

[13] J. G. Nicholson and H. A. Fine, “Diffuse glioma heterogeneity
and its therapeutic implications,” Cancer Discovery, vol. 11,
no. 3, pp. 575–590, 2021.

[14] E. Braganhol, M. R. Wink, G. Lenz, and A. M. O. Battastini,
“Purinergic signaling in glioma progression,” Advances in
Experimental Medicine & Biology, vol. 1202, pp. 87–108, 2020.

[15] T. Nejo, A. Yamamichi, N. D. Almeida, Y. E. Goretsky, and
H. Okada, “Tumor antigens in glioma,” Seminars in Immu-
nology, vol. 47, Article ID 101385, 2020.

[16] M. H. Hakar and M. D. Wood, “Updates in pediatric glioma
pathology,” Surgical Pathology Clinics, vol. 13, no. 4,
pp. 801–816, 2020.

[17] M. C. Tom, D. P. Cahill, J. C. Buckner, J. Dietrich,
M. W. Parsons, and J. S. Yu, “Management for different
glioma subtypes: are all low-grade gliomas created equal?”
American Society of Clinical Oncology Educational Book,
vol. 39, no. 39, pp. 133–145, 2019.

[18] M. Norouzi, “Gold nanoparticles in glioma theranostics,”
Pharmacological Research, vol. 156, Article ID 104753, 2020.

[19] K. Terashima and H. Ogiwara, “[Pediatric glioma],” Nosh-
inkeigeka, vol. 49, no. 3, pp. 640–646, 2021.

[20] A. Tsitlakidis, E. C. Aifantis, A. Kritis et al., “Mechanical
properties of human glioma,” Neurological Research, vol. 42,
no. 12, pp. 1018–1026, 2020.

[21] A. Ellert-Miklaszewska, I. A. Ciechomska, and B. Kaminska,
“Cannabinoid signaling in glioma cells,” Advances in Ex-
perimental Medicine & Biology, vol. 1202, pp. 223–241, 2020.

[22] S. Feng and Y. Liu, “Metabolomics of glioma,” Advances in
Experimental Medicine & Biology, vol. 1280, pp. 261–276,
2021.

[23] H. Igaki, “[Radiotherapy for glioma],” Noshinkeigeka, vol. 49,
no. 3, pp. 575–587, 2021.

[24] Y. Otani, T. Ichikawa, K. Kurozumi, and I. Date, “Dynamic
reorganization of microtubule and glioma invasion,” Acta
Medica Okayama, vol. 73, no. 4, pp. 285–297, 2019.

[25] M. Hu, Y. Zhong, S. Xie, H. Lv, and Z. Lv, “Fuzzy system based
medical image processing for brain disease prediction,”
Frontiers in Neuroscience, vol. 15, Article ID 714318, 2021.

[26] Z. Lv and L. Qiao, “Analysis of healthcare big data,” Future
Generation Computer Systems, vol. 109, pp. 103–110, 2020.

[27] S. Xie, Z. Yu, and Z. Lv, “Multi-disease prediction based on
deep learning: a survey,” Computer Modeling in Engineering
and Sciences, vol. 128, no. 2, pp. 489–522, 2021.

[28] H. V. Chatwin, J. Cruz, and A. L. Green, “Pediatric high-grade
glioma: moving toward subtype-specificmultimodal therapy,”
FEBS Journal, vol. 288, no. 21, pp. 6127–6141, 2021.

[29] M. Ruff, S. Kizilbash, and J. Buckner, “Further understanding
of glioma mechanisms of pathogenesis: implications for
therapeutic development,” Expert Review of Anticancer
�erapy, vol. 20, no. 5, pp. 355–363, 2020.

[30] W. J. Wang, J. S. Ding, Q. Sun, X. Xu, and G. Chen, “Role of
hyperbaric oxygen in glioma: a narrative review,”Medical Gas
Research, vol. 12, no. 1, pp. 1–5, 2022.

10 Contrast Media & Molecular Imaging


