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+e purpose of the research was to discuss the application values of deep learning algorithm-based computed tomography
perfusion (CTP) imaging combined with head and neck computed tomography angiography (CTA) in the diagnosis of ultra-early
acute ischemic stroke. Firstly, 88 patients with acute ischemic stroke were selected as the research objects and performed with
cerebral CTP and CTA examinations. In order to improve the effect of image diagnosis, a new deconvolution network model AD-
CNNnet based on deep learning was proposed and used in patient CTP image evaluation.+e results showed that the peak signal-
to-noise ratio (PSNR) and feature similarity (FSIM) of the AD-CNNnet method were significantly higher than those of traditional
methods, while the normalized mean square error (NMSE) was significantly lower than that of traditional algorithms (P< 0.05).
80 cases were positive by CTP-CTA, including 16 cases of hyperacute ischemic stroke and 64 cases of acute ischemic stroke. +e
diagnostic sensitivity was 93.66%, and the specificity was 96.18%. +e cerebral blood flow (CBF), cerebral blood volume (CBV),
and the mean transit time (MTT) in the infarcted area were significantly greater than those in the corresponding healthy side area,
and the time to peak (TTP) was significantly less than that in the corresponding healthy side area (P< 0.05).+e cerebral perfusion
parameters CBF, TTP, and MTT in the penumbra were significantly different from those in the infarct central area and the
corresponding contralateral area, and TTP was the most sensitive (P< 0.05). To sum up, deep learning algorithm-based CTP
combined with CTA could find the location of cerebral infarction lesions as early as possible to provide a reliable diagnostic result
for the diagnosis of ultra-early acute ischemic stroke.

1. Introduction

Ischemic stroke is the most common type of stroke, ac-
counting for about 80% of all strokes. It is the softening and
necrosis of brain tissue caused by blood circulation disorder,
ischemia, and hypoxia in the local brain tissue, namely,
vascular blockage [1–3]. +e symptoms of acute ischemic
stroke are mainly sudden skewing of the mouth and eyes
with saliva secretion. Patients will not only have unclear
speech but also have difficulty in pronunciation. In addition,
some patients will have aphasia, dysphagia, weakness, or

numbness of one limb [4]. At present, it is generally believed
that the main factors causing acute ischemic stroke include
large atherosclerosis, cardiogenic embolism, and arteriolar
occlusion [5]. +e inducing factors included age, race, he-
redity, hypertension, diabetes, dyslipidemia, heart disease,
mental state, and so on [6, 7]. Acute ischemic stroke has the
characteristics of high incidence rate, high mortality rate,
high disability rate, and high recurrence rate. According to
statistics, about one person dies of stroke every six seconds,
and one person may be disabled by stroke every six seconds
[8]. +erefore, early detection of the existence of early
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ischemic penumbra and diagnosis of acute ischemic stroke
are very critical for the therapeutic effectiveness and
prognosis of patients.

Imaging is used in the clinical diagnosis of acute is-
chemic stroke. Plain CT scan is the first choice for screening
suspected stroke, which can distinguish intracranial hem-
orrhage and nonvascular lesions. However, it is difficult to
find and diagnose the disease early. Generally, it cannot be
found until 24 hours after ischemia [9–11]. Conventional
MRI is effective in displaying acute small infarct and pos-
terior circulation ischemic stroke. At present, the mismatch
between PWI and DWI of MRI is a more effective method to
judge the ischemic penumbra, butMRI has some limitations,
such as long examination time, many contraindications, and
high examination cost [12, 13]. CT perfusion imaging is a
common method to evaluate acute ischemic stroke at
present. It can early display the focus of cerebral ischemia
and distinguish the inactivated brain tissue and ischemic
penumbra. It has important clinical significance for timely
diagnosis and guiding treatment [14]. CT angiography
(CTA) is mainly through intravenous injection of drugs.
When the drugs pass through the vascular arteries, they are
scanned by CT. +e formed images are imaged by computer
synthesis. CTA can display the blocking site, vascular size,
and blood flow compensation of patients with acute is-
chemic stroke [15]. +erefore, this study intends to use CT
perfusion (CTP) imaging and CTA in the diagnosis of acute
ischemic stroke.

Deep learning is a branch of machine learning. It is an
algorithm that attempts to abstract data at a high level using
multiple processing layers composed of complex structures
or multiple nonlinear transformations. So far, several deep
learning frameworks have been applied in the fields of
computer vision, speech recognition, natural language
processing, medicine, and bioinformatics [16].

Convolutional neural network (CNN) could share
convolution kernels and process high-dimensional data
without pressure. CNN enabled the image to still retain the
original position relationship through convolutional oper-
ation with good image processing effects. However, it
showed some disadvantages, including the high demand for
sample size and strong hardware dependence. In summary,
88 patients with acute ischemic stroke were examined with
CTP and CTA images, and the deep learning algorithm was
applied to the original image processing. +e diagnostic
sensitivity, specificity, and cerebral perfusion parameters
were analyzed to confirm the application value of CTP
imaging based on a deep learning algorithm combined with
head and neck CTA in the diagnosis of ultra-early acute
ischemic stroke, which provided help for the clinical diag-
nosis and treatment of acute ischemic stroke.

2. Materials and Methods

2.1. Research Object. Eighty-eight patients with acute is-
chemic stroke in the hospital from May 2019 to May 2021
were collected as the research objects, including 54 males
and 34 females, aged 33–79 years. According to this study, it

was approved by the medical ethics committee of the
hospital. +e patients and their families understood the
study and signed the informed consent.

Inclusion criteria: (1) patients diagnosed with acute is-
chemic stroke due to numbness, hemiplegia, weakness of
one limb, and aphasia; (2) the time from symptom onset to
baseline imaging examination was within 24 hours; (3)
cranial CTexcluded intracerebral hemorrhage; (4) complete
clinical data; and (5) the National Institutes of Health Stroke
Scale (NIHSS) score was greater than four.

Exclusion criteria: (1) complicated with mental diseases;
(2) poor inspection compliance; (3) allergic constitution;
and (4) patients who withdrew from the experiment halfway.

2.2. Inspection Method. CTP: after the cerebral hemorrhage
was excluded by a routine CT plain scan, CTP imaging was
performed. 42mL of contrast agent iodopropane and 20mL
normal saline were injected through elbow vein at the rate of
6ml/s. +e scanning range was parietal bone, 15 cm. +e
time density curve was obtained. After image processing, the
cerebral blood flow (CBF), cerebral blood volume (CBV),
mean transit time (MTT), and time to peak (TTP) were
obtained.+e parameters such as CBF, CBV, TTP, andMTT
in the corresponding areas of the affected side and the
healthy side were measured by mirror technique, and the
perfusion parameters in the lesion area (infarct core and
penumbra) and the corresponding healthy side were
compared.

CTA: scanning range was aortic arch cranial apex. 55mL
iopromide reagent was injected through the median elbow
vein at the injection rate of 4.5–5.0mL/s, and then 55mL
normal saline was injected. Scanning parameters: voltage
120 kV, current 240mA, and layer thickness 0.45mm.
According to the location of the lesion, it was divided into:
infratentorial lesion, paraventricular and basal ganglia le-
sions, frontoparietal lobe lesions, temporal occipital lobe
lesions, and the lesions involving a large area of one cerebral
hemisphere. +e infarct volume was calculated.

2.3. Computed Tomography Perfusion Deconvolution Algo-
rithm on Deep Learning. In CTP image processing, if the
contrast agent concentration at the pulse input was Dca, the
region of interest was VRI, and the corresponding average
time density curve was TDCRI; the relationship between Dca

and TDCRI could be expressed as follows:

TDCRI(t) � Dca × U( 􏼁(t). (1)

In the above equation, U(t) represents the residual
function of blood flow scale. +e above equation could be
solved by deconvolution. In numerical implementation, the
convolution equation (1) could be expressed by matrix
multiplication after discretization. +e volume of interest
containing N voxels was taken as an example.

U
⌢

� arg min ‖NU−D‖22+αE(U)/2( )
U . (2)
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In the above equation, N represents a block cyclic
matrix, N ∈ E

􏽥K·􏽥K and K represent dynamic scanning pa-
rameters, (‖NU − D‖22/2) represent fidelity terms, E(U)

represent regular terms, and α represent weight
parameters.

To solve (1), an auxiliary variable Z was introduced into
the blood flow scale residual function and the alternating
directionmultiplier method (ADMM) [17] was used, and the
process could be expressed as follows:

U
(n)

� 1 − bsuχ( 􏼁U
(n− 1)

+ bsuχ Z
(n− 1)

− λ(n− 1)
􏼐 􏼑

− bsuN
τ

NU
(n− 1)

− D􏼐 􏼑,

Z
(n)

� 1 − bsuχ( 􏼁Z
(n− 1)

+ bszχ U
(n)

+ λ(n− 1)
􏼐 􏼑

− αΛE Z
(n− 1)

􏼐 􏼑,

λ(n)
� λ(n− 1)

+ κ U
(n)

− Z
(n)

􏼐 􏼑.

(3)

In the above equations, λ represents a scaled Lagrange
multiplier, χ represents a penalty hyperparameter, τ rep-
resents a transpose operator, bsu represents a step size U(n),
bsz represents a step size Z(n), Λ represents a regular term
gradient operator, and κ represents a learning rate.

For the modular structure of ADMM algorithm, the
regular term of (2) was separated from deconvolution. For
example, U(n) was deconvolution process, Z(n) was
denoising process, and λ(n) was iterative update auxiliary
variable. +en, based on the idea of plug and play, the
deconvolution process of low-dose CTP was constrained.
+e equations were improved as follows:

U
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(4)

Compared with before, the update step size and penalty
super parameters were combined into one parameter, and
the performance of deconvolution network model could be
improved by adaptively adjusting the parameters. +e op-
eration process of the deep learning deconvolution network
model designed in this paper could be set as AD-CNNnet
(Figure 1).

2.4. Simulation Experiment. +e experiment was conducted
on the platform of MATLAB 2015b. Table 1 revealed the
parameter settings.

Block cyclic truncated singular value decomposition
(bSVD) [18], sparse perfusion deconvolution (SPD) [19],
and DenseSRNet [20] were used as comparison methods
with AD-CNNnet.

Peak signal-to-noise ratio (PSNR), normalized mean
square error (NMSE), and feature similarity (FSIM) were
selected as evaluation indexes [21].

2.5. StatisticalMethods. +e data of this study were analyzed
by SPSS19.0 statistical software. +e measurement data were
expressed by mean± standard deviation (‾x± s), and the
counting data were expressed by percentage (%). One-way
analysis of variance was used for pairwise comparison. +e
difference was statistically significant (P< 0.05).

3. Results

3.1. Performance Analysis Results of Network Model.
Firstly, the optimal values of three parameters: the number
of model filters, the number of residual blocks, and the
number of ADMM iteration steps, were analyzed to live the
best deconvolution network model for image processing.

If the number of filters was set to 5, 10, and 15, the loss
curve of themodel in network training could be illustrated in
Figure 2. +e loss curve under the three filter parameters
decreased rapidly with the enhancement of network training
times until it tended to be stable. Among them, the model
with 15 filters has the best loss curve and the more stable
learning ability.

If the number of residuals was set to 3, 5, and 7, the loss
curve of the model in network training could be expressed in
Figure 3. +e loss curve under the three residual parameters
decreased rapidly with the increase of network training times
until it tended to be stable. Among them, the model with 7
residuals had the best loss curve andmore stable learning ability.

If the number of ADMM iteration steps was set to 6, 9,
and 12, the loss curve of the model in network training could
be illustrated in Figure 4. +e loss curve under the three
iteration steps decreased rapidly with the increase of net-
work training times until it tended to be stable. Among
them, the model loss curve with 12 iterative steps of ADMM
was the best and had more stable learning ability.

In terms of visual evaluation (Figure 5), the perfusion
parameter map obtained by bSVD method was damaged by
noise induced artifacts. +e perfusion parameter map ob-
tained by SPD and DenseSRNet methods was too smooth.
+e perfusion parameter map obtained by AD-CNNnet
method performed best in suppressing artifacts and pre-
serving details, which was closer to the reference image.

In terms of quantitative evaluation (Figure 6), PSNR and
FSIM of AD-CNNnet method were significantly higher than
those of other methods, while NMSE was significantly lower
than other algorithms, and the difference was statistically
significant (P< 0.05).

3.2. Computed Tomography Perfusion-Computed Tomogra-
phy Angiography Inspection Results. Figure 7 shows that
among the 88 patients, CTP-CTA was negative in 8 cases,
including 2 cases of pons, 1 case of lacunar infarction in the
left basal ganglia, 2 cases of multiple punctate acute cerebral
infarction in the right frontal parietal lobe, and 3 cases of
transient ischemic attack. CTP-CTAwas positive in 80 cases,
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including 16 cases of hyperacute ischemic stroke and 64
cases of acute ischemic stroke. +e diagnostic sensitivity was
93.66%, and the specificity was 96.18%.

3.3. Comparison of Cerebral Perfusion Parameters between
InfarctedArea andContralateral Area. Figure 8 reveals that
the cerebral perfusion parameters CBF, CBV, and MTT in

the infarcted area were significantly greater than those in
the corresponding contralateral area, and the difference
was statistically significant (P< 0.05). +e cerebral per-
fusion parameter TTP in the infarcted area was signifi-
cantly lower than that in the corresponding contralateral
area, and the difference was statistically significant
(P< 0.05).

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400 450

Lo
ss

 cu
rv

e 

Training times 

5
10
15

Figure 2: Loss curve of model training under different filter numbers.
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Figure 1: Improved deep learning deconvolution network model.

Table 1: Network model parameter setting.

Parameter Numerical value
Number of network residual blocks 7
Number of network filters 15
Filter size 3× 3
ADMM iteration steps 12
Initial learning rate 4500
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Figure 4: Loss curve of model training under different ADMM iteration steps.
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Figure 5: Perfusion parameters obtained by deconvolution network model. A was the reference image; B was SPD; C was bSVD; D was
DenseSRNet; E was AD-CNNnet.
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Figure 3: Loss curve of model training under different number of residual blocks.
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Figure 6: Quantitative evaluation indicators of deconvolution network model. (a) PSNR; (b) NMSE; (c) FSIM. ∗ indicates that the
difference between AD-CNNnet and other methods was statistically significant (P< 0.05).
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3.4. Comparison of Cerebral Perfusion Parameters in Pen-
umbra, Infarct Center, and Contralateral Area. Figure 9
indicates that the cerebral perfusion parameters CBF,
TTP, and MTT in the penumbra were significantly different
from those in the infarct central area and the corresponding
healthy side area (P< 0.05). +e cerebral perfusion pa-
rameter CBV in the penumbra was significantly different
from that in the infarct center (P< 0.05), but not from the
corresponding healthy side (P> 0.05).

3.5. Analysis of Case Data of Some Patients. CTA indicated
that the left anterior cerebral artery of male, 58, was thin
(Figure 10), the distal end was not developed, and the P2
segment of the left posterior cerebral artery was blocked. CTP
showed that CBV, CBF, andMTTdecreased in the core area of
cerebral infarction. TTP prolonged significantly.+e volume of
hypoperfusion area was 18.7mL, and the penumbra was large.

CTA revealed the occlusion of the intracranial segment
of the right internal carotid artery and the right middle
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Figure 7: CTP-CTA results.
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Figure 8: Comparison of cerebral perfusion parameters between infarcted area and contralateral area. A represents CBF and CBV; B
represents MTT and TTP. ∗ indicates that there was significant difference between infarcted area and healthy side area (P< 0.05).
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Figure 9: Comparison of cerebral perfusion parameters in penumbra, infarct center, and contralateral area of patients. A refers to CBF and
CBV; B refers toMTTand TTP. ∗ indicates that the difference between the penumbra area, the infarcted area, and the contralateral area was
statistically significant (P< 0.05).
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(f )

Figure 10: A 58-year-old male patient with left limb weakness and unclear speech was admitted to the hospital for 8 hours. A was CTA
image; B was CTP image; and C-F was CBV, CBF, MTT, and TTP perfusion images, respectively.
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cerebral artery of a female, 65 (Figure 11). CTP showed that
CBV, CBF, and MTT decreased in the core area of cerebral
infarction, and TTP prolonged significantly.

4. Discussion

Cerebral infarction was the main cause of disability at present.
Timely and rapid recovery of cerebral blood flow in patients
with acute cerebral infarction has become an effective way to
reduce the disability rate. Clinically, it was found that strict
time limit can improve the effect of intravenous thrombolytic
therapy by about 10%.+erefore, the limited timewindow has
certain limitations. Rapid and accurate judgment of ischemic
penumbra has become the key to the treatment of cerebral
infarction [22]. In this study, 88 patients with acute ischemic
stroke in the hospital were selected as the research object, and
the brain CTP and CTAwere examined by SOMATOM spirit
double-slice spiral CT. To improve the effect of image di-
agnosis, a new deconvolution network model AD-CNNnet
based on deep learning was proposed and used in actual CTP
image evaluation. Firstly, the application effect of the model
was analyzed. It was found that the perfusion parameter map
obtained by AD-CNNnet method performs best in sup-
pressing artifacts and preserving details, which was closer to
the reference image, and has the best effect compared with
other methods. In terms of quantitative evaluation, PSNR and
FSIM of AD-CNNnet method were significantly higher than
those of other methods, while NMSE was significantly lower
than other algorithms (P< 0.05). PSNR and NMSE were two
widely used objective image quality indicators. +e larger the
PSNR was, the smaller the NMSE was, and the better the
image quality was. FSIM was used to measure the perceived
similarity of two images. +e closer the value was to 1, the
higher the image similarity was proved [23]. +e results gave
that the proposed AD-CNNnet model showed more signif-
icant robustness in parameter calculation and could improve
imaging quality more obviously compared with traditional
algorithms.

CTP and CTA based on AD-CNNnet model were ap-
plied to the diagnosis of 88 patients with acute ischemia. It
was found that 80 patients were positive for CTP-CTA,
including 16 cases of hyperacute ischemic stroke and 64
cases of acute ischemic stroke. +e diagnostic sensitivity was
93.66% and the specificity was 96.18%, which was similar to
the results of Hakim A et al. (2019) [24]. Previous studies
[25] showed that the low-density lesions could only be
displayed by routine CTin patients with cerebral ischemia 24
hours after onset. In the early stage of acute cerebral in-
farction, especially in the hyperacute stage <6 h, the sensi-
tivity and diagnostic rate of conventional CTplain scan were
very low, indicating that CTP-CTA based on deep learning
algorithm could find the location of cerebral infarction le-
sions as soon as possible. It provided a reliable clinical basis
for the diagnosis of ultra early cerebral infarction and had a
high clinical application value. By comparing the cerebral
perfusion parameters in different regions, it was found that
the CBF, CBV, and MTT in the infarcted area were sig-
nificantly higher than those in the corresponding healthy
side area. Besides, the TTP was significantly lower than that
in the corresponding healthy side area. +e difference was
statistically significant (P< 0.05), indicating that the cerebral
perfusion parameters CBF, CBV, MTT, and TTP can predict
the occurrence of acute cerebral infarction to a certain extent
[26]. Further analysis showed that the cerebral perfusion
parameters CBF, TTP, and MTT in the penumbra were
significantly different from the infarct central area and the
corresponding contralateral area. TTP was the most sensi-
tive (P< 0.05), which showed that the cerebral perfusion
parameters CBF, TTP, and MTT had a good indicating
significance for evaluating the penumbra area.

5. Conclusion

In this study, 88 patients with acute ischemic stroke in the
hospital were taken as the research object, and the brain CTP
and CTA were examined by SOMATOM Spirit double-slice

(a) (b) (c) (d) (e)

(f )

Figure 11: A 65-year-old male patient with sudden weakness of left upper limb and unclear consciousness was admitted to the hospital for 5
hours. A was CTA image; B was CTP image; C-F was CBV, CBF, MTT, and TTP perfusion images, respectively.
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spiral CT. To improve the effect of image diagnosis, a new
deconvolution network model AD-CNNnet based on deep
learning was proposed and used in patient CTP image
evaluation.+e results showed that CTP-CTA based on AD-
CNNnet model could find the location of cerebral infarction
as soon as possible, which provided a reliable clinical basis
for the diagnosis of ultra early cerebral infarction and had a
high clinical application value. In addition, its cerebral
perfusion parameters CBF, CBV, MTT, and TTP can assist
in judging the ischemic penumbra to a certain extent and
provide guidance for individualized treatment of patients.
However, there were few patients selected in this study and
the source was single, which may have some impact on the
results. In addition, the long-term follow-up data of patients
were not collected, and the image evaluation of patient
prognosis was not involved. More patient sample data will be
collected in the later study to further explore the application
value of CTP combined with CTA based on deep learning
algorithm in the prognosis of patients with acute ischemic
stroke. In conclusion, the results of this study provide a
reference for the combined application of artificial intelli-
gence technology and clinical imaging.
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+e data used to support the findings of this study are
available from the corresponding author upon request.
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