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-is study was aimed at exploring the application value of positron emission tomography (PET) +magnetic resonance imaging
(MRI) technology based on convolutional neural network (CNN) in the biopsy and treatment of intracranial glioma. 35 patients
with preoperatively suspicious gliomas were selected as the research objects. -eir imaging images were processed using CNN.
-ey were performed with the preoperative head MRI, fluorodeoxyglucose (FDG) PET, and ethylcholine (FECH) PET scans to
construct the cancer tissue contours. In addition, the performance of CNN was evaluated, and the postoperative pathology of
patients was analyzed.-e results suggested that the CNN-based PET+MRI technology showed a recognition accuracy of 97% for
images. Semiquantitative analysis was adopted to analyze the standard uptake value (SUV). It was found that the SUVFDG and
SUVFECH of grade II/III glioma were 9.77± 4.87 and 1.82± 0.50, respectively, and the SUVFDG and SUVFECH of grade IV glioma
were 13.91± 1.83 and 3.65± 0.34, respectively. According to FDG PET, the mean value of SUV on the lesion side of grade IV
glioma was greater than that of grade II-III glioma, and the difference was significant (P< 0.05), and similar results were obtained
on FECH PET. It showed that CNN-based PET+MRI fusion technology can effectively improve the recognition effect of glioma,
can more accurately determine the scope of glioma lesions, and can predict the degree of malignant glioma to a certain extent.

1. Introduction

Neuroglioma can be referred to as glioma for short. It is a
relatively common malignant tumor of the central nervous
system from neuroepithelium, accounting for about 40% of
intracranial tumors. It is the most common primary in-
tracranial tumor, affecting approximately 3 to 8 out of
100,000 people each year, affecting all ages with a higher
occurrence in men [1, 2]. According to the mortality
rankings released by the World Health Organization
(WHO) in 1998, glioma is the second leading cause of death
in tumor patients under the age of 34 and the third leading
cause of death between the ages of 35 and 54. Its symptoms
are mainly characterized by sudden headaches accompanied
by projective vomiting and increased intracranial pressure
such as papilledema and some localized nerve damage [3, 4].

Aggressive growth is the main growth pattern of gliomas,
which leaves no clear demarcation point between them and
the surrounding adjacent normal brain tissue. To a large
extent, the clinical effect of surgical treatment and the
prognosis of patients are determined by the degree of re-
section of cancer tissue [5].

At present, the diagnosis of glioma is mainly based on
imaging methods, such as magnetic resonance imaging
(MRI) and positron emission tomography (PET). MRI is
currently the most widely used clinical imaging for diag-
nosing neurosurgical gliomas, and it can construct the
outline of cancer tissue by enhancing the range of enhanced
lesions in the scan. However, whether the blood-brain
barrier is damaged is a key factor in determining whether
MRI images are enhanced or not. -is means that MRI may
not fully reflect the extent of cancer tissue. For most low-
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grade gliomas and a small number of high-grade gliomas,
MRI does not show enhancement or only partial en-
hancement, which makesMRI insurmountable in describing
the outline of cancer tissue, especially for low-grade gliomas
[6–8]. PET can diagnose lesions through the metabolic
differences between normal and diseased tissues and use
different molecular imaging agents to perform noninvasive,
dynamic, qualitative, and quantitative analysis of the
metabolism and proliferation of brain tumor tissue.
-erefore, it can supplement important information to CT/
MRI images, but there are obvious deficiencies in tissue
identification and anatomical localization [9].

PET and MRI fusion technology can combine the
metabolic and anatomical data displayed by PET and MRI,
whichmakes the localization information in the treatment of
clinical gliomas more comprehensive and the treatment
effect is more optimized [10, 11]. PET+MRI image fusion
shows important clinical value for early diagnosis of glioma,
precise localization of lesions, disease-based symptomatic
treatment, and comprehensive evaluation. However, a large
amount of image data increases the workload of doctors,
which easily leads to fatigue, missed diagnosis, and misdi-
agnosis of disease diagnosis and is also susceptible to the
images of doctors’ experience and knowledge level in the
reading process, making the results highly subjective [12].
-erefore, artificial intelligence algorithm-assisted diagnosis
shows important research significance and application value
in accurately diagnosing lesions. Convolutional neural
network (CNN), which combines deep learning technology,
is a learning method that can simulate the brain level. It uses
four methods, namely, local receptive field, weight sharing,
subsampling, and sparse connection, to process two-di-
mensional images. In addition, the advantage of CNN is that
it can directly identify and feature the input original image,
omitting the tedious process of preprocessing it, so CNN has
extraordinary achievements in pattern recognition [13–15].

Taking glioma PET+MRI images as the research objects,
this work constructed an artificial intelligence-based CNN
auxiliary diagnosis model. -e model was used in the
classification and identification of gliomas to help clinicians
make rapid diagnosis and treatment and to achieve the
consistency of images and clinical research speculations. It
aimed to promote the process of artificial intelligence,
deepen its application in the medical field, and provide a
certain theoretical basis for the diagnosis and treatment of
neurosurgical gliomas in clinical practice.

2. Materials and Methodologies

2.1. General Data. From March 2018 to January 2020, 35
patients with highly suspected gliomas before surgery were
treated in hospital. -e general data about these patients is
male in 23 cases and female in 12 cases. -e age is from 23 to
67, with an average age of 45.3. -e length of disease course
is from 1 to 4 years. -e main clinical manifestations of the
patients were sudden headache with occasional projectile
vomiting, general malaise, slurred speech, and seizures. -e
patients and their families had fully understood the situation
and signed the informed consent forms, and this study had

been approved by the medical ethics committee of the
hospital.

Inclusion criteria were as follows: (i) patients whose
diseases met the diagnostic criteria for glioma, which could
be proved by definite pathological results of surgery or
stereotactic needle biopsy; (ii) all patients who were first
onset; (iii) patients with complete imaging data; and (iv) all
patients who were aware of the study content and signed the
informed consents.

Exclusion criteria were as follows: (i) patients with a
history of brain space-occupying lesions; (ii) patients with a
history of glioma treatment; and (iii) patients with a history
of head trauma.

2.2. Preoperative Imaging Examination. PET scanning: all
patients were performed with the examination 2 to 3 days
before operation. -e tracer 11C-Met 550–750 mBq was
injected intravenously 6 hours after meal. After 20 minutes,
PET was adopted for scanning, and cross sections, coronal
planes, and sagittal planes were displayed, respectively.

MRI scanning: all patients were performed with MRI
scanning on heads 1day before the operation to determine the
size of tumors. Conventional T1-weighted image (T1WI) and
T2WI series examinations were implemented, respectively, by
the 1.5T intraoperative scanner. After gadopentetate dime-
glumine (Gd-DTPA) was injected intravenously, T1WI en-
hancement scanning (T1-Gd) was conducted. In addition, some
patients received magnetic resonance angiography (MRA) and
diffusion tensor imaging (DTI).-e grading criteria for gliomas
in imaging examinations could be summarized as follows: for
low-grade glioma (grade II), the diffuse astrocytoma showed
relatively uniform signal, low signal on T1W, mostly no en-
hancement, and high signal on T2Wand FLAIR. For, anaplastic
glioma (grade III), when astrocytoma or oligodendrocytoma
considered byMRI was enhanced, it indicated a high possibility
of anaplastic. For glioma in grade IV, the main features of
glioblastoma were irregular peripheral enhancement and
massive central necrosis, and brain edema was visible outside
the enhancement. Gliosarcoma, due to the predominance of
sarcoma or glioma components, presented a real heteroge-
neously enhancing mass or a glioblastoma-like appearance,
respectively.

2.3. Assessment ofUptake of PETTracers. Visual analysis was
adopted in the assessment. Combined with the lesion ranges
of MRI images, the uptake of imaging agents was divided
into three components as follows [16]:

(1) Low metabolism with uptake being lower or similar
to white matters

(2) Intermediate metabolism with uptake being higher
than white matters while significantly less than gray
matters

(3) Highmetabolism with uptake being similar, equal to,
or higher than gray matters

Apart from the concentration of imaging agents within
lesion ranges, the assessment of uptake needed to be
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combined with the distribution forms and uniformity of
imaging agents and the clear state of boundaries.

2.4. Preparation of CNN Model Structure

2.4.1. Convolutional Layer. As the core of the extraction of
features in a convolutional neural network, the hidden layer
has two special structures, including convolutional layer and
subsampling layer. Local features of particular areas in local
receptive fields are extracted by the convolutional layer. To
be specific, a learnable kernel is convolved with the feature
image on each layer to output the feature image on the next
layer by the activated function. -e convolution expression
is shown in the following equation:

x
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a � f 􏽘

i∈Ma

x
l−1
a • k

l
ia + c

l
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⎛⎝ ⎞⎠. (1)

In the above equation, l represents the number of layers,
k stands for convolution kernel, xl−1

a means a feature image
on the upper layer, kl

ia refers to the weight of convolution
kernel, cmeans the offset item of each output feature image,
and f() refers to the activated function. -e incomplete
connection mode is adopted in CNN, and this mode is
featured with the sparse link between the neurons on upper
and lower levels by local spatial correlation among layers.
Hence, every output feature image may contain the con-
volution of multiple input images, which function differently
due to the discrepancies of weights in convolution kernels.

2.4.2. Subsampling. Pooling calculation is performed for
input by subsampling layer, and the feature dimension as
well as the resolution can be reduced without repeated
sampling. -e number of input feature images and output
feature images obtained by subsampling calculation are both
n, but the original image is 2 times as large as the output
feature images acquired by subsampling. -e subsampling
layer is expressed as

x
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In the above equation, down (•) means subsampling
function, β stands for multiplicative deviation, and c refers to
additive deviation. After the features of images are obtained
by using convolution, the classifier cannot categorize fea-
tures directly because of large amounts of calculation, ex-
cessive time consumption, and easy fitting. To reduce the
size of feature images, the subsampling layer is connected
after the convolution layer. -e neutrons input by the
pooling layer is on the upper sampling window convolution
layer in which neutrons gather form the value of neutrons.
-e value usually contains mean sampling and maximum
pool sampling. -e pooling results in a significant decrease
of the number of neutrons in the model and shows the
robustness in the horizontal movement and transformation
of the input space.

2.4.3. Fully Connected Layer. In fully connected layers, all
feature images (two-dimensional images), which are con-
nected to the one-dimensional features, are used as the input
to the fully connected network. -e output of the fully
connected layer is acquired by the input weighed sum and
the response of the activated function.
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In the above equation, vl represents the weight coeffi-
cient of the fully connected network, xl−1 refers to feature
images, and cl means the offset items of the fully connected
layer.

2.5. Softmax Classifier. Logical regression is the basis of the
expansion of the Softmax regression classifier, and the
training sample set of Softmax consists of m labelled sam-
ples: x(1), y(1), x(2), y(2), . . . , x(m), y(m)􏼈 􏼉. Among these el-
ements, x(i) stands for input features and x(i) ∈ Sn+1, n + 1 is
the dimension of eigenvector x, y(i) means classification
labels, and logistic regression label is set as y(i) ∈ 0, 1{ }.

If the loss function is expressed as (4), the cost function
of the minimization of the parameter θ is expressed as (5).
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In the training samples of Softmax regression, different
types of samples are denoted by a, the probability value of a
is estimated by the function pθ(x), and the probability value
is shown as q(y � a|x). pθ(x) is presented as follows:
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In the above equation, θ1, θ2, . . . , θk are parameters of
the model and θ1, θ2, · · ·, θk ∈ Sn+1. In the process of Softmax

regression, θ is written in the column matrix as θ �

θT
1
θT
2
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.

Based on the logistic regression, Softmax regression cost
function is analyzed. In the function, 1 represents indicative
function. 1{the expression value is true}� 1, and 1{the ex-
pression value is false}� 0, which demonstrate that the
equation of cost function is expressed as follows:
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-e cost function of Softmax is shown as follows:
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-e commonly used method of minimizing cost func-
tion is iterative optimization algorithm. -e partial deriv-
ative of θa by A(θ) is shown as follows:
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Later, the cost function A(θ) is minimized by the gra-
dient descent algorithm. -e gradient descent means the
update of the parameter θ along with every iteration, which
is shown as θa � θa − z∇θaA(θ)(a � 1, 2, · · ·, k).

To avoid overfitting, a regularization item
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k
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ia is added behind the cost function and the

excessively large parameter values are penalized, and then
the equation for the regression cost function is derived,
which is shown as follows:

A(θ) � −
1
m

􏽘

m

i�1
􏽘

k

a�1
1 a(i)

� a}log
eθ

T
a x

(i)

􏽐
k
l�1 e

θT
l x

(i)

⎧⎨

⎩
⎡⎢⎢⎣ ⎤⎥⎥⎦ +

λ
2

􏽘

k

i�1
􏽘

n

a�0
θ2ia.

(10)

To achieve the Softmax regression and classification, the
derivative of theminimized cost function is taken and shown
as follows:
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(11)

At the end, the Softmax regression classification model is
generated by the minimization cost equation A(θ).

In the successive operations of convolutional neural
networks and subsampling, the advantage of convolutional
neural network in horizontal movement, scaling, and in-
variance in rotation as well as distortion is local receptive
field, weight sharing, subsampling, and sparsity connection.
While the convolution layer is connected to the neurons in a
small neighborhood, weight sharing reduces the weight
parameter obviously. -e dimension of the subsampling
features lowers, and the sparsity connection makes the
network less complex, which enhances the generalization
capacity and robustness of convolutional neural network in
image comprehension.

2.6. Image Fusion. -e 3D scan data of MRI and PET in
DICOM format were imported into the system graphics
workstation. -e registration program automatically fused
MRI T1-enhanced images, FDG PETimages, and FECH PET
images into the system. -e accuracy of fusion was detected

by craniofacial landmarks such as the nasal tip and inner
conjunct, and manual fine-tuning can be performed if
necessary. -e fused images were still displayed in the form
of MRI T1-enhanced images, FDG PET images, and FECH
PET images, respectively, and lateral, sagittal, and coronal
images can be displayed simultaneously as needed.

2.7. Formulation and Implementation of Operation.
Formulation of operation: on the images of MRI (T1-Gd or
T2WI) and 11C-Met PET cross sections, the contours of
tumors were sketched, respectively. Concerning the cases
whose lesions on the T1-Gd series were significantly en-
hanced, enhancement areas were regarded as tumor lesions.
If the series did not enhance imaging or enhance it into
punctiform shapes so that the contours of tumors could not
be sketched, high signal areas of the T2WI series were viewed
as tumor lesions. -e areas where the uptake of 11C-Met
PET images was obviously greater than peripheral normal
gray matters were adopted as tumor lesions. When the
contours of tumors were plotted, subjective visual manual
drawing was utilized combined with the segmentation
program and according to the image gray scale automatic
plotting method. By the above methods, the contours of
lesions in two images and the boundaries between inter-
section areas were sketched, respectively. -e contributions
of two different images in tumor sketch were described by
the percentage (discrepancy-PET, %) of the volume of
nonintersecting areas of PET and MRI images in that of the
lesions shown by PETand the percentage (discrepancy-PET,
%) of the volume of nonintersecting areas of MRI images
and PET in that of the lesions shown by MRI, respectively.

Implementation of operation: the operation was
implemented according to the postoperative operation plan
and the relationship between tumors and normal brain
tissues under the navigation microscope. Tumor excision
was based on 11C-Met PET images or MRI images. To avoid
brain tissue drift, intraoperative MRI scanning was per-
formed on the cases with large intraoperative tumors and
unclear boundaries between tumors and normal brain tis-
sues hinted by the microscope. Besides, images were im-
ported into the neurological system’s computer workstation.
After that, the same method was adopted to fuse and
compare intraoperative MRI results with preoperative im-
ages to determine tumor excision.

2.8. Statistical Analysis. SPSS 23.0 software was used for
statistical analysis of all data, measurement data were an-
alyzed using independent samples t-test, count data were
expressed as percentage, and χ2 test was used.

3. Results

3.1. Comparison of Performance of Convolutional Neural
Networks. -e parameter migration method was adopted to
construct convolutional neural networks, and intracranial
glioma with different modes of PET, MRI, and PET+MRI
was identified. Figure 1(a), Figure 1(b), and Figure 1(c) show
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the evaluation results of performance of PET-CNN, MRI-
CNN, and PET/MRI-CNN, respectively.

According to the above figures, the recognition accuracy
of PET-CNN reached nearly 95% after the iteration occurred
more than 10 times.Without the growing iteration numbers,
accuracy was increased slightly, and it amounted to 97.67%
after 50 iterations. In general, sensitivity was slightly lower
than specific degree. In contrast, the recognition rate of
MRI-CNN was higher with recognition accuracy reaching
about 97%. After 10 iterations, it tended to be stable without
being enhanced by the increasing iteration numbers. -e
recognition rate of fused PET/MRI images by PET/MRI-
CNN reached 97%, while the specific degree was relatively
low.

3.2. Imaging Performance. MRI of all patients showed T1
and T2 signals with different lengths. -e enhancement scan
demonstrated enhancement in 19 cases, and no obvious
enhancement was detected in 16 cases. According to the type
of pathology, enhancement was found in 4 cases with glioma
of grade II and 6 cases with glioma of grade III. Enhance-
ment was shown in all eight cases with glioblastoma mul-
tiforme, and obvious inhomogeneous enhancement was

demonstrated in the other two patients with central nervous
system vasculitis. Figures 2 and 3 show specific details.
Figure 4 shows the PET images obtained after tracer in-
jection in a 45-year-old male glioma patient. Figure 5 shows
the PET+MRI fusion images of a 54-year-old female glioma
patient after tracer injection.

On PDG PET, eight cases with the uptake greater than
the contralateral gray matter were all patients with
glioblastoma multiforme. Among 12 cases with the up-
take close to the contralateral gray matter, six were pa-
tients with glioma of grade III, four were diagnosed with
glioma of grade II, and 2 were patients with central
nervous system vasculitis. Among 15 cases with the
uptake less than the contralateral gray matter but greater
than the contralateral white matter, nine were patients
with glioma of grade III and six were diagnosed with
glioma of grade II. On 18F-FECH PET, there were 21
cases with the uptake greater than background brain and
12 cases without obvious uptake. Obvious uptake of 11C-
MET was observed in all eight cases with glioblastoma
multiforme. Among 12 cases without uptake, five were
patients with glioma of grade II and seven had glioma of
grade III. Detailed information is shown in Figures 6(a)
and 6(b).
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Figure 1: Comparison on the performance of CNNs. -e performance evaluation results of (a) PET-CNN, (b) MRI-CNN, and (c) PET/
MRI-CNN.
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After measurement, it was found that the SUVFDG and
SUVFECH of grade II/III glioma were 9.77± 4.87 and
1.82± 0.50, respectively, and the SUVFDG and SUVFECH
of grade IV glioma were 13.91± 1.83 and 3.65± 0.34, re-
spectively. -e L/CFDG and L/CFECH values of grade II/III
glioma were 2.00± 0.34 and 5.98± 3.88, respectively; and the
L/CFDG and L/CFECH values of grade IV glioma were
2.68± 0.10 and 19.21± 6.30, respectively. See Figure 7 for
details.

3.3. Construction of Contours of Cancer Tissues.
According to the positional relationship of the contour lines
of lesions on PDG PET and MRI, lesions were divided into
the following six categories. (I) PET lesions within MRI
lesions; (II) the contour lines of PET lesions andMRI lesions
do not cross, but may overlap or not; (III) the contour lines
of MRI lesions within PET lesions; (IV) the contour lines of
PETandMRI lesions are roughly equal; (V) the contour lines
of MRI are vague, so only PET lesions are detectable; and
(VI) the contour lines of PETare vague, so only MRI lesions
are detectable.

-e number of gliomas in grades II, III, and IV was 2, 3,
and 0 in class I; it was 0, 2, and 4 in class II, and it was 2 and 2
in class III. -e number of cases in category IV was 0, 0, and
3, respectively. -e number of cases in category V was 3, 5,

and 0, and the number of cases in category VI was 3, 3, and 0,
respectively (as shown in Figure 8).

Classification of the positional relationship of lesions on
18F-FECH PETand MRI was given as follows (as illustrated
in Figure 9). -e number of grade II, III, and IV gliomas
were 2, 3, and 1 in class I, 0, 0, and 2 in class II, and 1 and 2 in
class III. -ere are 1, 1, and 0 cases in category IV, 1, 0, and 1
in category V, and 4, 3, and 1 in category VI. -e number of
cases classified was 2, 5, and 1, respectively.

4. Discussion

-e prerequisite for the embodiment of its one value of
convolutional neural network is accurate imaging data.
Conventional MRI imaging is the most applied imaging
technique so far. -e Gd-DTPA enhanced sequence is often
applied in the construction of cancer tissues. However,
enhancement is not shown on MRI or can be observed on
only a few MRIs since blood-brain barriers are not impaired
completely in most of gliomas of lower grade and a few
gliomas of higher grade. It is hard to distinguish cancer
tissues from pericancerous edema merely by normal T1WI
or T2WI [17, 18]. In the research, it was found that the
recognition rate of fused PET/MRI images by PET/MRI-
CNN reached 97%. Because fused images themselves could
enhance the discernibility degree of lesion areas, make
images clearer as well as significant visual effects, and show
lesion ranges more obviously, the recognition effects of
glioma in neurosurgery by convolutional neural networks
were enhanced. However, the specific degree of the networks
was relatively low, which indicated a high misdiagnosis rate.

PET is a metabolic imaging method with which
noninvasive, dynamic, qualitative, and quantitative
analysis of the metabolism and proliferation of cancer
tissues can be performed based on different molecular
imaging agents. -e use of this technique is an indis-
pensable supplement to the presentation of anatomic
information by CT/MRI. Metabolic and anatomic data
provided by PET and MRI, respectively, can be combined
effectively by the joint use of PET and MRI, which
provides more complete location information and

(a) (b) (c) (d)

Figure 2: MRI images of patients with glioma in grade IV.-e patient was a female, 62 years old. (a, b)MRI plain scan images and (c, d)MRI
enhanced images.
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Figure 3: Enhancement of gliomas of different grades by MRI.
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qualitative information for the clinical treatment of
glioma to optimize therapeutic effects [19]. Kebir et al.
(2019) [20] performed surgical treatment on patients with
gliomas of different grades with the navigation of 11C-
MET PET fused with MRI. Without the enhanced MRI,
PET tracers can be used to excise cancer tissues with high
malignancy in locally concentrated areas. Hara et al.
(2020) [21] made a statistical comparison of the tumor
excision rate and the prognosis of patients between the

PET/MRI navigation system and a single MRI navigation
system, and 11C-MET was used as PET tracer. Totally, 36
surgeries were performed on 33 patients, 17 of which
were navigated by PET/MRI and 19 were navigated by
MRI. -e results showed that PET/MRI could offer more
information about the location of tumors, but there was
no significant difference between the complications of the
two surgeries. -e total excision rate of the PET/MRI
navigation system was higher than that of the MRI

Figure 4: PET images of glioma patients. From left to right, they were the images of 1 h, 8 h, 12 h, and 24 h of injection of tracer, respectively.

Figure 5: PET+MRI fusion images of glioma patients. From left to right, they were the fusion images and the images at 8 h and 24 h after the
tracer injection. -e arrows indicate the lesions.
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Figure 6: Uptake of tracers by gliomas of different grades. (a) -e uptake of 18F-FDG and (b) the uptake of 18F-FECH.
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navigation system, and the PET/MRI navigation system
survived longer than the MRI navigation system.

In this research, PET and MRI fusion technology was
applied before surgeries to determine if biopsy or surgery
should be performed on each of 35 patients suspected of

glioma according to the location of lesions and imaging
manifestations. -e analysis of the manifestations of each
case on MRI showed that glioblastoma multiforme in eight
cases were all enhanced, but the enhancement of glioma
could be observed only in 10 out of 25 cases with grades II-
III, which proved that MRI enhancement could predict the
severity of cancer tissues to some degree. However,
the prediction was indirect because the judgement on if the
blood-brain barrier was intact was necessary and closely
related. -is opinion was consistent with related literature
reports [22, 23]. Meanwhile, eight cases with the uptake
greater than the gray matter were all glioblastoma multi-
forme patients, and those with the uptake close to or less
than gray matter were all diagnosed with glioma of grades II-
III. In terms of the uptake of 18F-FECH (tracers), the ob-
vious uptake of 18F-FECH was detected in all eight cases
with glioblastoma multiforme, and the WHO grade of 12
glioma cases without obvious uptake were all II-III.
According to the ratio of the standard uptake value of the
lesions on FDG PETand the standard uptake value of lesions
and contralateral brain tissues in semiquantitative analysis,
the average of gliomas of grades II-III was lower than that of
glioblastoma multiforme. -ese results were similar to the
data obtained from FECH PET. Based on these analyses, it is
shown that patients with the higher WHO grade of glioma
probably means the higher uptake of two types of tracers.
Unfortunately, the number of cases included in this research
is small, and the analysis is not tested by statistics. -e
research shows that the PET uptake of tracers can better
reflect the severity of glioma, which is consistent with some
previous reports [24, 25].

In the comparison of the contours of lesions on PETand
MRI, five PET lesions were smaller than those on MRI and
seven PET lesions were larger than those on MRI on FDG
PET. -e result indicated that the range of lesions shown on
PET was inclined to become larger than that presented by
MRI. On FECH PET, tumor contours could not be deter-
mined by MRI and PET in eight cases, which showed the
supplementary information provided for the cases with
different tumor contours determined on MRI was not ideal.
Nonetheless, a conclusion with statistical meaning could not
be drawn because of the small number of cases. Katsanos
et al. (2019) [26] reported that the range of lesions was
smaller than that of lesions on MRI in nearly 85% of cases
examined by FDG PET.-e results showed an inconsistency
with the results of the observation in this research. -e
appearance of the discrepancy may be related to different
operating conditions of PETand the differences in subjective
descriptions of constructing the contours of cancer tissues.

5. Conclusion

-e PET+MRI fusion technology based on CNN can make
the image clearer and the visual sense stronger. At the same
time, it can improve the recognition effect of neurosurgical
glioma and more accurately determine the scope of glioma
lesions. In the absence of enhancement, there was a sig-
nificant advantage especially in low-grade gliomas. How-
ever, due to the limited sample size, it lacked overall
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Figure 7: Semiquantitative analysis of the uptake of tracers by
gliomas of different grades.
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representativeness. In the future, it will increase the number
of samples and conduct more in-depth studies on gliomas.
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