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In the bonemarrow, plasma cells are made up of B lymphocytes and are a type ofWBC.'ese plasma cells produce antibodies that
help to keep bacteria and viruses at bay, thus preventing inflammation.'is presents a major challenge for segmenting blood cells,
since numerous image processing methods are used before segmentation to enhance image quality. White blood cells can be
analyzed by a pathologist with the aid of computer software to identify blood diseases accurately and early. 'is study proposes a
novel model that uses the ResNet and UNet networks to extract features and then segments leukocytes from blood samples. Based
on the experimental results, this model appears to perform well, which suggests it is an appropriate tool for the analysis of
hematology data. By evaluating the model using three datasets consisting of three different types of WBC, a cross-validation
technique was applied to assess it based on the publicly available dataset.'e overall segmentation accuracy of the proposedmodel
was around 96%, which proved that the model was better than previous approaches, such as DeepLabV3+ and ResNet-50.

1. Introduction

'e disorders in the blood cells are diagnosed in the lab-
oratory using blood microscopy. 'e accuracy of the results
depends on the pathologist/hematologist. Leukocytes,
RBCS, and platelets are the three main components of blood.
Doctors will be able to identify blood diseases such as blood
cancer, anemia, and malaria using micrographs recorded
using computer-aided techniques. An important feature of
white blood cells is the type and count of leukocytes, which
determine the type and severity of infection. WBCs that are
having small granules are further categorized as neutrophils,
basophils, and eosinophils. 'ere are three types of leuko-
cytes that make up the immune system. 'e traditional

method of counting white blood cells is laborious and re-
quires medical expertise. Cell segmentation and feature
extraction are required for the analysis of WBC. In the
process of white blood cell segmentation, leukocytes are
extracted from blood smear images to find the necessary
features for further processing to distinguish them from
others. 'ere are two types of segmentation techniques:
boundary-based and region-based. In image processing,
segmentation helps to identify the objects in an image.
Region-based techniques segment images use properties like
those of boundaries; boundary-based techniques and seg-
mented images are based on changes in intensity at the
boundary. To distinguish WBC from the background, we
applied the region-based segmentation. Due to the
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irregularity of the shape of leukocytes, it is a challenging task
for the segmentation process. For example, Figures 1 and 2
show various types of white blood cells along with their
ground truth images. Literature indicates that few auto-
mated systems are presently available to analyze blood smear
images for leukocytes. Research is in progress to design a
system that automatically segments leukocytes with maxi-
mum accuracy in a short amount of time. In some studies,
the authors use algorithms to segment merelyWBC, while in
others, they also publish methods for segmenting the nu-
cleus and the cytoplasm [2, 3].

'e two parts of WBC are the unsupervised learning
model and supervised learning model. 'resholding [4, 5],
clustering-based technique [6], fringe-situated [7], zone-
positioned [8], and fuzzy models [9, 10] are used in un-
supervised learning. Based on the supervised algorithm,
every pixel was categorized into two in the ROI and non-
region of interest. To enhance detection, DLN was used in
segmenting the images. DLN was found to be a useful
concept in medical image analysis due to its performance.
Deep learning-based models require a large amount of
memory and processing resources for training and testing
data. 'e system is trained repeatedly faster on GPUs than
on CPUs [11]. Deep learning-based segmentation consists of
instance segmentation and semantic segmentation. During
instance-based segmentation, the mask is used to detach
different ROIS and utilizes masks to classify the images. To
characterize WBCs as shown in Figure 3, based on the
mononuclear cells, it can be divided into either mononuclear
or polynuclear cells [12]. 'e thresholding method has been
used in several prior studies to analyze blood cell frequency
to detect cancer. However, finding the optimal threshold
value is laborious and complex; nevertheless, previous
studies have used this methodology for cancer detection.
CNN models can extract thousands of features from images
automatically; therefore, we used it, and so, they can extract
thousands of features from images automatically. It takes a
long time to manually extract many features, whereas CNN
models can extract thousands of features quickly and ac-
curately. 'e segmentation of leukocytes was accomplished
using the more accurate model developed to determine the
boundaries of internal cells at the cellular level. 'is
implementation can transfer information from encoder to
decoder with no loss of detail while avoiding losing the
microdetails. 'e focus of this research is to build a system
that can accomplish the task of segmenting and classifying
WBC, enabling physicians to easily determine the exact
position of a myeloma cancer cell.

2. Literature Review

'is section covers the research articles of various re-
searchers who worked on the method of detecting cancer
cells in WBCs by using an image processing algorithm to
detect myeloma, which is developed as discussed in [13]. A
research article by Joshi et al. covered the portion to classify
and segment WBC for the diagnosis of leukemia. 'ey
applied the Otsu algorithm to enhance and segment WBC.
'e K-nearest neighbors (KNN) classifier has been used to

identify myeloma from normal B cells [14]. Liu et al. worked
towards classifying and recognizing using the ML algorithm
to extract data. Artificial intelligence utilizes image recog-
nition technology. Intelligence is based on the concept of
analyzing data using digital images that can be processed
using a computer and then extracting data from them [15].
Martinez et al. illustrated low-dose CT images for detecting
myeloma in the bone marrow [16]. Xu et al. worked on
image classification as well as the type and position of objects
[17], VGG [18], inception [19], fuzzy logic [20], Faster
R-CNN [21], SSD [19], and YOLO [11], which are all
methods for segmentation and object detection. 'ey
concluded that for image classification, they had been using
a statistical deep learning framework that emphasized object
categorization inside the image [22, 23]. DL segmentation is
broadly classified into instance and semantic segmentation,
identical masks are used for ROI, and semantic is used for a
single image. 'is approach recognizes individual cells in-
stead of classifying four cells as one instance. 'e proposed
research work will be carried out on semantic segmentation
using the CNN to segment WBC cells.

From the above literature, it is found that the existing
models suffer from hyperparameters tuning [1, 24–26],
gradient vanishing [27, 28], and overfitting [29–31] prob-
lems. 'erefore, an efficient model is required that can
overcome these issues.

3. Resources and Methods

ISBI C-NMC 2019 data were used in this study. Approxi-
mately sixty cancer patients’ datasets were collected and
forty-one individuals were added to this dataset. In total,
around ten thousand six hundred cells are with a train,
validation, and test split of 80%, 10%, and 10%, respectively
[12]. To maintain integrity, the first steps of preprocessing
are standardization and normalization. 'ese images were
first calculated to find the global mean and standard devi-
ation (STD).'e following equation is normalized equation ,
where y indicates the global mean Yi of the image equation,
the STD, and ε � le − 10. 'e training dataset underwent
data augmentation.

Yi �
Yi − Y

σ + ε
. (1)

Figure 1: Sample WBC image [6].
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WBC segmentation is carried out using the MASK-
RCNN network for blood images through the semantic
segmentation process; meanwhile, these WBCs relate to
positive classes and their pixel relates to negative, which is
shown in Figure 4; for the input images, the initial process to
train the model, ResNet [1, 24] was scaled to 224∗ 224 to
maintain stability and to scale the output of the network.
Later, for the ground truth, sample labels were applied to
each pixel by making them to the chosen label/class. A
variety of convolutional algorithms [25, 26] followed by
postprocessing techniques were applied to enhance future
extraction for classi�cation [27, 28] during the decoder
phase.

3.1. Process of Semantic Segmentation. �is is a type of pixel-
level image classi�cation; during the segmentation process,
every pixel present in the image will be categorized into one
predetermined group. In the blood sample, there will be
several leukocytes; while doing segmentation, each WBC
pixel will be labeled as an object, such that it will help in the
recognition and classi�cation of leukocyte types present in
the sample. However, during feature extraction through the
deep layer network, due to large layers, this will lead to
gradient descent. To overcome these issues, the ResNet
model was used, the advantage of using this model was to
prevent the colloidal occurring in the layers and combine
their outputs. To calculate the loss that was the expected
value and the gained value, the backpropagation algorithm
technique was implicated. �e complexity of this technique
will consume a large amount of memory. To solve these

issues, the encoder and decoder were combined for
upsampling and downsampling. �e traditional CNN al-
gorithm [29, 30] will calculate the probability for each class
label, but upsampling will change the output dimensions in
such a way that matches the input dimensions. �is pro-
posed architecture for segmentation tasks has several ad-
vantages. To start with, residual units assist in deep learning.
A second advantage of accumulating features with recurrent
residual convolutional layers is that they enable better
feature representation. �ird, it enables us to design better
UNet [31] architecture with the same number of network
parameters, while obtaining better performance for medical
image segmentation.

3.2. UNet Architecture. In this architecture, there are three
main features, namely, feature reconstruction, feature
extraction, and feature fusion. During the process of fea-
ture extraction, the location-based feature encoder was
mainly used to extract multiscale features based on con-
volutional blocks and residual blocks. Figure 5 shows that
to modify the feature maps of the given image size, con-
volutional and deconvolutional techniques were applied to
the sample for reconstructing the feature stage. �e de-
veloping and expansive paths consist of three layers in each
path of blocks, where each layer will follow 2∗ 2 max
pooling on the developing path. In the convolution process,
the two layers of upsampling are concatenated with the two
layers of merging layers. To generate the pixel-by-pixel
value scores, a 1 ∗ 1 layer was activated with the sigmoid
function to be used as the �nal output layer. In every layer
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Figure 3: Classi�cation of white blood cells.
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Figure 2: Various types of WBCs [6]. (a) Cropped image WBC. (b) Blood smear image. (c) Ground truth image.
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of the block like 1, 2, and 3, the layer consists of 112, 224,
and 448 �lters, whereas the expansive path consists of 224,
122, and 122, respectively. Original UNet architecture and
proposed CNN dropouts were used on the expansive path,
as given in Table 1.
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Figure 5: UNet architecture for WBC.
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Figure 4: Process of segmentation.

Table 1: Layers of the proposed model used.

Layer type Output Parameter
I2 (N, 300, 300, 3) 0
EF (N, 10, 10, 1636) 11783535
Fl (N, 163500) 0
DP (N, 163500) 0
DN (N, 4) 714404
Total params: 12, 497, 939
Trainable params: 12, 410, 936
Nontrainable params: 97, 606
I2, input layer; EF, e¥cient netblock; Fl, ¦atten layer; DP, dropout layer;
DN, dense layer; N, none.
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Figure 6: �e ResNet architecture model [20].
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3.3. Layers of the ProposedModel. 'e layers of the proposed
model used are given in Table 1.

3.4. Process of the ResNet Architecture Model. 'is model
consists of 50 layers, and CNN blocks were being used
several times in this architecture. In every layer, it consists of
a batch normalization of 2D. 'e advantage of the
ResNet algorithm was used to solve the issue of diminishing
gradient problems by passing the connection. Figure 6 shows
that in this type of a network, the hidden layers will drop to
zero after passing several multiple layers.

4. Performance Measure

'e following parameters were used to measure the per-
formance of system efficiency: mean, intersection-over-
union (IoU), and dice similarity coefficient (DSC).

4.1. Mean. 'e mean reflects the percentage of true positive
in each group of pixels as shown in the following equation:

Mean �
T.P

T.P + T.N
. (2)

4.2. IoU. To identify the difference between the predicted
and target output, IoU is applied, which is mentioned in the
following equations:

Ground truth IOU � real∩
ground truth

real∪ ground truth
, (3)

IOU value �
T.P

T.P + F.P + F.N
. (4)

(a) (b)

(c) (d)

Figure 7: RGBWBC under different illuminations. (a) Image-shade 1. (b) Image-shade 2. (c) Illumination 1st image. (d) Illumination 2nd
image.

Table 2: Comparison of results sets of existing supervised methods.

Methods of architecture Mean accuracy IoU B.F score Precision Recall Specificity F1 score
UNet 93.4 90.2 0.65 92.55 97.12 92.74 94.50
SegNet 92.14 85.6 0.52 98.77 97.66 99.89 99.10
FCN 91.34 92.6 0.72 95.65 96.77 97.45 98.67
Proposed method 94.14 95.6 0.92 98.45 97.56 93.23 98.67

Table 3: Loss functions of the proposed method.

Dataset Method Precision IoU FOR FOR
Set 1, Jiangxi Tekang Technology L � LBCE + LT 95.50 96.2 0.45 1.55
Set 2, Jiangxi Tekang Technology L � LBCE + LT 96.52 97.52 0.35 2.15
Set 3, Jiangxi Tekang Technology L � LBCE + LT 97.52 98.25 0.06 6.05

Contrast Media & Molecular Imaging 5



4.3. D.S.C. �e following equation is used to assess the
actual and predicted values that are like each other. �ese
values will range from zero to one where one is closer to the
actual and predicted value.

Predicted valueDSC � 2
actual∩ groundtruth
actual∪ groundtruth

. (5)

5. Implementation Details

�e experiments were run on a server with the windows 10
operating system, 2.30GHz processor, 128GB RAM, and
NVIDIA Lenovo�ink station. �e samples were trained by
a series of data argumentation, image rotation, zooming, and
scaling training samples. �e cross-validation process was
applied to analyze the proposed model performance.

5.1. Database Creation. �e freely available datasets were
used for experiment purposes. Set 1 and set 2 consist of
cropped WBC samples and a set of three raw samples.
Jiangxi Tecom Science Corporation, China, provided set 1
containing 300WBC samples with a size of 120∗120 and 24

bit color. Set 2 consists of a hundred samples of 300∗ 300
size. Set 3 consists of 720∗ 576 samples.

5.2. Results and Discussion. Figure 7 shows that di¨erent
intensities are caused due to di¨erent illuminations. Hence,
the size and shape of the leukocyte vary from each other.�e
experiment was conducted on the proposed model on
publicly available datasets. �e six-fold cross-validation was
performed on the samples to make sure that all samples were
tested properly. �e segmentation accuracy of 96% was
achieved. �e overall comparison of the existing model of
various researchers’ results was compared with the proposed
model as given in Table 2 and the loss function as given in
Table 3. �e output sample of the proposed sample is shown
in Figure 8.

6. Conclusion

In this work, the method for identifying and classi�cation of
WBC was discussed in detail with the experimental results.
�e proposed method performed robustness in segmenting
WBC, peripheral blood, and bone marrow images with a
mean accuracy of 96%. �is method can also be applied to
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Figure 8: Dataset’s samples predicted. (a) Input image. (b) Ground truth image. (c) UNet image. (d) Our model image.
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the nucleus and cytosol separation. 'e proposed method
can be further continued for better results by using YOLO
architecture to identify the objects and classify the same.
More object identification and classification techniques can
be studied as an extension of this proposed effort to attain
better results [32].
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