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1e prefiltered image was imported into the local higher-order singular value decomposition (HOSVD) denoising algorithm (GL-
HOSVD)-optimized diffusion-weighted imaging (DWI) image, which was compared with the deviation correction nonlocal mean
(NL mean) and low-level edge algorithm (LR+ edge). Regarding the peak signal-to-noise ratio (PSNR), root mean square error
(RMSE), sensitivity, specificity, accuracy, and consistency, the application effect of the GL-HOSVD algorithm in DWI was
investigated, and its adoption effect in the examination of ischemic penumbra (IP) of early acute cerebral infarction (ACI) patients
was evaluated. A total of 210 patients with ACI were selected as the research subjects, who were randomly rolled into two groups.
1ose who were checked by conventional DWI were set as the control group, and those who used DWI based on the GL-HOSVD
denoising algorithm were set as the observation group, with 105 people in each. Positron emission tomography (PET) test results
were set as the gold standard to evaluate the application value of the two examination methods. It was found that under different
noise levels, the peak signal-to-noise ratio (PSNR) of the GL-HOSVD algorithm and the root mean square error (RMSE) of the FA
parameter were better than those of the nonlocal means (NL-means) of deviation correction and low-rank edge algorithm
(LR+ edge).1e sensitivity, specificity, accuracy, and consistency (8.76%, 81.25%, 87.62%, and 0.52) of the observation group were
higher than those of the control group (57.78%, 53.33%, 57.14%, and 0.35) (P< 0.05). Moreover, the apparent diffusion coefficient
(ADC) of the DWI images of the observation group was basically consistent with that of the PET images, while the control group
had a poor display effect and low definition. In summary, under different noise levels, the GL-HOSVD algorithm had a good
denoising effect and greatly reduced fringe artifacts. DWI after denoising had high sensitivity, specificity, accuracy, and con-
sistency in the detection of IP, which was worthy of clinical application and promotion.

1. Introduction

1e incidence rate of acute cerebral infarction (ACI) is high,
and there is a high rate of disability and mortality, which
poses a great threat to human life, especially to the middle-
aged and elderly [1, 2]. Studies suggested that an ischemic
penumbra (IP) exists in abnormal brain tissue in ACI pa-
tients [3]. IP refers to the hypoperfusion of the ischemic
tissue surrounding the center of cerebral infarction lesions.
Although there is a possibility of loss of neural electrical
movement, the tissue structure is basically intact and the

ionization balance is relatively normal [4]. 1e area of the IP
changes dynamically and will decrease with the prolongation
of ischemia time, but the infarct area will increase, and IP
can be treated by blood flow recanalization [5]. Clinical
studies found that the IP plays a key guiding role in the
treatment of early cerebral infarction [6]. 1e accurate di-
agnosis of the IP is the vane for the rational implementation
of intra-arterial thrombolytic therapy in early cerebral in-
farction patients.

At present, diffusion-weighted imaging (DWI) is com-
monly used in clinical diagnosis of cerebral ischemic lesions
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[7]. DWI is very sensitive to the diffusion of water molecules
in tissues. 1e apparent diffusion coefficient (ADC) is the
embodiment of the diffusion ability of water molecules in
tissues. DWI uses the grayscale signal of the image to reflect
the motion of water molecules, including the direction and
degree of motion limitation, so as to indirectly reflect the
microstructure of tissues and provide useful information for
clinical diagnosis [8]. However, high noise exists in DWI
images, especially in high-resolution or high B-value im-
aging [9], which will make image details blurred and affect
the clinical diagnosis analysis. 1erefore, the deep learning
algorithm is applied to image denoising of DWI [10]. MR
image denoising algorithm based on higher-order singular
value decomposition (HOSVD) [11] has a good denoising
effect, especially in T1-weighted (T1w), T2-weighted (T2w),
and proton density-weighted (PDw) image noise processing
[12–14]. However, compared with conventional MR, there is
more redundant information in DWI images. In DWI image
processing, the HOSVD algorithm can remove noise well
and retain details, but there will be artifacts in the local
uniform area. Some people proposed that global HOSVD
denoising can be used to prefilter DWI images, and then the
prefiltered images can be used to guide the subsequent local
denoising; this method was referred to as GL-HOSVD.

1erefore, in this study, DWI images based on the GL-
HOSVD denoising algorithm were used to examine the IP of
patients with early ACI, and the accuracy of the examination
results was evaluated. It aimed to provide more effective
examination methods for patients with early cerebral in-
farction and provide more possibilities for early diagnosis
and treatment of patients.

2. Methods

2.1. Research Objects. In this study, 210 patients diagnosed
with ACI admitted to the hospital from January 2018 to
January 2021 were selected as the research subjects. 1ere
were 145male patients and 65 female patients, ranging in age
from 35 to 78 years, with an average age of (60.17± 7.98)
years. 1e course of the disease ranged from 3 to 6 hours,
with an average course of (4.17± 1.52) hours. 1e patients
were randomly divided into two groups (the control and
observation groups), with 105 patients in each group. 1e
control group was given a brain scan using conventional
DWI. 1e group of patients who were examined and di-
agnosed by DWI based on the GL-HOSVD denoising al-
gorithm was set as the observation group. 1e results of
positron emission tomography (PET) [15, 16] were used as
the gold standard to evaluate the application value of the two
tests. 1is study has been approved by the medical ethics
committee of the hospital, and all patients and their families
signed informed consent.

Inclusion criteria were defined as follows: (i) all patients
had cerebral cortical infarction; (ii) the National Institute of
Health Stroke Scale (NIHSS) score ≥4 at ACI onset; (iii) the
onset time of the patient was less than 24 hours; (iv)
thrombolytic therapy was performed before; and (v) patients
and their families had been informed and consented. Ex-
clusion criteria were defined as follows: (i) patients with

serious heart, liver, and kidney dysfunction, cancer, mal-
nutrition, and autoimmune diseases; (ii) patients with
previous stroke; (iii) patients with cerebral hemorrhage; (iv)
patients with adverse reactions to DWI examination; and (v)
patients with unclear images or incomplete sequences in the
DWI examination.

2.2. Denoising Algorithm Based on GL-HOSVD.
GL-HOSVD denoises the DWI image in two steps. 1e first
step is global HOSVD denoising, and the two-dimensional
DWI image in each diffusion direction is regarded as a
third-order tensor. 1e HOSVD algorithm is used to
transform and hard threshold this third-order tensor, and
the prefiltered image is obtained through the inverse
transformation of HOSVD. 1e second step is local
HOSVD denoising, combining two-dimensional and three-
dimensional similar blocks to turn them into high-order
tensors. HOSVD inverse transform is performed to
denoise, and the similar block group after denoising is
obtained. 1en, the multiple estimated values of each pixel
are weighted and averaged to get the final denoised image,
as explained in Figure 1.

2.2.1. Global HOSVD Denoising. It is assumed that the DWI
noise image has Q diffusion coding directions; then, the
third-order tensor composed of them can be expressed as the
following equation:

Y ∈ ZH×W×Q
, (1)

where H represents the height of the DWI image, W rep-
resents the width of the DWI image, and the noise-free
image represented by X ∈ ZH×W×Q and Y ∈ ZH×W×Q is
formed into a third-order tensor; the HOSVD decomposi-
tion algorithm of Y is as the following equation:

Y � S × 1O
(1)

× 2O
(2)

× 3O
(3)

, (2)

where S represents the core tensor, S ∈ ZH×W×Q, O repre-
sents the orthogonal identity matrix, O(1) ∈ ZH×H,
O(2) ∈ ZW×W, O(3) ∈ ZQ×Q, and xn represents the n-mod-
ulus product of the tensor and the matrix. O(n), n � 1, 2, 3
represents the left singular vector obtained by decomposing
the tensor Y.

To reduce the noise, the algorithm zeroes the transform
coefficients from the noise in the tensor S, and the specific
expression is as follows:

Hτglobal(S) �
si1i2i3

, if abs si1i2i3
􏼐 􏼑≥ τ,

0, if abs si1i2i3
􏼐 􏼑< τ,

⎧⎪⎨

⎪⎩
(3)

where Hτglobal represents the hard threshold operation of
τglobal and si1i2i3

represents the coefficient of the position
(i1, i2, i3) in the tensor S. 1e threshold τglobal can be
expressed as the following equation:

τglobal⟶ qglobalσ
���������������

2 log(H × W × Q)

􏽱

, (4)
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where qglobal > 0 represents a scalar, which controls the
smoothness in the denoising step, and σ represents the noise
variance.

It is assumed that the coefficient tensor after the hard
threshold operation is S; then, there is the following
equation:

S � Hτ(S). (5)

When the HOSVD base and the truncated tensor S are
known, the denoised image obtained by the inverse HOSVD
transformation can be expressed as the following equation:

X � S × 1O
(1)

× 2O
(2)

× 3O
(3)

, (6)

where X is expressed as the estimated value of X, which is
the estimated value of the denoised image.

2.2.2. Local HOSVD Denoising. m × m × Q represents the
size of the three-dimensional block; then, the size of the

spatial domain is m × m, and the size of the third three-
dimensional is Q, i.e., the number of diffusion directions. To
reduce the influence of noise on block grouping, the global
prefiltered image obtained in the first step is used to calculate
the grayscale distance between the two blocks, which is
specifically expressed as the following equation:

d Pi, Pj􏼐 􏼑 �
Pi − Pj

�����

�����
2

2

m
2
Q

, (7)

where Pi represents a three-dimensional block centered on
pixel i, Pj represents a three-dimensional block centered on
pixel j, andm2Q represents the number of pixels in the three-
dimensional block. 1en, a block similar to the reference
block is the following equation:

S
th
i � j ∈ Xi: d Pi, Pj􏼐 􏼑≤ τd􏽮 􏽯. (8)

In the above equation, Sth
i represents the block coordi-

nate set similar to the reference block Pi, Xi represents the
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Figure 1: GL-HOSVD algorithm denoising process.
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search window centered on pixel i, and τd represents the
threshold value on the distance. 1e total number of similar
blocks is L. Under circumstance that Sth

i is known, two
similar block groups are constructed, which are derived from
the original noise image (denoted as Gn ∈ Zm×m×Q×L) and
the prefiltered image (denoted as Gp ∈ Zm×m×Q×L). If the
latter is less affected by noise than the former, the obtained
HOSVD basis Gp ∈ Zm×m×Q×L is transformed into the for-
mer, which can be expressed as the following equation:

Gp � Sp × 1O
(1)
p × 2O

(2)
p × 3O

(3)
p × 4O

(4)
p , (9)

where Sp represents the fourth-order core tensor,
Sp � Zm×m×Q×, O(n)

p represents the orthogonal identity
matrix, and O(1)

p , O(1)
p ∈ Z

m×m, O(3)
p ∈ Z

Q×Q, and O(4)
p ∈

ZL×L. 1e following equation can be obtained by importing
Gn ∈ Zm×m×Q×L into O(1)

p , O(2)
p , O(3)

p , O(4)
p .

Sn � Gn × 1O
(1)T

p × 2O
(2)T

p × 3O
(3)T

p × 4O
(4)T

p . (10)

Among them, Sn represents the fourth-order core tensor
transformed by O(1)

p , O(2)
p , O(3)

p , O(4)
p , and Sn ∈ Zm×m×Q×L.

After that, a hard threshold operation is performed on Sn. It
is set that τglobal⟶ qglobalσ

������������������
2 log(m × m × Q × L)

􏽰
,

kglobal > 0 denotes a scalar, and the smoothness in the
denoising step is controlled. 1e truncation coefficient after
the hard threshold operation of Sn is denoted as
Sn ∈ Zm×m×Q×L; the corresponding similar block Gn after
denoising is the following equation:

Gn � Sn × 1O
(1)
p × 2O

(2)
p × 3O

(3)
p × 4O

(4)
p . (11)

1e above equations (7)–(11) are operated in the form of
a sliding window on the image as a whole, and Nstep is used
to represent the sliding step length.1e smaller the Nstep, the
better the denoising effect, but it will reduce the calculation
efficiency. To solve this problem, a weighted average op-
eration is performed on multiple estimated values of pixels,
as follows:

xi �
􏽐

V
j�1 θj 􏽐

Qj

q�1 G
q

j(i)

􏽐
V
j�1 Qjθj

,

θj �
1

1 + Sj

�����

�����0

,

(12)

where xi represents the filter value of pixel i, Gj(i) represents
the value of pixel i in the q-th block of similar blocks Gj, Qj

represents the number of blocks of pixel i, V represents the
number of Gj, θj represents the weight of j

G
, and ‖Sj‖0

represents the l0-norm of Sj.

2.2.3. Evaluation Methods. 1e peak signal-to-noise ratio
(PSNR) [17] and the root mean square error (RMSE) of FA
parameters [18] are commonly used denoising performance
evaluation standards. Specifically, they are expressed as the
following equation:

PSNR � 10 log10
M

‖I − I‖
2
2

⎛⎝ ⎞⎠. (13)

In the equation, I represents the noise-free DWI image, I
represents the image after denoising, and M represents the
number of pixels in the image.

FA − RMSE �

����������

IFA − IFA
����

����
2
2

MFA

􏽶
􏽴

, (14)

where IFA represents the FA image obtained by noise-free
estimation, IFA represents the FA image obtained by esti-
mation after denoising, and MFA represents the total
number of pixels in the FA image.

2.3. Inspection Methods

2.3.1. DWI Scan. 3.0 Tsuperconducting magnetic resonance
imaging scanner was used which supports orthogonal coils
for the head. During the scanning process, the patient’s head
was placed in the center of the coil, and the coronal scan was
performed with the optic chiasm as the center. 1e echo
planar imaging (EPI) was used, and the specific scanning
parameters are shown in Table 1. After scanning to obtain
the DWI image with the above parameters, the ADC image
was obtained by reconstruction using the DWI image, and
the ADC value was obtained. 1e ADC value is calculated
according to the following equation:

ADC �
In Sn − S1( 􏼁

b1 − bn

, (15)

where b represents the dispersion sensitivity coefficient, S1
represents the signal strength in the case of b1, Sn represents
the signal strength in the case of bn, and In represents the
mathematical symbol.

2.3.2. PET Scan. During the PET scan, the patient was
placed prone on the PET examination table and was anes-
thetized using inhalation anesthesia. During the scanning
process, the patient’s head should be kept stable, the
transmission and emission imaging should be performed
according to the programmed procedures, and the tissue
attenuation correction of the corresponding images should
be collected. 1e imaging was reconstructed using the
Maximum A Posteriori (MAP) method. 1e pixels of the
PET image after imaging were 0.5× 0.5×1.0mm3, and the
layer thickness was 1.20mm. 1en, the recovery of local
brain glucose metabolism was observed.

2.4. Observation Indexes. Based on the results of PET ex-
aminations, the sensitivity (Sen), specificity (Sep), and ac-
curacy (Acc) of the two inspection methods to IP detection
after ACI were analyzed. 1e Kappa value of the consistency
was compared between the two groups of examination
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results and the PET examination results. If Kappa�1, then
the diagnosis results were exactly the same. If Kappa� −1,
then the diagnosis results were completely inconsistent. If
Kappa≥ 0.75, then the degree of agreement in the diagnosis
was quite satisfactory. If Kappa< 0.4, then the consistency of
the diagnosis results was not ideal. If 0.75>Kappa≥ 0.4, then
the diagnosis consistency was relatively satisfactory.

Sen �
TP

TP + FN
,

Sep �
TN

TN + FP
,

Acc �
TP + TN

TP + TN + FP + FN
.

(16)

True positive (TP) refers to the number of correctly
classified positive samples, i.e., the predicted positive sam-
ples are actually positive samples. False positive (FP) refers
to the number of negative samples incorrectly marked as
positive samples, i.e., the actual negative samples are pre-
dicted as positive samples. True negative (TN) refers to the
number of correctly classified negative samples, i.e., the
predicted negative samples are actually negative samples.
False negative (FN) refers to the number of positive samples
incorrectly marked as negative samples, i.e., the actual
positive samples are predicted to be negative samples.
TP + FP+TN+FN refers to the total number of samples;
TP + FN refers to the actual positive sample number;
TP + FP refers to the total number of positive samples, in-
cluding correct and incorrect predictions. FP +TN refers to
the actual negative sample number; TN+FN refers to the
total number of samples with negative predicted results,
including correct and wrong predictions.

2.5. Statistical Analysis. SPSS 22.0 was used for data entry,
sorting, and statistical analysis. χ2 test was used to compare
the count data. 1e T test was used to compare the mea-
surement data. Analysis of variance was used to compare the
mean values of multiple samples. 1e LSD method was used
when the mean values were uniform, and the Dunnett T3
method was used when the mean values were uneven.
P< 0.05 showed statistical difference.

3. Results

3.1. Comparison of Denoising Performance. 1e GL-HOSVD
algorithm, the deviation-corrected nonlocal means (NL-
Means) [19] algorithm, and the low-rank edge preservation
algorithm (LR+Edge) [20] were compared regarding the
denoising effect under different noise levels (N).1e value of

the noise level C was 0 to 0.1. Figure 2 compares the results of
the PSNR, while Figure 3 compares the results of FA-RMSE.
It was found that under different noise levels, the PSNR and
FA-RMSE values of the GL-HOSVD algorithm were better
than the NL-Means and LR+Edge algorithms. Figure 4
shows a specific denoising processing effect diagram, and
it was obvious that the image processed by the GL-HOSVD
algorithm had higher definition andmore prominent details.

3.2. General Information Comparison. According to the
statistics of general treatment of patients, in terms of gender
distribution, there were 71 male patients (48.97%) and 34
female patients (52.31%) in the control group. 1ere were 74
male patients (51.03%) and 31 female patients (47.69%) in
the observation group. 1ere was no considerable difference
in comparison (P> 0.05). In terms of age distribution, the
average age of the patients in the control group was
(59.78± 8.98) years, and the average age of the patients in the
CT group was (61.41± 9.01) years, with no considerable
difference (P> 0.05) (Figure 5(a)). In terms of the distri-
bution of the disease course, the average course of the disease
in the control group was (4.25± 1.61) hours, and the average
course of the observation group was (4.01± 1.47) hours.
1ere was no considerable difference (P> 0.05)
(Figure 5(b)). 1e above comparisons indicated that the two
groups in this study were comparable.

3.3. Examination Result Statistics. Tables 2 and 3 show the
two inspection methods of the control group and the ob-
servation group, as well as the statistics of the IP results
detected by the PET inspection. 1e inspection results were
organized using a four-grid table. According to the test
results of PET, most of the two groups of patients had IP.1e
proportion of patients with IP in the control group was
85.71%, and the proportion of patients without IP was
14.59%. In the observation group, the proportion of patients
with IP was 84.76%, and the proportion of patients without
IP was 15.24%. 1e comparison between the proportions
within the group was statistically considerable (P< 0.05)
(Figure 6).

3.4. Comparison of Sensitivity, Specificity, Accuracy, and
Consistency. According to Tables 2 and 3, the sensitivity,
specificity, accuracy, and consistency of the two test methods
were calculated and analyzed. 1e results showed that the
sensitivity, specificity, and accuracy of the test method in the
control group were 57.78%, 53.33%, and 57.14%, respectively,
and the consistency Kappa value with the PET test results was
0.35. 1e sensitivity, specificity, and accuracy of the test

Table 1: Scanning parameters.

Index Repeat time
(ms)

Echo time
(ms)

Layer thickness
(mm)

Layer spacing
(mm) Matrix Field b Flip

angle
Number of
incentives

Scan
time (s)

Value 3647 107 6 1.5 192×192 22 cm× 22 cm 1000s/
mm2 90° Twice 78

Contrast Media & Molecular Imaging 5



methods in the observation group were 88.76%, 81.25%, and
87.62%, respectively, and the consistency Kappa value with the
PET test results was 0.52. After comparative analysis, the

sensitivity, specificity, accuracy, and Kappa of the observation
group were better than those of the control group, and the
differences were statistically considerable (P< 0.05) (Figure 7).
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Table 2: Statistics of the inspection results of the control group.

Control group (n� 105 cases) PET
Total

With IP Without IP

Conventional DWI With IP 52 7 59
Without IP 38 8 46

Total 90 15 105

Table 3: Statistics of the inspection results of the observation group.

Observation group (n� 105 cases) PET
Total

With IP Without IP

DWI after denoising With IP 79 3 82
Without IP 8 13 21

Total 89 16 105
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Figure 6: Comparison of the results of patients with IP and without IP (∗ represents comparison of the proportion of patients with IP,
P< 0.05).
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3.5. ADC Comparison. Table 4 shows the average ADC
values of the infarct lesion core and the IP region of IP
patients detected by DWI in the two groups. After com-
parative analysis, the ADC value of the infarct lesion core in
the control and observation groups ((0.342± 0.106)×

10−3mm3/s and (0.336± 0.102)× 10−3mm3/s) was lower
than the ADC value in the IP area of the two groups
((0.803± 0.149)× 10−3mm3/s and (0.793± 0.136)×

10−3mm3/s), and there were statistical differences in com-
parison (P< 0.05).

3.6. Examination Image Comparison. Figure 8 shows the
comparison of DWI images, ADC images, and PETresults of
the two groups of patients with IP detected by conventional
DWI and denoised DWI. 1rough observation, PET ex-
amination can highlight the IP region through the glucose
metabolism in the brain, and the two sets of ADC images can
also show abnormal signals in the IP region of the brain.1e
display results of the DWI images in the observation group
were basically consistent with the corresponding ADC image
results and clarity, while the DWI images in the control
group were worse than their corresponding ADC images
with lower clarity.

4. Discussion

1e accurate diagnosis of IP is an important basis for
thrombolytic therapy for patients with early cerebral in-
farction. 1erefore, clinical studies on the diagnosis of IP
have attracted wide attention [21]. In this study, DWI was
used to examine IP in patients with ACI, and the value of the
examination results was evaluated.

Firstly, the GL-HOSVD algorithm was employed to
denoise the DWI images of the observation group, and the
denoising performance was compared with other algorithms
(NL-Means algorithm and LR+Edge algorithm).1e results
showed that under different noise levels, the PSNR and FA-
RMSE values of the GL-HOSVD algorithm were better than

those of the NL-Means and LR+Edge algorithm. Zhang
et al. [22] also carried out experiments on denoising DWI
data by introducing the global HOSVD algorithm into the
local HOSVD algorithm. 1e results showed that the pro-
posed method greatly reduced the fringe artifacts and was
superior to the two latest denoisingmethods (NL-Means and
LR+Edge algorithm) in terms of denoising quality and
diffusion parameter estimation. Wu et al. [23] used the
HOSVD algorithm super resolution (SR) technology to
reconstruct DWI datasets with high discrimination rate and
achieved good results, which reflected that the improved
HOSVD algorithm had a good effect on DWI image
denoising, which was consistent with the results of this work.
1e HOSVD algorithm has also been applied to other im-
aging technologies, such as PET [24], hyperpolarized 13C
magnetic resonance image [25], and CT [26], all of which
have achieved good research results.

1en, the sensitivity, specificity, and accuracy of DWI
images denoised by the GL-HOSVD algorithm were com-
pared with conventional DWI image detection results. 1e
results of the observation group were 8.76%, 81.25%, and
87.62%, respectively, which were greatly higher than 57.78%,
53.33%, and 57.14% of the control group, and the com-
parison was statistically considerable (P< 0.05). In terms of
consistency with PET test results, the Kappa value of the
observation group was 0.52, suggesting that the consistency
of the DWI diagnosis was relatively satisfactory. However,
the Kappa value of the control group was 0.35, indicating
poor consistency of diagnosis. 1e above comparison results
suggested that the denoised DWI image had a more
prominent effect on the display of the IP phenomenon,
which was worthy of clinical promotion. 1e study sug-
gested that conventional DWI detection alone could not
effectively diagnose IP in patients with early cerebral in-
farction [27–29], which was consistent with the above
comparison results. In the study, ADC, DWI, and PET
images were compared. 1e results showed that the IP
display effect of ADC and PET images in the two groups was
basically similar to that of the denoised DWI images,

*
*

*

0

20

40

60

80

100

Sen Sep Acc

Re
su

lts
 (%

)

Control
Observation

(a)

*

0

0.1

0.2

0.3

0.4

0.5

0.6

Control Observation

Ka
pp

a

(b)
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indicating that the IP inspection effect of ADC images was
superior to conventional DWI images. Zhang et al. [30]
proposed that the radio metrics model based on the ADC
graph can effectively determine whether IP exists in patients
with early cerebral infarction. 1e results of Malik et al. [31]
also suggested the prominent effect of ADC imaging in brain
detection. 1e observation group’s processed DWI images,
ADC images, and PET images had basically the same in-
spection effect. It indicated that the DWI image denoised by
the GL-HOSVD algorithm can be better applied to the IP
inspection. In addition, it was found that the IP phenom-
enon existed in most of the two groups of ACI patients in
this study, accounting for more than 80% of the total
number of patients. 1ese results indicated that the IP
phenomenon had a relatively large probability in patients
with ACI. However, there was a lack of correlation studies
on this point, so there was no comparison with previous
studies, leading to the underrepresentation of this result.

5. Conclusion

In this study, DWI images based on the GL-HOSVD
denoising algorithm were used to examine the IP of patients
with early ACI, and the accuracy of the examination results
was evaluated. 1e results showed that the GL-HOSVD
algorithm had a good denoising effect under different noise
levels and greatly reduced fringe artifacts. Moreover, the

denoised DWI had high sensitivity, specificity, accuracy, and
consistency in IP detection, which was worthy of clinical
application and promotion. However, this study did not
compare the DWI inspection effect after denoising with
other evaluation effects such as DWI-MTT mismatching
area and DWI-SWI mismatching area, so the comparison
lacked certain comprehensiveness and should be improved
in the future. In conclusion, this study fully reflects that the
deep learning algorithm has a good development prospect in
the field of imaging, and its clinical auxiliary effect can be
expected in the future.
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