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Objective. To investigate the value of preoperative prediction of breast cancer axillary lymph node metastasis based on intra-
tumoral and peritumoral dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) radiomics nomogram.
Material and Methods. In this study, a radiomics model was developed based on a training cohort involving 250 patients with
breast cancer (BC) who had undergone axillary lymph node (ALN) dissection between June 2019 and January 2021. ,e
intratumoral and peritumoral radiomics features were extracted from the second postcontrast images of DCE-MRI. Based on
filtered radiomics features, the radiomics signature was built by using the least absolute shrinkage and selection operator method.
,e Support Vector Machines (SVM) learning algorithm was used to construct intratumoral, periatumoral, and intratumoral
combined periatumoral models for predicting axillary lymph node metastasis (ALNM) in BC. Nomogram performance was
determined by its discrimination, calibration, and clinical value. Multivariable logistic regression was adopted to establish a
radiomics nomogram. Results. ,e intratumoral combined peritumoral radiomics signature, which was composed of fifteen ALN
status-related features, showed the best predictive performance and was associated with ALNM in both the training and validation
cohorts (P< 0.001). ,e prediction efficiency of the intratumoral combined peritumoral radiomics model was higher than that of
the intratumoral radiomics model and the peritumoral radiomics model. ,e AUCs of the training and verification cohorts were
0.867 and 0.785, respectively. ,e radiomics nomogram, which incorporated the radiomics signature, MR-reported ALN status,
and MR-reported maximum diameter of the lesion, showed good calibration and discrimination in the training (AUC� 0.872)
and validation cohorts (AUC� 0.863). Conclusion. ,e intratumoral combined peritumoral radiomics model derived from DCE-
MRI showed great predictive value for ALNM and may help to improve clinical decision-making for BC.

1. Introduction

Breast cancer (BC) is the most common malignant tumor in
females, and the 5-year relative survival rate of patients with
BC is as high as 98.6% [1, 2]. However, the survival rate
decreases to 84.4% in BC patients with regional axillary
lymph node metastasis (ALNM) [3]. Axillary lymph node
(ALN) status is important for tumor staging, treatment

decisions, and prognosis of patients with BC [4, 5]. ALN
status is the most important prognostic factor affecting local
recurrence and long-term overall survival of BC [6]. Sentinel
lymph node biopsy (SLNB) is the main means for diagnosis
of sentinel lymph node metastasis (SLNM). Once SLNM is
confirmed after SLNB, axillary lymph node dissection
(ALND) is performed to confirm the staging. However, a
prior study found [7] that nearly half of the patients had
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metastasis in SLNs, but no metastasis in non-SLNs, and
ALND is not necessary among all patients with SLNs. For
patients with only SLNM, the significance of ALND is only
to clarify the axillary stage. In terms of treatment, for pa-
tients with SLNM, up to 40%–70% of treatments for ALND
are meaningless [8]. Hence, the preoperative noninvasive
prediction of ALN status is extremely important.

Dynamic contrast-enhanced magnetic resonance im-
aging (DCE-MRI) plays an increasingly important role in
identifying ALNM. DCE-MRI provides a set of high-quality
images from the lesion, including useful information not
only about the shape and boundary but also about the
dynamic behavior of the contrast agent in the lesion [9, 10].
Moreover, DCE-MRI and its parameters are used to reflect
tumor angiogenesis and the internal microenvironment
[11].

Radiomics transforms digital medical images into
mineable data by high-throughput extraction of rich
quantitative image features based on shape, intensity, size,
and volume [12]. ,e application of these data in clinical
decision support can provide better diagnosis, prognosis,
and prediction accuracy [13, 14]. ,e association between
intratumor heterogeneity and metastatic spread was iden-
tified in a previous study [15]. Several studies [16–19] used
image-based methods for the preoperative prediction of
ALNmetastasis in BC, colorectal cancer, bladder cancer, and
lung adenocarcinoma and achieved good prediction results.
However, previous studies mostly focused on disease in-
formation reflected by the external contour information of
the lesion without noticing the potential value of the internal
imaging features of the tumor.,e purpose of this study was
to investigate and verify the value of a DCE-MRI intra-
tumoral combined with a peritumoral radiomics nomogram
in the preoperative prediction of the ALN status of BC.

2. Information and Methodology

2.1. Subjects of Study. Retrospective analysis of clinical,
pathological, and MRI data of 312 patients with BC con-
firmed by surgery or biopsy pathology from June 2019 to
January 2021 at the Affiliated Cancer Hospital of Xinjiang
Medical University, including 291 cases of invasive ductal
carcinoma, 6 cases of invasive lobular carcinoma, and 15
cases of papillary carcinoma. ,e age range of patients was
26∼79 years, with a mean age of 49.0± 9.7 years.,e patients
were divided into the ALN-positive cohort (n� 190) and the
ALN-negative cohort (n� 122) based on ALN pathological
findings. Random sampling was used to split the patients
into 250 cases in the training cohort and 62 cases in the
validation cohort according to a ratio of 8 : 2. ,e study was
approved by the Medical Ethics Committee of the Affiliated
Cancer Hospital of Xinjiang Medical University (approval
number: K2021028), and subjects were exempted from in-
formed consent.

2.2. Inclusion Criteria and Exclusion Criteria. Inclusion
criteria: (i) adult females aged 18 years and older; (ii)
confirmed BC by histopathology; (iii) patients who

underwent mammography or surgical pathology biopsy one
week after breast MR examination and underwent ALNB or
ALND; (iv) patients who had not been diagnosed with any
other cancers. Exclusion criteria: (i) patients who have
undergone previous breast puncture, surgery, radiotherapy,
chemotherapy, or hormone therapy; (ii) patients who re-
ported incomplete clinical or pathological data; (iii) patients
who have been diagnosed with nonlumpy BC; (iv) poor
quality MRI images that cannot be evaluated. ,e clinical
data, including age, menopausal status, MR-reported
maximum diameter of the lesion, and MR-reported ALN
status, were collected from all cases. Our research flow chart
is shown in Figure 1.

2.3. MRI Examination Methods. ,e examination equip-
ment was a Siemens Verio Tim 3.0 T superconducting MR
scanner (Siemens Healthiness, Erlangen, Germany) and an
8-channel breast phased-array coil. ,e patients were asked
to remain in a prone position with bilateral mammary glands
placed naturally down in the coil and strictly braked. ,e
scans were as follows: the bilateral breast was the anterior
post, with the anterior part of the thorax at the same level. All
patients underwent plain breast MRI and multiphase dy-
namic enhancement scans. Standard imaging was per-
formed: DCE-MRI applied an axial three-dimensional fluid-
attenuated inversion recovery (3D-FLAIR) sequence. Plain
and contrast-enhanced scans were acquired for all patients.
,e enhancement scan was conducted by the following
parameters: flip angle of 10°; slice thickness 1.2mm; 0.2mm
gap; field of view (FOV) 340× 340mm; matrix
448× 336mm. Gadolinium with diethylenetriamine penta-
acetic acid (Gd-DTPA) was injected into the dorsal hand
vein with a high-pressure syringe at a dose of 0.2mL/kg at a
rate of 2.5mL/s. Twenty milliliters of saline was injected at
the same rate in the cohort after the contrast injection. ,e
scan was started immediately after the injection, and seven
consecutive periods of 1min each were scanned.

2.4. MRI Image Acquisition and Radiological Evaluation.
Breast MRI images of all enrolled patients were extracted
from the picture archiving and communication system
(PACS) in digital imaging and communications in medicine
(DICOM) format. Two experienced radiologists reviewed all
MR scan images to evaluate the following traits for each BC
patient: (i) maximum diameter of the tumor was defined as
the maximum diameter on the transverse image; (ii) positive
ALNM was defined as a shorter axis diameter greater than
10mm or central necrosis. ,e radiologists were told about
the BC diagnosis but not the clinical and pathological details,
and they would keep readings for 14 consecutive days.
Disagreements were resolved through consultation.

2.5. Region-of-Interest (ROI) Segmentation and Radiation
Feature Extraction. ,e incoming breast DCE-MRI images
were exported from the PACS system in DICOM format,
and the second postcontrast images of DCE-MRI were
imported into 3D-Slicer software (version 4.11). ROI
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profiling was performed by two senior physicians with 15
and 12 years of experience in breast MR imaging diagnostics
to manually map the intratumoral region along the edge of
the tumor layer by layer, and the circum tumor region (5mm
of extravasation) was automatically mapped by software to
construct the total volume of interest (VOI). Avoiding
necrosis of the tumor, if the breast skin or chest wall was less
than the maximum distance from the tumor circumference,
the breast skin surface or chest wall to the tumor circum-
ference was determined to be the maximum distance.
Multicentre and multifocal cases were selected for the largest
lesions. Pyramidimocs software was used to extract the
intratumoral and peritumoral radiomics features.

2.6. Radiation Feature Selection and Signature Construction.
We devised a three-step program for dimensional reduction
and robust feature selection. First, the ROI segmentation was
performed in a blinded fashion by one radiologist (reader
XL) and another radiologist (reader 2, LNZ); both radiol-
ogists were aware of the diagnosis of BC but were blinded to
the clinical and pathologic details. Intraclass correlation
coefficients (ICCs) were calculated to evaluate the reliability
and reproducibility of features by using 60 randomly chosen
MR images. Radiomics features with ICC> 0.75 (excellent
stability) were used for feature extraction [20]. Second, all
feature lines were standardized by the z score standardi-
zation method, and the correlation between features was
calculated by the Spearman correlation coefficient. For
features with a correlation coefficient >0.9, one of the two
features was retained.,ird, the least absolute shrinkage and
selection operator logistic regression algorithm, with penalty

parameter tuning conducted by 10-fold cross-validation,
was then applied to select ALN-status-related features with
nonzero coefficients from the training cohort. A radiomics
signature was generated by a linear combination of selected
features weighted by their respective coefficients.

2.7. Establishment Performance and Validation of the Radi-
odiomic Model. ,e Support Vector Machines (SVM)
learning algorithm was used to establish a prediction model
for ALNmetastasis in the training cohort, and the diagnostic
accuracy, sensitivity, and specificity indices derived from the
confounding matrix and its derivations were used to eval-
uate the diagnostic efficacy of all three models. Univariate
logistic regression analysis was performed to screen inde-
pendent predictors of ALN status in patients with BC with
age, menopausal status, radiomics signature, MR-reported
maximum diameter of the disease, and MR-reported ALN
status. A radiomics nomogram was established in combi-
nation with a radiomics signature and independent prog-
nostic factors. ,e diagnostic efficacy of the radiomics
nomogram was validated in the validation cohorts, and ROC
curves were drawn to evaluate the diagnostic efficacy of the
nomogram [21, 22]. ,e calibration efficiency of the no-
mogram was evaluated by drawing calibration curves, and
Hosmer-Lemes showed that analytical fit was used to
evaluate the calibration ability of the nomogram. Mapping
decision curve analysis (DCA) was performed to evaluate the
clinical utility of the predictive models.

2.8. Statistical Analysis. Using Python (3.7.13), normally
distributed measurements were expressed as x± s in mean

Figure 1: Workflows for the necessary steps in the current study. Layer-by-layer manual segmentation of tumors was performed on DCE-
MRI images, and the tumor circumference was selected to expand outward 5mm for semiautomatic profiling, with manual adjustment of
the confirmed profiling range. Imaging histology features were extracted from DCE-MRI images of tumor circumference to quantify tumor
strength, shape, and texture. In terms of feature selection, the features extracted were selected by using interobserver and intraobserver
reliability assessment and LASSO, respectively. ,e signature of the radiation cohort was constructed from a linear combination of selected
features. ,e performance of the predictive model was assessed by the area under the subject’s working characteristic (ROC) curve. To
provide a more comprehensible measurement of results, we developed a nomogram personalized assessment tool that evaluates the fitting
excellence of column lines by calibrating curves and analyses the clinical utility of column lines by decision curves.
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numbers, and two independent sample T assays were used
for comparison between the two cohorts. Nonconforming
measurements were expressed as medians (upper and
lower quartiles), and two independent Mann–Whitney U-
rank sum tests were used for comparisons between the two
cohorts. Count data are expressed in n (%), and χ2 assays
were used to compare the two cohorts. All P values were
bilateral assays with a statistically significant difference of
P< 0.05.

3. Results

3.1. Patient Clinical, MRData. ,e clinical and MR imaging
data of patients in the training cohort and the validation
cohort are shown in Table 1. ,e rates of ALN metastasis
were 39.2% (98/250) and 38.7% (24/63) in the training and
validation cohorts, respectively, whereas no difference was
found between cohorts (P> 0.05). In total, 50 patients
(24.0%; 50/208) with ALN metastasis were understaged, and
32 patients (30.8%; 32/104) without ALN metastasis were
overstaged according to ALN status reported at MR. ,e
overall diagnostic accuracy of the subjective MR report of
ALN status was 230 of 312 (73.7%), with a sensitivity of 72 of
122 (59.0%), a specificity of 158 of 190 (83.2%), a positive
predictive value of 72 of 104 (69.2%), and a negative pre-
dictive value of 158 of 208 (76.0%).

3.2. Feature Selection and Construction of Radiomics
Signature. In patients with BC, each intratumoral and
peritumoral VOI was extracted from 1906 radiomics fea-
tures. An early fusion was used to combine all features into
3812 radiomics features extracted from DCE-MRI phase 2
images of intratumoral, peritumoral, and intratumoral
combined with peritumoral DCE-MRI. Feature screening
using minimal absolute contraction and selection of oper-
ator logistic regressionmodels was performed in the training
cohort (Figure 2) to obtain 12, 7, and 15 ALN state-related
features with nonzero coefficients for subsequent analysis.
,e greater the absolute value of the characteristic regression
coefficient, the greater the correlation with ALN status in BC
and the higher the predictive value. ,e radiomics signature
was constructed, and the intratumoral combined peritu-
moral radiomics score was calculated by using the following
formula:intratumoral combined peritumoral radiomics
score � 0.40041734218938885 + 0.016776 ∗ lbp-3D-k_first
order_Skewness+0.011962∗ lbp-3D-k_glcm_Imc2+0.036346∗
lbp-3D-m2_glcm_ClusterShade_x-0.047465 ∗ log-sigma-
3-0-mm-3D_firstorder_10Percentile_x-0.006153∗wavelet-
HHL_firstorder_Kurtosis_x-0.027324∗wavelet-HLH_glcm_
Idm-0.019761∗wavelet-HLH_glcm_Idn + 0.000874∗wave-
let-LHL_glcm_Correlation+0.049144∗ gradient_firstorder_
Skewness-0.022611 ∗ log-sigma-3-0-mm-3D_glrlm_Gray-
LevelVariance_y-0.007552 ∗ square_glszm_GrayLevel
Variance-0.015879 ∗wavelet-LHH_glszm_GrayLevelVar-
iance_y-0.003411 ∗wavelet-LHL_firstorder_Skewness_y
(Note: Suffixes are the hallmarks of y, all of which are
tumour circumference). Detailed information on the

formula for intratumoral combined with peritumoral
radiomics score is presented in the Appendix.

3.3. Establishment, Performance, and Validation of Predictive
Models. ROC curves were used to evaluate the prognostic
efficacy of three imaging models of intratumoral, peritu-
moral, and intratumoral combined with peritumoral in the
training cohort and the validation cohort for BC ALN status.
,e results suggest that intratumoral combined with peri-
tumoral models were more predictive than intratumoral or
peritumoral models, as shown in Table 2.

Furthermore, after Wilcoxon assays, the intratumoral
combined with peritumoral radiomics signature in patients
with ALN metastasis was higher in the training and vali-
dation cohorts than in the nonmetastatic cohorts, with
statistically significant differences between cohorts
(P< 0.001). ,erefore, intratumoral combined with peri-
tumoral models were selected for radiomics nomogram
later in this study. A radiomics nomogram (Figure 3(a))
incorporated three independent predictors (radiomics
signature, MR-reported ALN status, and MR-reported
MaxDiameter). All prediction model receiver operating
characteristic curves are provided in Figures 3(b) and 3(d).
In the training and validation cohorts, the radiomics no-
mogram showed the highest discrimination between
positive and negative for ALN metastasis, with AUCs of
0.872 (95% CI: 0.829, 0.915) and 0.863 (95% CI: 0.770,
0.956); the observed AUC value was higher than that of the
intratumoral combined with the peritumoral radiomics
model, intratumoral radiomics model, peritumoral
radiomics model,1 and MR-reported ALN status alone.
Nomogram calibration curves (Figures 3(c) and 3(e))
showed good agreement between the predicted and ob-
served axillary lymph node metastasis training cohorts and
the validation cohort. ,e P values of the Hosmer-Leme
test were 0.97 and 0.62, respectively. ,is shows that the
nomogram fits perfectly in both the training and validation
cohorts.

3.4. Clinical Benefit. ,e decision curve analysis for the
radiomics nomogram, the intratumoral model, the peri-
atumoral model, and intratumoral combined with peri-
atumoral model are presented in Figure 4. Compared with
scenarios in which no prediction model would be used
(i.e., treat-all or treat-none scheme), radiomics nomo-
gram showed significant benefit for intervention in pa-
tients with a prediction probability of 17%–77% compared
to intratumoral (23%–54%), peritumoral (24%–52%),
intratumoral combined with peritumoral (22%–65%), and
the yield was also higher than other radiomics models.
Preoperative prediction of axillary lymph node status in
BC using a radiomics nomogram with intratumoral
combined with a peritumoral radiomics signature has
better clinical benefit. ,e diagnostic efficiency of the
radiomics nomogram (AUC � 0.863) was higher than that
of senior radiologists (AUC � 0.775). ,e difference in
AUC was statistically significant by Delong (P< 0.001), so
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Table 1: Characteristics of patients in primary and validation cohorts.

Characteristic
Training cohort (n� 250) Validation cohort (n� 62)

Negative for ALN
metastasis

Positive for ALN
metastasis

P
value

Negative for ALN
metastasis

Positive for ALN
metastasis

P
value

Age 49.171± 9.443 47.439± 9.697 0.162 52.132± 9.062 49.792± 11.580 0.378
Max diameter 2.071± 0.855 2.283± 0.799 0.051 1.853± 0.581 2.588± 0.852 <0.001
RAD_Sig 0.334± 0.0830 0.508± 0.135 <0.001 0.344± 0.101 0.445± 0.120 <0.001
Menopausal state 0.423 0.178
0 90 (0.592) 63 (0.643) 17 (0.447) 15 (0.625)
1 62 (0.408) 35 (0.357) 21 (0.553) 9 (0.375)

MR reported _ALN
status <0.001 <0.001

0 131 (0.862) 43 (0.439) 31 (0.816) 9 (0.375)
1 21 (0.138) 55 (0.561) 7 (0.184) 15 (0.625)
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Figure 2: Radiomics feature selection by using parametric methods, minimum absolute contraction, and selection operator (LASSO)
logistic regression. Intratumora (a-b); periatumoral (c-d); intratumoral combined with peritumoral (e-f ).

Table 2: Evaluation results of the imaging model in the training cohort and validation cohort.

Performance indicators
Intratumoral Peritumoral Intratumoral + peritumoral

Training Validation Training Validation Training Validation
AUC 0.844 0.708 0.828 0.616 0.867 0.768
Accuracy 0.740 0.677 0.732 0.629 0.768 0.677
Sensitivity 0.714 0.708 0.776 0.500 0.929 0.958
Speci�city 0.875 0.757 0.763 0.789 0.651 0.552
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the radiomics nomogram has a good clinical application
value.

4. Discussion

ALNM is not only an important prognostic factor for BC but
also a key indicator for determining the stage and guiding
treatment of this disease [23]. �e present study developed
and validated a radiomics nomogram that was constructed
by the intratumoral combined peritumoral radiomics sig-
nature, the MR-reported maximum lesion diameter, and the
MR-reported ALN status. When used for noninvasively
predicting the ALN status of patients with BC before sur-
gery, this nomogram showed great di�erential diagnosis in
both the training cohort (AUC� 0.872) and validation co-
hort (AUC� 0.863) and had better performance than that of
both the simple radiomics model and experienced MR di-
agnostic doctors.

Prior studies have shown that the tumor microenvi-
ronment contains multiple immune cells, blood vessels, and
extracellular matrix and that alterations in immune cell
distribution and angiogenesis may promote tumor devel-
opment and metastasis.

However, ALN metastasis is diagnosed based on MR
showing that the diameter of the short axis of the axillary
lymph node is greater than 10mm or that there is a necrotic

area in the center of the axillary lymph node. �e present
study shows that the accuracy, sensitivity, and speci�city of
MR reports in diagnosing ALN metastasis are 73.7%, 59.0%,
and 83.2%, respectively. A considerable proportion of pa-
tients could be misclassi�ed according to the macro ap-
pearance of ALN images, consistent with several previous
studies [24, 25]. It has been reported that metastatic ALNs
accounted for 80.77% of ALNs with short diameters ≥10mm
and 45.28% of ALNs with short diameters of 4–9mm [26].
�erefore, traditional imaging tests are of limited value in
assessing changes in the tumor microenvironment, espe-
cially in predicting ALN status in early BC with no changes
in size, morphology, and signal but in�ltration of cancer
cells. Similarly, it remains challenging to distinguish benign
and malignant ALNs based only on the morphological
characteristics or metabolic activity of ALNs [27, 28].

MRI can accurately measure lesion size, and there is no
signi�cant di�erence between the pathological �ndings and
results. �is was also found in the present study, which may
be associated with robust growth and metabolism in larger
lesions, consistent with KIM and others [29]. We found that,
as independent predictors of BC ALNM, MR-reported
maximum lesion diameter and MR-reported ALN status
signi�cantly improved the model’s predictive e¦cacy, al-
though they had a small contribution weight to the radio-
mics nomogram. In addition, the AUCs of the other two

MR reported LNStatus AUC: 0.775 (95%CI 0665-0.885)
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Figure 3: (a) A radiomics nomogram was developed in the training cohort, incorporating the radiomics signature, MR-reported maximum
diameter of the lesion, and MR-reported axillary lymph node (ALN) status. Comparison of receiver operating characteristic curves between
the radiomics nomogram, intratumoral model, peritumoral model, intratumoral model, intratumoral combined with peritumoral model
and model, and MR-reported ALN status alone for the prediction of ALN metastasis in the training (b) and validation (c) cohorts.
Calibration curves of the radiomics nomogram in the training (d) and (e) validation cohorts.
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factors for the intratumoral combined peritumoral predic-
tion model increased from 0.867 to 0.872 in the training
cohort and from 0.785 to 0.863 in the validation cohort.

In this study, the nomogram with the best diagnostic
e¦ciency included 13 intratumoral and 2 periatumoral
radiomics features. �ese 13 intratumoral features consist of
9 texture features and density features, and both periatu-
moral features are density features. �e texture features
describe the quantization of grey changes in the image re-
gion, which has rotation invariance and strong antinoise
ability and is greatly a�ected by resolution density features.
It is also known as grey histogram information, which can
simply describe the global distribution of grey in an image
and have rotation invariance. Although these data cannot be
used for humans to perceive, they are predictive of tumor
status and are easily captured by radiomics analysis. In this
study, there were statistically signi�cant di�erences in tex-
ture and density between the positive and negative ALNM
cohorts, which might be due to local density and texture
heterogeneity due to tumor heterogeneity and malignancy
between the two cohorts.

�e heterogeneity of BC mainly originates from het-
erogeneity within tumors and the heterogeneity of the
microenvironment around tumors. Some features of the
tumor microenvironment may be the driving forces of
cancer progression, metastasis, and initiation of treatment
resistance [30–32]. Macrophages and �broblasts are the
most common cells in the BC microenvironment and

contribute to ALNM in BC. �ey can regulate the con-
struction of the extracellular matrix and proliferation and
migration of BC cells and then in¨uence the survival of BC
[33].�e literature has shown that normal tissues around the
training tumor will also be a�ected by cancer cells with
tumor invasion or metastasis [34]. It is possible to capture
the heterogeneity and complexity of the tumor microenvi-
ronment by extracting the imaging features of peritumoral
tissue to better assess its biological behavior and conduct an
early intervention. To distinguish lung polyps from nonsmall
cell lung cancer, Beig et al. [35] extracted the imaging
features of lung nodules and 30mm outside the nodules. Its
predicted performance AUC was improved from 0.74 to
0.80. [36] evaluated whether pathological complete response
(PCR) can be obtained after neoadjuvant chemotherapy in
BC by using the DCE-MRI imaging radiomics features in
peritumor and inside the tumour, and the results showed
that the combination of peritumoral and intratumoral im-
aging features of 2.5mm to 5.0mm outside the tumor could
predict the ability to obtain PCR in patients with BC,
providing a theoretical basis for the selection of BC treat-
ment. �is study referred to the peripheral tumor area
de�ned by Braman et al.With the imaging features extracted
from the 5.0mm peritumor of BC, the AUCs of intra-
tumoral, peritumoral, and intratumoral combined with
peritumoral models for predicting ALNM of BC were 0.844,
0.828, and 0.867 in the training cohort and 0.708, 0.616, and
0.785 in the validation cohort, respectively. �ese data
suggest that the peritumoral features of DCE-MRI contain
valuable information about tumor metastasis, which should
be included in further imaging studies.

�is study analyzed the radiomics features of phase II
DCE-MRI of three-dimensional lesions of BC. DCE-MRI
can provide images with high time, high space, and high
signal-to-noise ratio by evaluating tumor morphology and
hemodynamics to diagnose breast diseases. Phase II images
are signi�cantly enhanced and can better re¨ect the ag-
gressiveness and heterogeneity of tumors. �ree-dimen-
sional lesions can also comprehensively re¨ect the overall
situation and heterogeneity of the tumor. It is of great value
to focus on more MRI sequences in subsequent studies, and
it could be expected that the multimodal MRI image
radiomics model could provide us with more useful infor-
mation and that the prediction e¦ciency of the model could
be further improved.

�is study also has certain limitations. First, this is a
single-center and small-sample retrospective study, and the
external validation of the stability and clinical applicability of
the model needs to be added to a multicentre dataset in the
future. Second, the outline of the BC lesion VOI is a
semiautomatic outline, and the boundary of the lesion is
con�rmed manually, which is time-consuming. However,
the current gold standard for segmenting images is still a
manual outline based on physician experience, and the
outliner more mature arti�cial intelligence automatic seg-
mentation algorithms are to be developed and applied to
improve segmentation e¦ciency and reduce subjective in-
consistency. Finally, only radiomics features derived from
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Figure 4: Analysis of decision curves for each model in the val-
idation dataset. Decision curves show that the use of radiomics
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the second postcontrast images of DCE-MRI were analyzed
due to their crucial role in the diagnostic performance of
breast MRI. Hence, other DCE-MRI series deserve to be
investigated in further studies.

5. Conclusion

We propose a noninvasive and convenient imaging radio-
mics nomogram that combines the radiomics signature,
MR-reported maximum lesion diameter, and MR-reported
ALN status for the preoperative evaluation of ALN status in
patients with BC. It provides more reliable reference in-
formation for prognosis judgment and clinical decision-
making.

Appendix

Detail Information on the Formula for
Intratumoral Combined with Peritumoral
radiomics score

Intratumoral radiomics
score� 0.3841523939242316++0.002638∗ lbp-3D-
k_glcm_Idn+0.010695∗ lbp-3D-
k_glcm_Imc2+0.051018∗ lbp-3D-m2_glcm_ClusterShade-
0.000916∗ lbp-3D-m2_glrlm_LongRunHigh-
GrayLevelEmphasis-0.009303∗ log-sigma-2-0-mm-
3D_firstorder_Maximum-0.038417∗ log-sigma-3-0-mm-
3D_firstorder_10Percentile+0.007827∗ log-sigma-5-0-mm-
3D_firstorder_Skewness-0.000488∗wavelet-
HHH_glcm_InverseVariance-0.020392∗wavelet-
HHL_firstorder_Kurtosis-0.012501∗wavelet-
HLH_glcm_Idm-0.021809∗wavelet-HLH_glcm_Idn
-0.005035 ∗ wavelet-HLL_firstorder_Skewness.

Periatumoral radiomics score� 0.38197102165709085
++0.004196 ∗ gradient_firstorder_Skewness-0.000437∗
lbp-3D-k_glrlm_LongRunLowGrayLevelEmphasis-
0.003706∗ log-sigma-3-0-mm-3D_firstorder_Skewness
-0.015966 ∗ original_shape_Sphericity -0.020106∗ square_
glszm_SmallAreaHigh-
GrayLevelEmphasis+0.005082∗wavelet-HHL_firstorder_
Skewness -0.012252 ∗ wavelet-LHL_firstorder_Skewness.
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