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+e abnormal growth of the skin cells is known as skin cancer. It is one of the main problems in the dermatology area. Skin lesions
or malignancies have been a source of worry for many individuals in recent years. Irrespective of the skin tone, there exist three
major classes of skin lesions, i.e., basal cell carcinoma, squamous cell carcinoma, and melanoma. +e early diagnosis of these
lesions is equally important for human life. In the proposed work, a secure IoMT-Assisted framework is introduced that can help
the patients to do the initial screening of skin lesions remotely. +e initially proposed approach uses an IoMT-based data
collection device which is accessible by patients to capture skin lesions images. Next, the captured skin sample is encrypted and
sent to the collected image toward cloud storage. Later, the received sample image is classified into appropriate class labels using an
ensemble classifier. In the proposed framework, four CNNmodels were ensemble i.e., VGG-16, DenseNet-201, Inception-V3, and
Efficient-B7. +e framework has experimented with the “HAM10000” dataset having 7 different kinds of skin lesions data.
Although DenseNet-201 performed well, the ensemble model provides the highest accuracy with 87.22 percent as well as its test
loss/error is lower than others with 0.4131. Moreover, the ensemble model’s classification ability is much higher with an AUC
score of 0.9745. Moreover, A recommendation team has been assigned to assess the sample of the patient as well as suggest the
patient according to classified results by the CAD.

1. Introduction

In healthcare, the integration of medical hardware devices,
smart systems, and apps with cloud storage and computing
by using the Internet connection is referred to as the Internet
of Medical +ings (IoMT) [1]. After the IoTwas introduced,
it drastically reduced the number of unnecessary hospital
visits by connecting patients to their doctors and allowed
medical data to be sent over a secure network from

anywhere. It not only saves time and effort but also shows
how important it is to come up with cost-effective solutions
[2].+e usage of IoMTin the community assured that data is
shared securely and privately across the network, and it can
be accessed remotely by patients and diagnostic centers at
any time and from any location [3].

IoMT-assisted approaches provide substantial break-
throughs in a variety of medical sectors that demand careful
investigation, monitoring, and early diagnoses, such as
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cervical cancer [4], diabetes [5], heart disease [6], breast
cancer [7], ophthalmology [8], and infectious diseases [9]
which are diagnosed at an early stage as well as monitored
using IoT-based medical technology. In dermatology, it is
important to identify skin lesions (nonmelanoma) in the
early stages of their development to avoid further compli-
cations such as melanoma [10]. American citizens are at risk
of developing skin cancer than others. Skin cancer affects
one out of every five Americans, and one person dies from it
every hour [11].

A skin lesion is a condition that is different from normal
skin. In another way, it can be described as an abnormal
change of the skin compared to the surrounding tissue. +e
American Society defines a skin lesion as an abnormal lump,
bump, ulcer, sore, or colored area of the skin [12]. Skin
lesions are a risk factor for skin cancer, and they progress
slowly toward the development of malignant cells. For in-
stance, they were closely linked to an increased risk of basal
and squamous cell carcinoma [13]. However, skin cancer
prevention would be possible if early detection of various
skin lesions were possible in any case [14]. In this study,
seven skin lesions are described and detected including
dermatofibroma, vascular lesions, actinic keratoses, benign
keratosis-like lesions, melanocytic nevi, melanoma, and
basal cell carcinoma.

Benign keratosis-like lesions include seborrheic kera-
tosis and lichen-planus-like keratoses (LPLK). Seborrheic
keratosis (SK) is a benign skin tumor that develops from
cells and is found across the external surface of the skin. It is
a noncancerous skin lesion/growth that does not develop
skin-related cancer. According to a study in 2022, SK is
common among older people and 89% of older people had
been diagnosed with this lesion in brazil. However, 24% of
younger people had at least one SK lesion [15]. Similarly,
LPLK is prevalent in older adults as a result of an in-
flammatory response or immune system failure that
damages the skin inadvertently [16]. On the other hand,
actinic keratoses (AK), alternatively referred to as solar
keratoses, sun spots, or precancerous spots, are prema-
lignant squamous lesions [17] and have the potential of
developing cancer lately [18]. One in every 60 Americans
over the age of 40 seems to have AK lesions, making it the
3rd most common skin disease in the USA [19]. Vascular
lesions are a type of skin and basement membrane anomaly
that can occur during or shortly after birth. +erefore, the
treatment of acquired vascular birthmarks is one of the most
frequently requested and performed cutaneous laser proce-
dures [20]. Dermatofibromas are benign fibrous nodules that
are formed when extra cells accumulate in the deeper layers of
the skin and are predominantly found in the tissues including
its lower legs [21]. Dactylofibromas were found in nearly three
percent of skin biopsy samples taken at the diagnostic lab-
oratory [22]. Basal Cell Carcinoma (BCC) is a skin cancer that
grows on the skin’s surface, and it is the most prevalent form
of skin cancer and perhaps the most common type of cancer
in general [23]. Because of the low mortality rate associated
with BCC, the incidence records are not reliable and up-to-
date. However, the rate of BCC in Europe has risen to 5% in
the last few years, but only 2% in the United States; an

estimated 4.3 million instances occur annually in the United
States [24]. Melanocytic nevus is a type of melanocytic tumor
that develops in the cells of nevus where it acts as a precursor
to cutaneous melanoma and indicates an increased chance of
acquiring cancer [25]. Melanocytic nevus that occurs in
newborns and is present in the head and neck is known as a
congenital melanocytic nevus. Congenital melanocytic nevi
affect 0.2 to 6 percent of newborns around the world [26]. It
usually begins on the skin, but it may also affect the mouth,
intestines, and eyes. Literature review indicates that the
overall number of instances of nonmelanoma skin cancer is
1,042,056, and melanoma skin cancer is 287,723 [27]. +ese
statistics surely show the risk of being diagnosed with
melanoma.

+e biopsy technique is widely used in almost every
medical lab to diagnose skin cancer. A biopsy is a treatment
modality in which a small amount of tissue is removed and
observed under the microscope. If an initial examination
reveals that an area of the body’s tissue is irregular, a doctor
should suggest a biopsy [28]. +ere are various types of
biopsy techniques such as punch, shave, incisional, and
excisional biopsy [29]. A punch biopsy is a form of biopsy
used to diagnose or heal skin cancer such as BCC. Punch
biopsy has almost 81% diagnostic accuracy for BCC [30]. It is
the most common biopsy procedure, and it involves cutting
a cylindrical specimen of skin tissue with a circular blade
[31]. However, punch and shave biopsy cannot examine
deep tissue whereas shave biopsy is widely used for non-
melanoma skin lesions like seborrheic keratosis. In cases of
probable melanoma, an excisional biopsy is frequently
employed to evaluate deeper tissues of the afflicted skin
[28, 32]. Several complications may occur during biopsy to
diagnose skin cancer, such as pain, bleeding, damage to
other tissues, infection, incorrect biopsy site, or difficulty
covering the biopsy area, as well as other factors such as
taking more time, going to the operating room, and costing
for biopsy [28, 33]. Even an attack can occur during a biopsy
which is known as a vasovagal attack. +e most obvious type
of syncope is vasovagal syncope, which occurs most often in
anxious patients as well as those with an abnormal auto-
nomic nervous system [33].

+e complication of biopsy paves the way for alternative
approaches to diagnosing skin lesions and cancer [34]. Al-
though the dermoscopy methodology was invented in the
seventeenth century, it has gained popularity recently due to
its noninvasive examination method [35]. In recent years,
Deep learning and segmentation-based algorithms have been
utilized to detect and categorize skin lesions and cancer [36].
+is technology ensures high precision while also saving time
and money [37]. +erefore, early detection and remote
monitoring are possible due to technological advancements
such as IoT, smartphones, computer-aided diagnosing using
deep neural networks, and cloud computing. Hence, the main
contributions of the proposed work are as follows:

(i) An IoMT-Assisted Framework is proposed for re-
mote data collection and processing.

(ii) A secure encrypt/decrypt data transmission model
is proposed for cloud storage.
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(iii) A data-driven approach is developed using en-
semble deep learning models to classify skin lesions
from skin images of patients.

(iv) A proposed framework is examined with a
benchmark dataset having seven classes of skin
lesions.

(v) +e proposed model is validated on collected skin
images at home by various patients using smart
devices like mobile and tablets.

+e rest of the paper is organized as follows. Section 2
highlights the state-of-the-art toward the problem domain.
+e description of the proposed methodology is presented in
Section 3. Section 4 describes the evaluation metrics
employed with their experimental results and analysis. +e
details of the discussion on achieved results are presented in
Section 5. Later, in Section 6, the whole work is concluded
with future scope.

2. Related Work

Deep/machine learning is an emerging technology to au-
tomate our day-to-day life tasks and reduce time and cost.
+ey have been widely used in various fields like home/
office, agriculture, industry, and healthcare [38]. But, in the
medical sector, its implantation is increasing nowadays
includingmedical imaging. Medical imaging is implemented
in different image processing or diagnosing techniques like
MRI, X-ray, ultrasound, endoscopy, electrocardiography,
etc. In medical imaging, computer vision technology tech-
niques are highly used to classify various types/targets [39].

One of the most essential aspects of automation in the
present day is the collection of data from various sources.
People go to diagnostic centers to examine their health is-
sues, which is both time-consuming and expensive for them.
So, the researcher came up with IoT-based data collection so
that they could figure out what was wrong without any
assistance at home. IoT is implemented in power systems
and energy-efficient smart buildings for data collection
[40, 41]. In the medical field, it is a new concept with no clear
explanation of how it works. Privacy protector, on the other
hand, uses a hidden sharing method called SW-SSS to collect
and transmit data [42]. Secure data, a data collection system,
has been introduced with proper security in the cloud
computing layer. +e layer employed a database distribution
mechanism in order to ensure the security of patient data
stored in cloud storage [43]. IoT-induced data collection and
monitoring for immediate medical treatment were proposed
by Xu et al. [44]. While the studies described the data
collection system’s workflow, the system’s design and
implementation remain unclear. Furthermore, they failed to
properly specify the IoT devices and sensors used in their
research. In this work, we have tried to cover these gaps, and
part of our work is available as a preprint [45].

Shen et al. [46] presented a study of medical image
processing such as classification, pattern recognition, and
segmentation using deep neural networks in the contem-
porary medical arena. +ey specify several state-of-the-art
methods for carrying out the job. In addition, certain

disadvantages are mentioned, such as data limitation, en-
hanced feature extraction and representation techniques for
better precision, or black box-like character of deep learning
methods. In [47], the application of deep learning ap-
proaches in the various health sectors (medical imaging)
demonstrated such as histological/microscopic elements
identification, gastrointestinal early diagnosis, cardiac/tu-
mor detection, and Alzheimer/Parkinson detection are ex-
plored. +ey looked at a number of studies that used either
pretrained (GoogLeNet, Alex Net, and LeNet) or person-
alized deep learning models to detect. +ey also defined
various datasets that are often used to train a reliable and
accurate model for a particular health problem. Using
machine learning techniques, Khan and Algarni [6] updated
an IoMT (Internet of Medical +ings) for heart disease
diagnosis. To increase the accuracy of the prediction, they
used self-swarm optimization and an adaptive neurofuzzy
inference method. +ey assessed the risk of heart disease by
using data on chest pain, cholesterol levels, blood pressure,
sex, age, and blood sugar levels. In [48], the “Wisconsin
Diagnostic Breast Cancer” dataset and machine learning
algorithm has been employed to detect breast cancer. In one
of our studies, we have deployed deep learning as well as
machine learning algorithms to identify the existence of
diabetes at an early stage [5]. +ey did not, however, de-
scribed how the IoMT device helped/linked to their pro-
posed machine learning approaches.

In case of skin lesions classification, 20 dermatologists
and a Faster Region-based CNN (FRCNN) model are
compared (malignant and benign tumors), where FRCNN
has outperformed accredited dermatologists. However, they
did not use any other pretrained models or fine-tuning to
increase accuracy [49]. Another study by Li and Shen [50]
classified skin lesions as melanoma using deep learning
methods. +ey used a fully connected residual network for
segmentation and classification. Further lesion index cal-
culation unit has been used to validate the result of the
classification. In their approaches, no pretrained weight
value was used to increase the accuracy. Besides, they used
only the shifting procedure for data augmentation. In [51],
the authors used image enhancement techniques and seg-
mentation techniques and then extracted 15 features from
each image which they fed to the deep neural network and
hybrid AdaBoost-SVMmodel.+ey did not employ any data
augmentation techniques. VGG-16 is used to train the skin
melanoma detector classifier [52]. +ey used random weight
initialization for training and fine-tuning on the VGG-16
network to improve accuracy. But no experiments about
fine-tuning the different layers have been carried out and
their accuracy metric is very low compared to the recent
study. Masood et al. [53] discussed IoT-based computer-
assisted pulmonary cancer detection systems which gather
data using wearable sensors and classification of computed
tomography images found from online sources to evaluate
cancer stage. +ey did not propose any automated device to
capture CT images from patients.

IoMT is an integration of sensors and software to au-
tomate our daily life by collecting, managing, and trans-
mitting data over a network. In [54], an E-health monitoring
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system is created that tracks a person’s life cycle and links
them to a health management service provider. +eir IoMT
device is used for tracking diabetes, pulse rate, kidney
function, etc. However, they failed to mention the IoMT
device that would be used to test their hypothesis. Pinto et al.
[55] employed a healthcare system for aging people to assist
them with regular monitoring. +ey developed an android
app called “We-Care” with a secure gateway that gets in-
formation from the “We-Watch” wristband. But they did not
mention a proper description of what types of data will be
collected and also no specific task of the app has been
mentioned. Recent developments pave the establishment of
a skin care and monitoring device called SkinAid, an IoMT
pipeline, for skin lesions, which incorporates GAN-based
data augmentation [56]. Similarly, numerous IoMT devices
for skin lesions classification approaches have been devel-
oped without a clear explanation of how the device might be
used in a home setting [57, 58].

A massive amount of data is created by IoT devices in
health care and it is critical to manage the vast amounts of
data by IoT itself due to its low storage and computation
power. To address the issue, numerous approaches are being
used, including cloud computing on cloud servers [59].
Additionally, cloud-based Internet of +ings devices enable
clinicians to remotely view patient data [60]. A pipeline was
established with the integration of IoTand cloud computing
in order to give e-healthcare to diabetic patients [61]. An
IoMT-based device created by Kodali et al. [62] was used to
collect medical information and archive it in the cloud for
further assessment. Cloud-fog computing was employed to
address the data availability to the IoMT-based healthcare by
Mahmud et al. [63]. +e fog cloud aids in cost reduction and
easy to ease data accessibility toward the monitoring body as
well as it can ensure security by using various algorithms and
cipher technologies [42, 43].

3. Proposed Methodology

+is section illustrates a data collection system based on
IoMTand describes a method for detecting skin cancer using
a deep neural network. Figure 1 represents our proposed
methodology for a better understanding of our hypothesis.

First of all, the image of the infected skins is captured by
the Raspberry Pi Camera which is integrated into a Raspberry
Pi board. After obtaining an image of the patient’s affected
skin, two significant steps are taken to transfer the data to a
central repository, namely, the installation of an operating
system and the configuration of the Internet facility.

+e collected image is subsequently sent to a CAD
(Computer-Assisted Diagnosis) system for analysis. CAD
system preprocess the image for further processing.+en, an
image segmentation technique is used to separate the target
object from the image, and the feature extraction technique
is then extended to the segmented area of interest. Further,
the data is separated into train, validation, and test sets. At
last, the classifier model is used to identify each patient’s
current condition. +e output of the classifier is transferred
to the central repository where the recommendation team

will further assess the outcomes.+ey will notify the patients
regarding his/her current conditions and will be recom-
mended by the recommendation body. And the collected
data and output will be stored in the cloud storage for future
model training and assessment. +is helps to make our
infrastructure more stable in the future.

3.1. Patient Connection with the Smart Healthcare. A patient
is the beneficiary of all medical services rendered by health
providers. In this study, the patients are monitored to
identify the existence of skin cancer using modern tech-
nology (IoMT and deep learning) without the involvement
of pathologists. +erefore, the patient can easily utilize the
IoMT-based device, which is connected to the CAD system,
to evaluate the skin lesions condition and prescribe ac-
cordingly at any time without going to the hospital.

3.2. IoMT-Based Data Collection System for Skin Lesions.
+e Internet of +ings corresponds to a collection of
interconnected devices that can capture and transmit data
over a mobile or wifi network without human interference.
IoMT allows objects to be controlled accurately from a re-
mote area with the help of network infrastructure and
computer-assisted systems. In the future, it will be utilized
for a new and significant purpose that will traverse borders
and even the entire planet and frequently incorporate into a
variety of fields and gadgets in order to work in a variety of
domains [64]. In our IoMT-based data collection system, a
Raspberry Pi 4 Model B has been incorporated that has 8GB
RAM in it, as shown in Figure 2 [65].+e board incorporates
the Raspberry Pi Camera Module 2 (8MP) chipset with flash
module version V2, which is a small and portable camera
that supports the Raspberry Pi via the serial protocol Mobile
Industry Processor Interface (MIPI) [66]. It is now feasible
to use multiple lenses that can automatically change the
focus and exposure as well as mount stable video. +is
camera is used in deep learning, machine learning-based
projects such as recognition, classification, and other
functions [67]. During the COVID-19 pandemic situation, it
was difficult to handle a large number of people who are
probably infected by the virus. To assess the patient’s status,
such as fever and cyanosis, a Raspberry Pi board and camera-
based IoMT device was constructed [68]. An Internet-free
Computer-Aided Diagnosis (CAD) system for evaluating
skin lesions was built using a Raspberry Pi3B+ and a camera
[69].

In our framework, a 3.5-inch UCTRONICS touch screen
connected with the Pi board displayed the collected data
sample and process the data using various applications. In
our proposed method, we have introduced Linux operating
system in order to set up essential software which will assist
in transmitting the images to the cloud storage. Moreover,
we also need battery backup as well as a storage facility for
the data. +us, a standard V3 battery backup is included as
well as a 16GB SD card for the memory facility.+e user will
utilize the Linux environment to run the applications
necessary to assess their skin condition.
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3.3. Computer-Assisted Diagnosis (CAD). �e notion of
CAD began to evolve slowly after the invention of the
modern computer in the late 1950s. Another milestone was
reached in 1960 with the �rst successful computer-aided
medical image analysis (CAMI) [70]. However, it was

created only for the purpose of studying its future prospects.
It was mostly utilized in medicine for analysis and decision-
making. Swender et al. [71] built the �rst e�ective Com-
puter-Aided Diagnosis (CAD) system, which made use of
patient records from hospitals. In Figure 3, we have

Flash Module for
Rapsberry Pi Camera v2

Raspberry Pi Camera
Module 2

Battery Pack UPS,
RPI Pack Standard-V3

UCTRONICS 3.5 Inch
Touch Screen

16GB Noobs
Micro SD Card

Raspberry Pi 4
Model B 8GB

Creates
+

Linux Operating
System

Coding for setup
and Sending imagesto
to Cloud Computing

Hardware

So�ware

IoT based
Data Collection

System

Figure 2: Our proposed IoMT-based data collection system which includes Raspberry Pi 4 Model B 3.5-inch touch screen, battery pack V3,
memory card, Raspberry Pi Camera Module 2, and camera �ash module V2.

Retrieve and
Decryption Data

Computational
Result

Cloud Computing

Patient

IoT Base
Data Collection

System

Network

Cloud

Cloud Storage

Data Collection
CAD

Figure 1: Proposed methodology for IoMT-deep learning-based skin lesion classi�cation and recommendation.
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demonstrated the �ow diagram of our proposed CAD. �is
CAD will incorporate all the procedures to classify skin
lesions using deep learning-based approaches.

3.3.1. Collection of Dataset. Data collection is the most
critical step in this study. Without a large volume of data
and careful identi�cation of each data point, it is very
di�cult to collect information and learn more. We have
therefore suggested an IoMT base stable, sensible, and
simple Pi camera for our data collection method in our
study. Although we initially train our classi�ers with a
publicly accessible dataset. �ere are many publicly
available datasets, like “BCN20000” which consists of
almost 194 k dermoscopic images collected from Barce-
lona’s hospital from 2010 to 2016 [72]. “Human Against
Machine with 10000 training images (HAM10000)”
consisted of almost 10015 images of dermatoscopic skin
lesions tagged with the correct labeling by a pathologist or
multistep follow-up, expert opinion, or in vivo confocal
microscopy validation [73]. “PAD-UFES-20” is a com-
paratively new dataset composed in 2020 of almost 2298
images from 1373 using smartphones [74]. Fitzpatrick
Dataset has been developed by Groh et al. [75] that in-
cludes almost 17 k clinical images for classifying 114
di�erent skin lesions or cancers. MED-NODE dataset
contains 170 images only whereas 70 melanoma cases and
100 nevus cases [76]. Edinburgh skin lesions dataset in-
cludes 1.3 k images of 10 lesions [77]. Wen et al. [78]

represented skin lesions related to 21 datasets (containing
1000 k images) and atlases that also included age, sex,
region, ethnicity, and other factors.

3.3.2. Image Prepossessing. �e captured image has to be
preprocessed before feeding the image into the neural
network so that the neural network can �lter further in-
formation in each layer. Traditional methods for image
preprocessing refer to the transformation of images into raw
data that can be fed by the neural network. �e aim of
preprocessing is to optimize image data that eliminates
unwilling information or improves those image features that
are necessary for further pattern identi�cation [79]. In one
respect, choosing the very �rst set of pixels in an image in the
RGB color space is a procedure performed by di�erent al-
gorithms operating on a computer device [80]. Techniques
such as resize, mean normalization, standardization,
smoothening, and blurring are used in image preprocessing.
�e HAM10000 images are resized to 64∗ 64 and 96∗ 96 in
the RGB color space. We also conducted a data augmen-
tation technique to supply the neural network with a wide
variety of images as a batch. Data augmentation includes
rotation, scaling, shift, and �ll mode [81].

3.3.3. Feature Extraction. �e patterns of the object in an
image are referred to as features. A triangle, for example, has
three corners and three sides, which are the characteristics
that our eyes use to recognize the triangle. Similarly, the

Training Database

Preprocessing

Feature Extraction Stage

Constructing deep
Learning Models

Classifier........

Data Collection

Convolutional Block Convolutional BlockInput Image Dense
Layer

Dense
Layer

Basal Cell Carcinoma

Melanocytic Nevus

Actinic Ketarosis

Dermatorfibroma

Malignant Malenoma

Vascular Lesion

Benign Ketarosis
Classification Stage

Shear Shift

Figure 3: Flow diagram of CAD which includes data collection, preprocessing, feature extraction and classi�ers.
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convolutional network can remove key features from each
image to aid in the identification of a certain class or target
value. Convolutional kernels remove valuable features from
the original image, reducing the dimension and resulting in
more efficient features with fewer redundant data. +is
method is known as a feature mapping process.+is reduced
representation of the original image would provide a de-
tailed understanding and more accuracy [82]. More spe-
cifically, each hidden layer will extract important features
and feed them into the next layer for further feature ex-
traction. Moreover, they not only extract features but also
identify the interactions among the extracted features. And
the last hidden layer will produce the final features and
interactions for the output layer [83, 84]. +e output layer
used the Softmax classifiers in order to classify the skin
lesions.

3.3.4. Classifier. A classifier is an algorithm that converts
data into one of several categories or classes. And con-
volutional neural network or ConvNet is one type of neural
network mostly used in image classification. +ere are
several layers in the convolutional neural network, such as
the input layer, hidden layer, and output layer. Each layer has
several neurons or nodes that take information from the
previously hidden layer or input layer that used the mapping
function to process the data and transfer it to the next layer
[85, 86]. One of the categories is generated by the output
layer. +e input layer takes raw data, which in our case
would be the tensor of the original image. And this overall
mechanism is supervised learning because the computer
trains using the target value of the training dataset [87].

(1) Convolutional Layer. +e convolution layer is used to
extract information/features using kernel/filters. Kernel size
is smaller than the input image which scans the image’s
spatial position step by step. +en, bias and other required
elements are added, and also weighted sum is calculated. At
last, the output of the layer is passing through the nonlinear
activation function to get new features for the next con-
volutional layer [85, 88]. Generally used activation functions
are ReLU, sigmoid, tanh, etc. +e function is processed in a
convolutional layer denoted by

x
l
j � f 􏽘

m

i

x
l−1
i
∗

w
l
ij + bj􏼐 􏼑.⎛⎝ (1)

xl
j denotes the jth features of lth layer where wij is the

weight between the jth feature of lth and ith feature of l − 1th
feature. And bj is the bias of jth, and m is the number of
features created in lth layer.

Traditionally, convolutional layer kernel size is 3∗ 3. It
derives the most important features and less information
loss occurred. Besides, it reduces the number of parameters
and hence reduces the time of calculation. Furthermore,
kernel sizes 3 and 5 performed well when combined with a
large number of hidden layers [89].

(2) Pooling Layer. +e pooling layer is generally used be-
tween two convolutional layers. It tries to compress the
features found from the previous convolutional layer.
Compression is done by taking the max or average value
from a particular region. Max pooling is mostly used as it
produces the best result [85].

(3) Fully Connected Layer. +e convolutional and pooling
layers provide room for the features of the images. Fully
connected layers are layers where all the previous layer
neurons are connected to the next layer. It can be considered
an affordable way to learn a linear function from the feature
region [90].

(4) Output Layer. +e Softmax classifier is typically
employed as an output layer for multiple-class classification.
Suppose that there are J images, where each image is labeled
with a value yi ∈ (1, 2, 3, . . . , k) whereas k is the total
number of classes in the dataset and yi denotes the targeted
label. For each image xi, there will be k probability score
corresponding to each class. So, the equation is

hθ xi( 􏼁 �

p yi � 1|xi; θ( 􏼁

p yi � 2|xi; θ( 􏼁

p yi � 3|xi; θ( 􏼁

. . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . ..

. . . . . . . . . . . . . . . . . . ..

p yi � k|xi; θ( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

In (2), the sum of all the classes’ probability is equal to 1
and θ represents the parameter of the classifier (Softmax
classifier).

+ere are several ConvNet classifiers in deep learning,
e.g., Xception, VGG-16, ResNet50. ResNet101, DensNet121,
MobileNet, and so on.

VGG-16. +e VGG-16 architecture is a convolutional
neural network, and it was used in 2014 in an annual
competition called the “ImageNet Large Scale Visual
Recognition Challenge.”+e ImageNet dataset includes
RGB-channel images with a fixed size of 224∗ 224; in
our case, it is 96∗ 96. In this architecture, 16 layers are
used, including convolution layers of a 3× 3 filter with
stride 1 and always the same padding and max pool
layer of a 2× 2 filter with stride 2 [91].
DenseNet-201. One of the neural networks for visual
object recognition is DenseNet-201, which has 201
layers. +e network’s image input size is 224∗ 224
pixels. +e name DenseNet arises from the fact that
each layer in a DenseNet architecture is linked to every
other layer. Instead of using summation, the DenseNet
paper suggests concatenating outputs from previous
layers. Transition layers are used by DenseNet. Con-
volution with a kernel size of 1 is accompanied by 2× 2
average pooling with a stride of 2 [91].
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Inception-V3. Inception-v3 is a convolutional neural
network architecture from Google’s Inception family
V3. +e third version in a series of Deep Learning
Convolutional Architectures makes many improve-
ments, such as Label Smoothing and Factorized 7× 7
convolutions. It was trained using a dataset of 1,000
classes from the original ImageNet dataset, which was
trained with over 1 million trajectories [91].
Efficient-B7. EfficientNet-B7 achieves new state-of-the-
art 84.4 percent top-1/97.1 percent top-5 accuracy
despite being 8.4% smaller than the best current CNN
by scaling up the baseline network.+e total number of
layers in EfficientNet-B7 is 813, and all of these layers
can be created using only five modules. Module 1 serves
as a starting point for the subblocks, module 2 serves as
a starting point for the first subblock of each of the
seven main blocks except the first, module 3 serves as a
skip link for all of the subblocks, and module 4 helps to
combine the skip connections in the first subblocks.
Finally, module 5 connects each subblock to the one
before it in a skip link, and this module is used to merge
them [91].
Ensemble Model. An ensemble model is a single model
where multiple model’s (in our case IceptionV3,
VGG-16, DensNet-121, Efficient-B7, and a custom
model) predictions are combined together and predict
one single outcome. It is like a decision-making board
that decides based on the predictions of different
models [92]. Generally, a base model has a unique
error on dataset samples, but the ensemble model uses
all the model’s predictions which reduce the error
more than a base model. Different machine and deep
learning-based studies used the ensemble model for
better accuracy and to get a robust model for classi-
fication tasks [92–94]. In our case, we have used av-
eraging ensemble model as shown in Figure 4. In an
averaging ensemble model, we take an average of all
models’ probability for classes and make a final de-
cision based on the average outcome of each class [95].
Suppose that we have L models where each model li
predicts k probability as we have k classes. +en, the
final class of the ensemble model for a particular image
xi will be

E xi( 􏼁 �
􏽐

L
i h

li
θ xi( 􏼁

L
. (3)

In (3), E(xi) denotes the ensemble outcome for xi image
where h

li
θ(xi) defines ith ∈ L model’s classifier function

outcome.

3.4. Central Repository. +e repository is a disk on which all
of the data will be kept, including configuration information.
In the central repository, we maintain our data in an
uncompressed form for easy handling, accessing, and
transmission of the data. +e central repository is useable by
a computing device via a communication network.
Depending on the user’s request, a communication network

can be established with the central repository [96]. In our
pipeline, we have included a cloud storage-based repository
for storing and managing data linked to skin lesions.
However, there are a few factors that must be considered in
order to have an effective repository in the medical field,
including accessibility, security, management, scalability,
and regular maintenance. As a result, a cloud server is a
feasible alternative; furthermore, it is both cost-effective and
simple to transfer data to a remote location [97]. Despite the
benefit, cloud storage has some limitations such as user
limitations, storage crashes, or hacking [98]. So, we proposed
multicloud facilities which provide data security in various
storage, by replicating the data in different cloud servers, as
well as parallel computing for user queries [99].

3.5. Recommendation System. +e proposed smart healthcare
stores the collected skin lesion images and the classified out-
comes in a cloud repository for future justification. +en, the
information will be forwarded to the medical recommendation
team, who will provide suggestions for specific measures to be
followed [100]. In developed nations, people are more worried
about their physical and mental health. However, in less de-
veloped and developing countries, it is quite hard for them to
keep track of their health on a regular basis.+e planned smart
healthcare may enable people to contact medical professionals
even while they are at home, therefore making life easier and
accessible to all the facilities [101].

+e recommendation system can be divided into five
steps/phases such as data collection and evaluation, infor-
mation exchange, regular or emergency scheduling, remote
monitoring, and cloud storage maintenance.

3.5.1. Data Collection and Evaluation. +e patient could
collect skin samples using the IoMT-based data collection
system and then submit the result to the cloud server for
evaluation. +e submitted data will be checked and con-
firmed by the recommendation team (RT) for further
classification. +e submitted sample can be rejected by the
RT if the image is not perfectly captured by the patient as
well as request for further sample submission.

3.5.2. Information Exchange. After confirming the sample,
the RTwill further proceed with the data for classification by
the CAD system installed in the cloud. +e outcomes of the
sample will be redirected toward the patient device with the
required suggestions.

3.5.3. Regular or Emergency Scheduling. According to the
result, the patient could be requested for regular or emer-
gency scheduling. In case of a medical emergency, the
recommendation team will notify the doctor or pathologists
to prepare for handling the emergency situation [102].

3.5.4. Remote Monitoring. +e prescribed patient will follow
the required treatment such as regular diagnosing and
medication. +e recommendation team may use the
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patient’s previous data from the central repository in order
to compare the patient current status. �e patient may need
to be sent to a hospital for further examination or treatment
if required [4].

3.5.5. Cloud Storage Maintenance. Multicloud storage
would have all the con�dential data regarding the subscribed
patient. So, regular maintenance of the cloud server is re-
quired. Moreover, there are issues related to such unau-
thorized access [103].

�is entire operation bene�ts not just those in impov-
erished nations who face challenges in all aspects of life but also
people from developed nations who want to save time [104].

4. Experiments and Results

�is section describes the result of the proposed methods in
our methodology and their experimental comparison.

4.1. Dataset Management and Data Visualization.
HAM10000 is the selected dataset for our proposed meth-
odology. We have split our dataset into a train (7210), test
(1002), and validation (1803).

HAM10000 dataset has almost 10015 dermoscopic im-
ages of seven di�erent skin lesion diseases. Figure 5 shows
the number and percentage of dermoscopic images re-
garding each skin lesion disease. And it is clearly noticeable
that the dataset is imbalanced.

4.2. Experimental Setup. In the experimental setup, we have
discussed the computational and structural con�guration for
our proposed methodology in detail. We have deployed
python packages such as Numpy, Scikit-learn, Pandas,
Keras, and TensorFlow. Keras is extensively used for neural
network training with TensorFlow as a backend. �e pa-
rameters and hyperparameters used in the training process
are represented in Table 1 [105].

�e dataset contains images of di�erent sizes. So, we
resized the images to a 96∗ 96 pixel size so that they can be

easily fed to neural networks.�en, we converted the ground
truth to categorical values. Our models are trained using the
train and validation sets by learning the pattern of the
classi�ed images. �e test set has been retained to assess our
models’ performance on unseen data. Di�erent pretrained
models, more speci�cally transfer learning, are introduced to
get the best classi�cation result out of the dataset. But the top
classi�cation layer (including �atten, fully connected layer,
and softmax) is customized so that it will be well aligned with
the data and get the best results out of it. ImageNets’ weights
are initialized as the initial variable of the neural network.
�en, data augmentation techniques are used in each epoch
before feeding to the neural network. �e experiment used
50 epochs in the training phase, which implies that the entire
dataset was processed through the DL algorithms 50 times.
In each epoch, there are 144 steps for the training dataset and
36 steps for the validation dataset with a batch size of 50.
Di�erent optimizers have been used alternatively in various
classi�cation analyses like Adam, RMSprop, etc. In our case,
we have used Adam as optimizers in all the selected deep
learning models. “Categorical cross-entropy” is used as a loss
function in the experiment. We also used the learning rate
reduction function to reduce the learning rate as the epoch
increases [106].

4.3. Evaluation Metric and Results. In this section, we have
described the evaluation metrics used to validate the per-
formance of the proposedmethodology. In general, accuracy
is used to de�ne the performance of a particular model. But
in medical imaging, the accuracy of the model is not enough
to have an exact idea of the model. So, there are many more
metrics to evaluate a deep learning model like precision,
recall, ROC curve, and F1 score. We have used all of these
metrics to evaluate and understand a model’s performance.

�e confusion matrix is considered the most compre-
hensive way to describe all the metrics and is determined by
the following:

(i) True Positive-predicted target label true and ground
label also true

Input Image

VGG 16

DenseNet201

Inception V3

p1, p2...........pk
(Final Probabilities)

Ensemble Model
Average of each k class

probabilities from each model to
get the final

outcome.

Efficient B7

Figure 4: Flow diagram of average probabilities based on ensembling of various classi�ers including VGG-16, Inception-V3, DenseNet-201,
and E�cient-B7.
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(ii) False Positive-predicted target label true but ground
label actually negative

(iii) True Negative-predicted target label negative and
ground label also negative

(iv) False Negative-predicted target label negative but
ground label actually true

So, a target label correctly classi�ed means that it should
be True Positive (TP) or True Negative (TN). Similarly, when
the target label is wrongly classi�ed, it will be False Positive
(FP) or False Negative (FN).

Accuracy is the sum of all correctly classi�ed data points
divided by all data points:

Accuracy � ∑(True Positive + TrueNegative)
∑(True Positive + False Positive + TrueNegative + FalseNegative)

. (4)

Precision de�nes the proportion of patients correctly
predicted as having skin lesion/cancer against its predicted
all lesion/cancer patients. �at means the sum of all true
positive labels is divided by the sum of all truly predicted
labels and falsely predicted true labels, where recall/sensi-
tivity speci�es the proportion of patients correctly predicted
as having skin lesions/cancer against actually all cancer
patients. So, the sum of all true positive labels is divided by
the sum of all actual true labels. �ey are determined by

Precision � ∑True Positive
∑True Positive + False Positive

,

Recall �
∑True Positive

∑True Positive + FalseNegative
.

(5)

Precision tries to minimize the false positive rates. So, in
our case, with the increase of precision outlined that it is
trying to reduce its wrongly predicted cancer patient. But
recall is most important for our case. As we do not want to
miss any cancer patients predicted as normal. Recall tries to
minimize the false negative rates [107].

F1 score helps to understand both precision and recall
from one score. We can take the average of both precision
and recall, but it reduce the score drastically if any smaller
(either precision or recall) value appear [108]. So, they come
up with a balance equation which tries to more closer to the
smaller value and give more accurate score that is:

f1 − score � ∑(2 × precision × recall)
∑(precision + recall)

. (6)

A function which we try to minimize or maximize is
called objective function. However, when we sought to
mitigate it precisely, we called it a cost function or a loss
function. �e cost function or loss function is used to de-
scribe all the good or bad points using a single scalar value. It
helps to understand the error of a particular model and help
to rank all the models. In our case we have used categorical
cross-entropy. Categorical cross-entropy explicitly used for
multiclass classi�cation and described as:

Categorical − cross − entropy � − ∑
output size

i�1
yilog y

∧
i. (7)

In our experiment, the dataset includes seven di�erent
skin lesions, which means the classi�er performing multi-
class classi�cation as well as the dataset is imbalanced.
Dermato�broma, vascular lesions and actinic keratoses
combined only 5.8% of the total dataset. �erefore, to better
evaluate the classi�er outcomes is not possible using ROC.
Because ROC performed well for binary classi�cation and
balance datasets only. In the python environment, scikit-
learn has introduced a new package to evaluate the multi-
class classi�er performance. It calculates AUCs for all the
classes considering a particular class against all the other
classes altogether. �e ROC-AUC score allows an under-
standing of how well a classi�er can be separated from
di�erent classi�ers. Furthermore, the metric assist in

Melanocytic Nevi
(6705)

Melanoma (1113)

Benign Keratosis-like Lesions (1099)

Basal Cell Carcinoma (514)
5.1%

Actinic Keratoses (324)
Vascular Lesions (142)

Dermatofibroma (115)

1.1%

66.9%
11.1%

11.0%

3.3%
1.4%

Figure 5: �e HAM10000 dataset is divided into seven categories, each represented by a probabilistic paradigm in the pie chart.
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analysing imbalance datasets more accurately compare to
other metrics [109].

In Table 2, dataset’s train and validation accuracy and
train and validation loss for VGG-16, Inception-V3, Effi-
cient-B7 and DenseNet-201 are shown.

Table 3 shows the testing data’s accuracy, loss, precision,
recall, F1 score and ROC-AUC score for all the deep learning
models.

5. Discussion

In this research, we have proposed a framework for remote
monitoring and diagnosis of skin lesions patients is shown in
Figure 1. +e patient has an IoT-based data collection device
which he/she will use to collect dermoscopic images of the
affected area (as shown in Figure 2). +e device is also
connected to a cloud storage so that the collected sample
could be send over the network. +en the recommender
team will further assess the sample for further processing
such as the correct sampling and diagnosing using the
Computer-Assisted Diagnosis (CAD) (as shown in Fig-
ure 3). +e outcomes of the CAD classifier will be available
for the patient as well as the recommender team. Moreover,
the recommender team will suggest the patient for further
self-care, medication or doctor appointment. In addition,
the recommender team manages emergency situations by
analysing hospital data from the cloud server.

We have introduced multicloud storage as the central
repository. +e multicloud provide parallel computing and
security of the patient and hospital data in multiple server.
+us, if a crash occurs or an unauthorized user gains access, the
recommender team will immediately disable the service. As a
result, data on the other server is still safe for use.+e proposed

recommendation system is divided into five stage to cope up
with any situation. It includes data collection and evaluation,
information exchange, regular or emergency scheduling, re-
mote monitoring and cloud storage maintenance.

In our study, we have established a Computer-Assisted
Diagnosis (CAD) system which can detect skin diseases
automatically using the image of skin lesions. First of all we
have collected dermoscopic images from patient using IoMT
device. In CAD we have then implemented a deep learning-
based image classifier using transfer learning and ensem-
bling of different models (as shown in Figure 4) for skin
lesions classification. For transfer learning approach we have
used popular pretrained models like VGG-16, Inception-V3,
Efficient-B7 and DenseNet-201 etc. We have performed 50
epoch for each model on HAM10000 dataset. +e final
outcome of transfer learning is quite satisfactory.

Figure 6 depicts the relative positions of training and
validation accuracy in each epoch for all four pretrained
models, where Figure 7 shows the relative positions losses. In
Table 2, show training and validation accuracy, loss etc. In
Table 3 show the test’s metrics, the visual representation of
test accuracy and loss is shown in Figure 8.

+e difference of VGG-16 model’s train, validation and
test accuracy is low, so the model neither overfit nor
underfit. Inception-V3 test accuracy is comparatively low
than other models. Both VGG-16 and Inception-V3 took
less time to train in each epoch than the other two models.
+e test loss for Inception-V3 is higher than VGG-16.

Efficient-B7 took more times than other models because of
its huge number of parameters to train.+emodel also shows a
good accuracy (train� 91.82, validation� 85.14 and
test� 82.93) with low loss (train� 0.2173, validation� 0.4829
and test� 0.6954). Efficient-B7’s ROC-AUC score also good
that means its separable/classification quality considerable. But
DenseNet-201 has the best separable quality than any others
model we have applied. DenseNet-201 have the best train
(99.71%), validation (86.36%) and test (85.33%) accuracy. But
its validation and test loss is higher among all the models.

In case of precision and recall, DenseNet-201 win the
race with 85.32% and 85.32%, respectively. Precision defines
the correctly predicted true positives (present of skin ma-
lignant) against total predicted true positives. Where recall/
sensitivity defines the correctly predicted skin malignant
against the total actual skin malignant cases.

Transfer learning took comparatively less time to train
than baseline models. Because we have used preinitialized
weights from “ImageNet.” ImageNet was trained on almost
14 million data for 20,000 classes [110]. So, it has a well
established weights to train.

We also performed ensemble of our trained models.
Ensemble model is like a decision-making board which
reduce the generalisation error. In our case we have
ensembled VGG-16, DenseNet-201, Inception-V3 and Ef-
ficient-B7 together using average ensembles methods. And
our ensemble model is outperform than all other models on
test dataset as shown in Figure 8. Not only loss is reduced to
0.41 but also accuracy is increased to 87.22% for test. Both
loss and accuracy is improved than any other base pretrained
models. +e accuracy, recall, and F1 score of the ensemble

Table 1: Hyperparameters utilized to train the deep learning
models, as well as the parameters for data augmentation of the data.

Value
Data augmentation parameter
Rotation range 60
Width shift range 0.2
Height shift range 0.2
Shear range 0.2
Zoom range 0.2
Horizontal flip True
Fill mode Nearest
Hyperparameter for DL models
Optimizer Adam
Learning rate 0.0001
Learning rate reduction factor 0.5
Beta-1 0.9
Beta-2 0.999
Decay 0.0
Epsilon None
Amsgrad False
Input size (96, 96, 3)
Output size 7
Number of epoch 50
Flatten layer activation function ReLU and softmax
Shuffle False
Batch size 64
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model outperform than that of other models. Ensemble
model’s roc curve shown in Figure 8(c). In case of skin
lesions classi�cation, ROC-AUC score (with 0.9745) of
ensemble model de�nes the best separable ability than any
other models as far as we know.

In China, as of 2018 there are almost 12% of the pop-
ulation are older. �erefore, a smart-nursing pipeline pro-
posed in order to remotely monitor them. However, Pinheiro
et al. [111] did not describe about the tool required to develop
the pipeline. Another study hypothesized a framework for

Table 2: Train and validation metrics of deep learning models.

Model Train accuracy Train loss Validation accuracy Validation loss
VGG-16 92.74 0.1976 83.97 0.5837
Inception-V3 94.75 0.1444 83.58 0.6582
E�cient-B7 91.82 0.2173 85.14 0.4829
DenseNet-201 99.71 0.0086 86.36 0.8200
Ensemble model — — 89.36 0.3369

Table 3: Test metrics of deep learning models.

Model Test accuracy Test loss Precision Recall F1 score ROC-AUC score
VGG-16 83.33 0.7207 83.33 83.33 83.33 0.9074
Inception-V3 80.94 0.7858 80.93 80.93 80.93 0.9321
E�cient-B7 82.93 0.6954 82.93 82.93 82.93 0.9546
DenseNet-201 85.33 0.9501 85.32 85.32 85.32 0.9599
Ensemble model 87.22 0.4131 86.72 87.22 86.60 0.9745
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Figure 6: Expression of accuracy in each epoch both for training and validation dataset. (a) DenseNet-201. (b) E�cient-B7. (c) Inception-
V3. (d) VGG-16.
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Figure 8: Continued.
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skin lesions classi�cation at home. But their work did not
represent how the hardware are interconnected for the data
collection system. Moreover, they did not specify how the
smart diagnosing system managed such as recommendation
team or automation [112]. Most of the smart diagnostic
system for skin lesions did not propose a top-to-bottom
pipeline for handling the issue [113–115]. However, Our
proposedmethodology is a top-to-bottom approach to handle
the skin lesions remotely with proper suggestion from rec-
ommender team. �e patient collect the data and send over
network to the multicloud storage. �e CAD system run the
classi�er to classify the skin lesions type and then pass the
patients result to the central repository. A recommendar team
have the access to the central repository. And they will
prescribed or recommend the patients about next step. So, our
IoMT and deep learning base Computer-Assisted Diagnosis
(CAD) will help the patients to diagnosis skin diseases at
home. It will reduce both the cost and time for diagnosis.�is
means that we have developed a comprehensive system for
remote monitoring and diagnosis of skin lesions.

We do have some limitations in terms of our frame-
work’s long-term potential. For the patient, we did not
propose a two-step authorization process. �e facility is
accessible to anyone who has the device. Moreover, Our
long-term goal is to create a smartphone application that
eliminates the need to buy a device. Furthermore, data
transmission over the network is not encrypted. As a result, a
skilled hacker could gain access to it.

6. Conclusion

In this research we have proposed an IoMT-based Com-
puter-Assisted Diagnosis system in association with IoT-
based data collection system. A deep learning model
implemented in the CAD system which can classify skin
lesions from skin images.

We have performed transfer learning models like VGG-
16, Inception-V3, E�cient-B7 and DenseNet-201 etc. �is
models show exceptional performance for classifying skin
lesions. Parameters tuning help us to increase our accuracy
and produce more robust model on the dataset. We then
ensemble all the models which outperform than any other
models. Our deep learning method and pretrained models
are available for more use of the classi�er, as well as for
researchers and students to help with more precise
improvement.

Our IoMT-based CAD system is also connected to a
central repository and a recommend team. A central re-
pository is used to store data for further processing and use,
and the recommend team assists a speci�c patient in
learning about his or her current conditions and referring
him or her to a specialist doctor. Overall, our IoMT-based
CAD system connects the patient, diagnostic center, and
doctor in a chain.
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Figure 8: Accuracy and loss on the test dataset of our trained model including ensemble model. (a) Test accuracy. (b) Test loss. (c) ROC curve.
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