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,e diagnostic efficacy of coronary computed tomography angiography (CTA) images of coronary arteries in restenosis after
coronary stenting based on the combination of the convolutional neural network (CNN) algorithm and the automatic seg-
mentation algorithm for region growth of vascular similarity features was explored to provide a more effective diagnostic method
for patients. 130 patients with coronary artery disease were randomly selected as the research objects, and they were averagely
classified into the control group (conventional coronary CTA image diagnosis) and the observation group (coronary CTA image
diagnosis based on an improved automatic segmentation algorithm). Based on the diagnostic criteria of coronary angiography
(CAG), the efficacy of two kinds of coronary CTA images on the postoperative subsequent visit of coronary heart disease (CHD)
stenting was evaluated. ,e results showed that the accuracy of the CNN algorithm was 87.89%, and the average voxel error of the
improved algorithm was signally lower than that of the traditional algorithm (1.8921 HU/voxel vs. 7.10091 HU/voxel) (p< 0.05).
,e average score of the coronary CTA image in the observation group was higher than that in the control group (2.89± 0.11
points vs. 2.01± 0.73 points) (p< 0.05). ,e diagnostic sensitivity (91.43%), specificity (86.76%), positive predictive value
(88.89%), negative predictive value (89.66%), and accuracy (89.23%) of the observation group were higher than those of the
control group (p< 0.05). In conclusion, the region growth algorithm under the CNN algorithm and vascular similarity features
had an accurate segmentation effect, which was helpful for the diagnosis of CTA image in restenosis after coronary stenting.

1. Introduction

With the rapid development of science and technology,
economy, and culture, the types of diseases also increase.
Due to the changes in people’s daily living habits, the in-
cidence of many diseases is increasing, and coronary heart
disease (CHD) is one of them. In recent years, the incidence
of CHD has increased with the trend of patients being young
and the aging of the population [1, 2]. Angina pectoris and
other symptoms of CHD bring great pain to patients [3, 4].
Coronary stent implantation is one of the most effective

therapies at present [5]. About 2 million patients with CHD
worldwide are treated with coronary stent implantation
every year [6]. However, in-stent restenosis (ISR) occurs in
some patients after surgery. Hence, rediagnosis is more
crucial for these patients. ,e “gold standard” for the di-
agnosis of ISR is coronary angiography (CAG) [7]. Nev-
ertheless, this method is not well accepted by patients
because it is expensive, invasive, and the operation is
complex. Nonetheless, coronary computed tomography
angiography (CTA) [8] is a preferredmethod for people with
simple operations, noninvasive examinations, and low
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inspection costs [9]. Besides, coronary CTA has a good
diagnosis effect on CHD and postoperative restenosis [10].

In the past, CTA images of patients in clinical practice
were examined or reviewed by doctors who observed the
lesions through artificial segmentation [11]. Nevertheless,
this method often causes the interference of subjective
consciousness in the examination results, which leads to
errors in the diagnosis results of diseases that can reduce the
diagnostic accuracy [12]. To solve the abovementioned
problems, an automatic segmentation technology is pro-
posed through continuous exploration [13]. After contin-
uous adoption and research, automatic segmentation
technology has become a vital auxiliary means in the di-
agnosis of coronary CTA images for CHD. ,e segmenta-
tion algorithm is mainly classified into image denoising and
image segmentation [14]. ,e segmentation algorithm based
on the growth algorithm [15] is relatively ubiquitous. ,is
method uses the similarity of pixels in different regions to
classify regions, but the accuracy of segmentation is low [16].
,erefore, this method needs to be improved.

To sum up, coronary CTA images based on an improved
automatic segmentation algorithm were employed for
postoperative coronary stenting reexamination. ,e diag-
nostic value of CAG was evaluated with the diagnostic re-
sults as the gold standard to provide more accurate and
effective examinationmethods for patients with CHD so that
they could receive reasonable treatment.

2. Materials and Methods

2.1. Objects of Study. In this study, 130 patients who came
to the hospital for the postoperative subsequent visit of
CHD stenting between March 2019 and March 2021 were
randomly selected as the research objects. ,ere were 90
male patients and 40 female patients. ,e patients were
30–80 years old and the average age was 60.21 ± 9.55 years
old. ,e diameter of the stent was 2mm–4mm with an
average diameter of 2.86 ± 0.19 mm. By the random
number table, all the patients were classified into the
control group (conventional coronary CTA image diag-
nosis) and the observation group (coronary CTA image
diagnosis based on the improved automatic segmentation
algorithm), each of which included 65 cases. ,e diag-
nostic results of CAG were taken as the standard to
evaluate the effect of two kinds of CTA images on the
postoperative subsequent visit of CHD stenting. ,is
study has been approved by the ethics committee of the
hospital. Patients and their families were aware of this
research and signed informed consent.

,e inclusion criteriawere as follows: (i) patientswho agreed
to the CAG examination; (ii) patients whose reexamination was
within 3months after surgery; (iii) patients who signed the
informed consent; and (iv) patients with single-vessel lesion.

,e exclusion criteria were as follows: (i) patients with
severe heart, liver, and renal insufficiency; (ii) patients who
were allergic to iodine-containing contrast agents; (iii) pa-
tients with contraindications to coronary CTA examination;
(iv) patients with hyperthyroidism; and (v) patients whose
conditions were unstable.

2.2. Methods of Examination

2.2.1. /e CAG Examination. Coronary angiography was
performed by a digital subtraction angiography system for
CAG. After the F sheath tube was introduced through
radial artery puncture, 3,000–5,000 u of heparin as the
anticoagulant was injected through the sheath tube before
the imaging surgery. After the heparin injection was
completed, an iodine-containing contrast agent (Ultrav-
ist) was injected by a Radial 5F TIG angiography catheter
to perform angiography for the left and right coronary
arteries. ,ere were 6 positions of left coronary angiog-
raphy, which were positive: left anterior oblique, right
anterior oblique, spider, liver, and foot. Right coronary
angiography was performed in two positions. One was the
left anterior oblique position, and the other was head
posture. ,e collected images were evaluated by several
senior coronary interventional physicians. ,e evaluation
methods were mostly visual observation. Figure 1 shows
the evaluation criteria for ISR.

2.2.2. Coronary CTA Examination. Coronary CTA was
examined by a 64-slice spiral CT. During the examination,
the patient was placed in the supine position, and elec-
trocardiogram (ECG) monitoring was required. ,e
scanning range was from 1.4 cm below the tracheal bi-
furcation to 2 cm below the diaphragmatic surface of the
heart. A contrast agent (pump speed: 5 mL/s and contrast
agent: iohexol) was injected with a high-pressure syringe,
and the dose was controlled at 55–70mL according to the
patient’s weight. ,e injection time was 11 s–14 s. After
that, 35mL of normal saline was injected. ,en, automatic
scanning was performed, and images of each vessel were
collected. Specific scanning parameters were as follows:
tube voltage was −120 kV; tube current was −320mA;
revolving speed was −0.37 s/r; layer thickness was
−0.65mm; and pitch was −0.19. ,e images of the control
group were directly analyzed and processed by profes-
sionals, while those of the observation group were pro-
cessed by automatic segmentation technology. All the
images were evaluated by the same team of senior imaging
experts. Figure 2 shows the definition of ISR.

2.3. /e Improved Automatic Segmentation Algorithm

2.3.1. Data Preprocessing. When the heart was scanned by
CTA, many different tissues were involved, including the
heart, bone, lung, and coronary artery [17, 18]. Different
tissue densities were generated. ,e difference of Hounsfield
unit (HU) values [19] was reflected in the CTA images.
However, the CT values of coronary arteries that needed to
be scanned were not markedly different from those of the
surrounding tissues. To highlight the coronary arteries, it
was necessary to preprocess the CTA images. In general, the
CT values of coronary CTA ranged from 0 HU to 600 HU,
and the window level and windowing were 300 HU and 600
HU, respectively. ,e relationship between them satisfied
equations (1), (2), and (3):
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In the above equations, y represents the HU value of CTA
image output, x represents the HU value of CTA image input,
ww represents the windowing of CTA image, and wl represents
thewindow level of CTA image.,en, the CTvalues of coronary
CTA images were reduced to 0–245 by data enhancement.

2.3.2. Coronary CTA segmentation. ,e traditional region
growth segmentation algorithm needed to manually set the
initial point and threshold, so there was a great dependence.
,e region growth algorithm was combined with vascular
similarity to improve the region growth and the accuracy of the
segmentation algorithm. ,is algorithm includes three parts.

Firstly, the similarity features of blood vessels were
extracted, which mainly involved the Hessian matrix [20]
and the similarity function of blood vessels. ,e Hessian

matrix of blood vessels was calculated by treating blood
vessels as tubular structures.,en, three-dimensional data of
vascular Hessian matrix were expressed as (7).

H(X−X) � IXX(X), IXY(X), IXZ(X) , (4)

H(X−Y) � IYX(X), IYY(X), IYZ(X) , (5)

H(X−Z) � IZX(X), IZY(X), IZZ(X) , (6)

H(X) �
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In equations (4), (5), (6), and (7), a series of Ixx(X)
represented the second derivative of point X along the X, Y,
and Z directions of the graph. To improve the determination
of vascular scale, the algorithm also introduced multiscale
filtering, namely, the convolution of original data and the
Gaussian kernels of different variances. ,e Gaussian kernel
was expressed as follows:
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In (8), α represents the variance, and G (X, α) represents
that when the original data are atX, the variance is theGaussian
kernel of α. ,e Hessian matrix of the data of different scales
was obtained by extracting the vascular features of different
scales in the image through convolution. ,en, the eigenvalue
βq (q� 1, 2, 3) was calculated, and the corresponding eigen-
vector was χq(q � 1, 2, 3). When β1>β2>β3, based on voxels in
blood vessels, β3 would approach 0 infinitely, and χ3 repre-
sented the radial direction of the vessel. β1 and β2 would be
close and equal infinitely, χ1 represents the tangential direction
of the blood vessel, and χ2 represents the normal direction of
blood vessels. ,e features of tubular structures were screened
according to the eigenvalues. In accordance with the above-
mentioned calculation, some experts proposed the vascular
similarity function under the eigenvalue, eigenvalue features,
and vascular geometry features. ,e specific expression was as
follows:
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It was also expressed as (13).
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No restenosis

Stenosis is within 5mm of 
both ends of stent.

Lumen stenosis in stent < 
50%

Restenosis

Stent distal angiography is 
poorly developed.

Lumen stenosis in stent ≥ 
50%

Figure 1: ,e evaluation criteria for ISR of CAG.
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Figure 2: ,e evaluation criteria for ISR of CTA.
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S represents the Gaussian Blur in (8). ε and ϕ represent
the threshold that controlled the linear filter. φ needed to
determine the threshold according to the gray level of the
image.

Secondly, the seed point was located, and the root node
of the coronary artery was automatically located according
to the significance of the ascending aorta and the connection
with the coronary artery to achieve the automatic seg-
mentation of the coronary artery. Due to the irregularity of
the ascending aorta circle, the segmentation method under
convolutional neural network (CNN) was adopted. ,e idea
of CNN is encoding (convolution-feature extraction)-
decoding (deconvolution-feature mapping) mode. In the
training process of ascending the aorta section by this mode,
the loss function was DiceLoss. It was expressed as

DiceLoss � 1 − 2 
j∈C

labj · prej  +
smooth

j∈Cprej

+ 
j∈C

labj + smooth⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (14)

In (14), C represents a collection of pixels for the entire,
lab represents the pixel label, and pre represents the pre-
dicted value of pixels. Smooth represents the constant in case
that the denominator was zero.

,e final part was the region growth. ,e conditions for
the automatic implementation of region growth were pro-
vided by the abovementioned calculation. ,e specific steps
of the region growth were as follows.

,e first step was establishing the initial seed point.
,e second step was fixing the voxel in the adjacent

region of the seed point as the center and setting it as the
point to be measured. It was calculated whether the growth
conditions were satisfied. ,en, the ones that were not
satisfied were written down which were not calculated in the
next growth.,e other points that satisfied the requirements
were cached.

,e third step was extracting out one of the tested voxel
points from the cache to update the initial seed points in the
second step and repeat it.

,e last step was to stop growing when the pixels to be
measured satisfied the growth conditions when finished
updating.

2.3.3. Methods of Evaluation. Image enhancement, extrac-
tion of similarity features of vessels at different scales,
segmentation based on CNN, and the segmentation effect of
the overall segmentation algorithm were analyzed. Based on
the segmentation accuracy of CNN, the error between the
pixels at the corresponding position on the output image and
the original label image was evaluated. ,e calculation
method was shown in (15). In (16), the segmentation effect of
the overall segmentation algorithm was measured by the
average voxel error [21].

Acc �
1
P

  · 
j∈C
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Gi

 . (15)

In (15), P represents the number of samples in the test
set, C represents the collection of test set pixels, V represents

the correct number of pixels in the predicted image, and G
represents the number of pixels of positive samples in the
annotation image.

Error �
1
P

  · 
j∈C

oi − Oi( . (16)

In (16), P represented the population prime point, C
represented the whole data, o represented the voxel points to
be compared, and O represented the standard voxel point.

2.4. Observation Indexes

(I) Two or more cardiovascular imaging physicians
evaluated the CTA image quality of the two groups.
Table 1 shows the scoring criteria.

(II) ,e diagnostic sensitivity, specificity, positive pre-
dictive value, negative predictive value, and accuracy
of CTA images of the two groups were evaluated
based on the diagnostic results of CAG for coronary
artery disease stenosis in postoperative review as the
criteria.

2.5. Statistical Methods. SPSS 22.0 was employed for data
statistics and analysis. ,e data were expressed as x ±s, and
the two independent sample t-test was adopted for inter-
group comparison. Percentage (%) or cases was how count
data were expressed, and the intergroup comparison was
tested by χ2. ,e difference was statistically considerable
with P< 0.05.

3. Results

3.1. /e Algorithm Performance

3.1.1. /e Effect of Image Enhancement. After enhanced
processing, the CTvalue method of the coronary CTA image
was compressed to 0–245 HU. Figure 3 shows the effect of
processing. ,e comparison between the coronary artery
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and the surrounding tissue was evidently enhanced. ,e
coronary artery area was more prominent, while the sur-
rounding tissue was observably reduced, which was more
helpful to observe the lesion.

3.1.2. Extraction of Similarity Features of Vessels of Different
Scales. Figure 4 shows the fuzzy results of the Gaussian
kernel with different variances (α� 0.5, 1, 2). With the in-
crease of α value, the response of small structural features
was weakened gradually. After several tests, the resulting
images of α� 0.5, 1, and 2 were fused. ,e results showed
that the details of various vessels in the fused images were
reflected (Figure 4(e)).

3.1.3. CNN Algorithm Segmentation Effect. ,e CNN al-
gorithm was used to segment ascending aorta slices. Figure 5
shows the segmentation effects of ascending aorta sections at
different levels (if the highest layer was the first layer,
Figure 5 was the first and second layer from top to bottom).
After calculation, the segmentation accuracy of the CNN
algorithm was 87.89%, which was at a high level.

3.1.4. /e Improved Growth Automatic Segmentation Effect.
,e improved automatic growth segmentation and tradi-
tional region growth segmentation were compared re-
garding the average voxel error (HU/voxel). ,e results
showed that the average voxel error of the improved

segmentation method was 1.8921 (HU/voxel), while that of
the traditional region growth method was 7.10091 (HU/
voxel). ,e average voxel error of the improved segmen-
tation method was obviously lower than that of the tradi-
tional growth algorithm (P< 0.05) (Figure 6).

3.2. Comparison of Basic Data. Figure 7 shows the com-
parison of the basic data between the two groups. In the
control group, 72.31% were males, and 27.69% were females.
In the observation group, 66.15% were males, and 33.85%
were females. ,e mean age of the control group was
61.34± 8.85 years old, and that of the observation group was
60.01± 9.65 years old.,e mean diameter of the stents in the
control group was 2.56± 0.21 mm, and that of the obser-
vation group was 2.96± 0.13 mm, without any significant
difference (p> 0.05). It suggested that the study had certain
feasibility.

3.3./e Score of ImageQuality. ,e score results of the CTA
image quality were as follows: the mean CTA score of the
control group was (2.01± 0.73) and that of the observation
group was (2.89± 0.11), which was notably higher than that
of the control group (p< 0.05) (Figure 8). Figure 8(a) shows
the CTA image of reexamination results 2months after
surgery of a 56-year-old male patient in observation group,
and Figure 8(b) shows the CTA image of reexamination
results two months and one week after surgery of a 60-year-

Table 1: Scoring criteria of CTA image.

Score (point) ISR Variant Artifact
0 Invisible structure —— ——
1 Visible structure Obvious Obvious
2 Still clear structure Mild Mild
3 Clear structure Not found Not found

(a) (b)

Figure 3: ,e effect of CTA data enhancement processing. (a) ,e original image; (b) the enhanced image.
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old male patient in control group. According to Figure 8,
the lumen and wall plaques of the coronary arteries in
the observation group were more obvious than those in the
control group (the lesions were inside the yellow circle).

3.4. Comparison of Diagnostic Efficacy of Restenosis.
Figure 9 shows the restenosis diagnostic efficacy results of
the two groups’ CTA images. In the control group, CTA

diagnostic sensitivity was 74.29% (26/35), specificity was
60% (18/30), positive predictive value was 68.42% (26/38),
negative predictive value was 66.67% (18/27), and accuracy
was 67.69% (44/65). In the observation group, CTA diag-
nostic sensitivity was 91.43% (32/35), specificity was 86.76%
(26/30), positive predictive value was 88.89% (32/36),
negative predictive value was 89.66% (26/29), and accuracy
was 89.23% (58/65). Consequently, the restenosis diagnosis
sensitivity, specificity, positive predictive value, negative

(a) (b) (c) (d) (e)

Figure 4: ,e images of extraction effect of vascular similarity features under different values of α. (a) Original image; (b) the image with
α� 0.5; (c) the image with α� 1; (d) the image with α� 2; (e) the fused image.

(a) (b) (c)

Figure 5: ,e segmentation effect of CNN algorithm. (a) ,e original image; (b) the labelling image; (c) the final effect image.
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(a) (b)

Figure 6: ,e effect images of regional growth segmentation. ,e image segmentation effect of (a) the improved region growth seg-
mentation and (b) the traditional region growth segmentation.
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predictive value, and accuracy of CTA images in the ob-
servation group were higher than those in the control group
(p< 0.05).

4. Discussion

Region growth-based CTA images were used to diagnose
restenosis after coronary stenting. To further improve the
accuracy of image segmentation, the CNN algorithm and
vascular similarity feature were combined to improve the
region growth. ,e results showed that the segmentation
accuracy of CNN algorithm could reach 87.89%, which was
at a high level, indicating that the CNN algorithm had a good
effect on image segmentation. Meijs et al. (2020) [22]
proposed that the CNN algorithm had high performance in
image segmentation. Moreover, the CNN segmentation
algorithm was applied by many experts for CTA image
diagnosis research, and the performance was affirmed
[23–25]. However, in the extraction of vascular similarity
features, the detailed vascular features could not be displayed
with the gradual increase of the Gaussian kernel α. None-
theless, after the fusion of the results of different scales,
vessels of different sizes were revealed. Hence, multiscale
vascular similarity feature extraction was more effective than
single-scale vascular information extraction. ,e extraction
of vascular similarity features involved the vascular simi-
larity function, which was first proposed in 1998 and was
widely used in the field of vascular segmentation [26].
Nevertheless, most of them were used for vascular seg-
mentation of retinal images with high segmentation accu-
racy [27, 28]. ,en, the improved region growth
segmentation algorithm was compared with the traditional
region segmentation algorithm. ,e results showed that the
mean voxel error of the improved algorithm was manifestly
lower than that of the traditional algorithm (1.8921 HU/
voxel vs. 7.10091 HU/voxel) (p< 0.05).,e smaller the mean
voxel error was, the more accurate the segmentation result
was. Consequently, the results indicated that the improved
regional growth method could extract coronary arteries
better. Region growth was a relatively common segmenta-
tion algorithm, which was involved in both magnetic res-
onance imaging (MRI) images [29] and CT images [30]. It
was a segmentation method with great potential. ,e
adoption effect of the improved method in clinical practice
was explored.

Firstly, the quality scores of the two groups of CTA
images were compared. ,e results showed that the mean
score of CTA image in the observation group was higher
than that in the control group (2.89± 0.11 points vs.
2.01± 0.73 points) (p< 0.05). ,en, the diagnostic efficacy of
CTA images in restenosis after coronary stenting was
compared between the two groups. ,e results showed that
the diagnostic sensitivity (91.43%), specificity (86.76%),
positive predictive value (88.89%), negative predictive value
(89.66%), and accuracy (89.23%) of the observation group
were higher than those of the control group (p< 0.05).,ese
results indicated that CTA images processed by an automatic
segmentation algorithm were helpful to diagnose the
restenosis after coronary stenting, and they also had good

clinical adoption values, which reflected the adoption ad-
vantage of artificial intelligence (AI) in the field of medical
imaging. In recent years, much attention has been paid to the
adoption of segmentation algorithms in image processing,
and lots of studies have shown that segmentation images are
more conducive to the diagnosis of diseases. For instance,
Liu et al. (2020) proposed that segmented MRI images could
help doctors better observe a patient’s heart health [31].
Furthermore, Pang et al. (2021) found that segmentation had
great potential for clinical diagnosis and treatment of spinal
diseases [32]. To sum up, the automatic segmentation al-
gorithm was helpful to improve the diagnostic efficacy of
CTA images with a good clinical adoption value.

5. Conclusion

In conclusion, the segmentation effect of the coronary CTA
image was more precise by combining the CNN algorithm
with the region growth algorithm of the vascular similarity
feature. Besides, CTA images based on improved region
growth segmentation algorithms had better clinical adoption
value in the diagnosis of restenosis after coronary stenting.
However, the type of patients selected in this study is rel-
atively single, that is, only patients with single-vessel lesions,
so it is not comprehensive enough and further compre-
hensive investigation is needed. ,e results of this study
showed that the adoption of intelligent algorithms in the
field of medical imaging had great potential, which was
worth expecting and investigating.
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