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Skin cancer is one of the most serious forms of the disease, and it can spread to other parts of the body if not detected early.
Terefore, it is crucial to diagnose and treat skin cancer patients at an early stage. Due to the fact that a manual diagnosis of skin
cancer is both time-consuming and expensive, an incorrect diagnosis is made due to the high degree of similarity between the
various skin lesions. Improved categorization of multi-class skin lesions requires the development of automated diagnostic
systems. We ofer a fully automated method for classifying several skin lesions by fne-tuning the deep learning models, namely
VGG16, ResNet50, and ResNet101. Prior to model creation, the training dataset should undergo data augmentation using
traditional image transformation techniques and generative adversarial networks (GANs) to prevent class imbalance issues that
may lead to model overftting. In this study, we investigate the feasibility of creating dermoscopic images that have a realistic
appearance using conditional generative adversarial network (CGAN) techniques. Afterward, the traditional augmentation
methods are used to augment our existing training set to improve the performance of pretrained deep models on the skin lesion
classifcation task. Tis improved performance is then compared to the models developed using the unbalanced dataset. In
addition, we formed an ensemble of fnely tuned transfer learning models, which we trained on balanced and unbalanced datasets.
Tese models were used to make predictions about the data. With appropriate data augmentation, the proposed models attained
an accuracy of 92% for VGG16, 92% for ResNet50, and 92.25% for ResNet101. Te ensemble of these models increased the
accuracy to 93.5%. Tere was a comprehensive discussion on the performance of the models. It is possible to conclude that using
such a method leads to enhanced performance in skin lesion categorization compared to the eforts made in the past.

1. Introduction

Skin cancer is a condition that develops when the DNA of
healthy skin cells undergoes mutations that allow them to
divide abnormally and turn malignant [1, 2]. Excessive ul-
traviolet (UV) radiation exposure, time spent in the sun, and
usage of a solarium are all possible causes [3]. Derived from
the perspective of histology, skin cancer has an uneven cell
structure with varying degrees of chromatin, nucleus, and
cytoplasm [4]. Worldwide, skin cancer is one of the leading

causes of death [5]. Basal cell carcinoma (BCC), melanoma
(MEL) and nonmelanoma skin cancer, and squamous cell
carcinoma are the most common types of skin cancer (SCC).
Infrequent skin cancers, such as Kaposi sarcoma (KS) and
actinic keratosis (AK), include solar keratosis, lymphoma,
and keratoacanthoma. Certain kinds of skin cancer are fatal
and metastasis by nature. However, not all lesions are caused
by malignant tumors. As the cancer of the skin begins in the
epidermis, the outermost layer of skin, where it is visible to
the human eye (National Cancer Institute, 2019), identifying
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a lesion as malignant (cancerous) or benign (non-cancerous)
is frequently made based on a visual examination followed
by a biopsy [6].

Melanoma is the most severe type of cancer since it is
incurable. Te majority of case turnover is death. Occa-
sionally, melanoma develops from a lesion when its size,
irritation, and hue alter. Typically, nonmelanomas are more
prevalent than melanomas, yet melanoma is the leading
cause of death from skin cancer. However, early skin cancer
detection and diagnosis will enhance the likelihood of re-
covery and survival; failing to do so will result in dire cir-
cumstances [7, 8].

Te pervasive and lethal character of the disease ne-
cessitates the development of an accurate, noninvasive di-
agnostic method. Most skin cancers are diagnosed using
visual, clinical, and histological examinations. Frequently,
medical diagnosis depends on the patient’s past, ethnicity,
social behaviours, and sun exposure [9]. Visual inspection
with the naked eye is typically incapable of identifying and
revealing the intricacies. As a solution, dermatoscopy, an
imaging tool for skin lesion investigation, was developed.
Te optical dermatoscopy records dermatoscopic images
using a high-resolution and magnifying camera lens. Tis
recording technique eliminates the skin’s surface refection,
allowing a real-time examination of the epidermis and
dermis structures so that more visual data may be gathered
from the deeper layers of skin, which will further aid in
creating more precise computer-aided diagnostic (CAD)
systems. With only a visual examination, a dermatologist’s
accuracy rate ranged between 65 and 80% [10]. However,
dermatoscopy signifcantly improved the accuracy of early
disease diagnosis [11]. A dermatologist’s eye examination
and dermoscopic images have a combined accuracy rate of
75% to 84% [12, 13].

Even though dermoscopic images have improved ac-
curacy, it still relies on the clinician’s expertise and subjective
opinion to a large extent [14]. Color, dermal, contour,
geometric, and texture features of lesions classify skin le-
sions. Skin lesions are difcult to classify visually.Te degree
of resemblance among the visual features of diferent lesion
classes may lead to the incorrect recognition of lesions,
especially when the cancer is in its early stages [15]. As a
result, dermatologists frequently misclassify malignant and
benign melanomas, which can devastate patients. It is more
dangerous than the squamous and basal because melanoma
spreads throughout the body muchmore quickly and attacks
organs, including the brain and liver [3]. Dermatologists
must develop new diagnostic techniques and methods to
assist them in making early and accurate diagnoses of skin
cancer to prevent or cure the disease due to the rapid de-
velopment of skin cancer, the risk of metastasis, and the lack
of therapeutic access [16]. New diagnostic instruments and
methodologies are required for dermatologists and other
medical professionals to accurately diagnose skin cancer.

Given the difculty of diagnosing and treating skin
cancer with the human eye, computer vision can be utilized
for this purpose. To reduce the complexity of traditional
machine learning techniques, a subject matter expert must
frst specify the features that will be employed. However,

deep learning (DL) methods, a subfeld of machine learning,
can be trained on many benign and cancerous images. Te
DL model can determine if a picture is malignant or benign
by learning nonlinear correlations. As a result, no domain
expertise is required for feature extraction in DL. Using
convolutional neural networks (CNNs) for deep learning is
the topic of this study.

Te current work attempted to develop a novel diagnosis
solution for skin cancer that had an afordable computa-
tional cost and high accuracy as the early detection of cancer
is vital for both treatment and a cure for cancer. We develop
an ensemble-based architecture that can be successfully
employed to improve the accuracy of individual CNNs. Te
fusion of CNNs is one possible way to address the issues
connected to the applicability of a single CNN for a given
job. Tis is accomplished by allowing additional classifers,
each of which is based on a distinct CNN, in order to
compensate for each other’s shortcomings. To be more
specifc, we demonstrate how we can build a CNN ensemble
in order to outperform the accuracy of individual neural
networks that are trained on the available dataset. In ad-
dition to this, an investigation into the impact that data
augmentation has on the overall performance of ensemble
models was carried out. Tis study is the frst of its kind in
the feld of early identifcation of skin cancer. Te deep
learning models that are presented can also be scalable to
many devices, platforms, and operating systems, thereby
transforming these into contemporary medical instruments.

Te contributions of the work are as follows:

(1) Exploring image augmentation methods such as fip,
afne, linear contrast, multiply, and Gaussian blur
(image transformation methods) to balance the
dataset

(2) Exploring the conditional GAN architecture for
generating skin lesion images

(3) Performance analysis of the fne-tuned pretrained
models, namely VGG16, ResNet50, and ResNet101
on both balanced and unbalanced datasets.

(4) An ensemble algorithm by combining the predic-
tions of the three fne-tuned models to improve the
performance obtained by deep individual models.

Te rest of this article is organized as follows: Section 2
discusses previous research undertaken on the topic. Section
3 provides a full mathematical explanation and visual results
for the proposed methodology. In Sections 4 and 5, the
experimental design and fndings are discussed. Finally, the
conclusion is presented in Section 6.

2. Literature Review

Several studies have utilized databases of dermoscopic skin
lesions to aid in diagnosing lesions. Early studies on skin
cancer focused mostly on various algorithms for catego-
rizing skin lesions using traditional AI approaches, which
typically begin with a phase of manual feature extraction,
followed by a distinct period of classifer training. Early
attempts to distinguish between skin lesions that were either
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MEL or nonmelanoma depended on low-level, manually-
created characteristics [17]. Handcrafted features for der-
moscopy images often have a low generalization power due
to a lack of biological principles, understanding, and human
intuition. Low-level handcrafted traits cannot distinguish
complex skin lesions. In addition, there were considerable
visual similarity challenges, high levels of intraclass dis-
parity, and the appearance of artifacts in dermoscopic im-
ages that resulted in poor performance [18]. So deep learning
and CNNs are unquestionably the preferred techniques in
many computer vision applications [6, 19–21] trained on a
dataset of over 100,000 clinical images annotated by expe-
rienced dermatologists using Inception-v3 architecture.
Deep CNN was developed for two critical binary classif-
cation use cases: keratinocyte carcinomas versus benign
seborrheic keratoses and malignant melanomas versus be-
nign nevi. Te frst involves identifying the most common
cancers, and the second consists in identifying the deadliest
skin cancer. Diferentiating benign nevi from malignant
melanomas achieved 72.1± 0.9% accuracy, which was better
than dermatologist discrimination rates.

AlexNet was used by [22] to classify three diferent le-
sions (melanoma, common nevus, and atypical nevus). Te
PH2 dataset is used to train and test the proposedmodel [23].
Te well-known quantitative measures of accuracy, sensi-
tivity, specifcity, and precision are used to evaluate the
proposed method’s performance, with 98.61%, 98.33%,
98.93%, and 97.73% obtained, respectively.

An ensemble strategy for CNNs has been suggested by
[24], which incorporates both intra-architecture and inter-
architecture network fusion in its design. Feature abstraction
levels are represented by a variety of CNN architectures in
the proposed method. For each network, the in-depth
features were used to train diferent support vector machine
(SVM) classifcations. Te proposed algorithm has an area
under the receiver operating characteristic (ROC) curve for
melanoma classifcation of 87.3% and an area under the
ROC curve for seborrheic keratosis classifcation of 95.5%
when tested on the 600 test images from the ISIC 2017 skin
lesion classifcation challenge.

Patch-based attention architecture suggested by [25] in
2020 provides global context between high-resolution
patches. Patch-based attention enhanced the mean sensi-
tivity by 7% in the three pretrained architectures studied.

Te two-phase strategy presented by [26] includes mid-
level features.Tey frst identifed the region of interest using
dermoscopic images and then used pretrained algorithms to
extract information from the images. Teir feature-based
mid-level algorithm achieved a ROC of 0.87 for MEL and
0.97 for BKL. Aburaed et al. [27] explored how accurately
skin cancer can be diagnosed because of the development of
CNNs. Tis research demonstrates the skin cancer classi-
fcation approach using the HAM 10000 dataset. Imple-
mentation, training, and evaluation of VGG16, VGG19, and
a deep CNN are also proposed. Garg et al. [28] used der-
moscopy images from the MNIST HAM-10,000 datasets in
this study. Along with DL, image augmentation techniques
also helped to boost the total number of images.Tey turned
to the transfer learning approach for the last boost in image

classifcation precision. CNN’s weighted average precision of
0.88%, weighted recall average of 0.74%, and weighted F1-
score of 0.77% were all achieved with our model. Te ResNet
model’s transfer learning method produced an accuracy of
90.51%.

A pretrained DarkNet19 deep neural network model was
utilized by [16] to generate image gradients by tweaking the
parameters of the third convolutional layer. Next, high-
frequency and multilayered feed-forward neural networks
are used to merge all visual images (HFaFFNN). DarkNet53
and NASNet-Mobile are then used to train two deep models
that can be fnely tailored to the datasets that were chosen.
Later, the idea of using transfer learning to train bothmodels
is investigated, with the input feed generating images of
localized lesions. Te collected characteristics are then
combined using the parallel max entropy correlation
(PMEC) method in the next stage. An approach called
entropy-kurtosis controlled whale optimization (EKWO) is
used to avoid overftting and to pick the most discriminating
feature information. Tree datasets HAM10000, ISBI2018,
and ISBI2019 were used in this study.

In the majority of instances, a lack of data or an im-
balance of data between classes included in the dataset is the
fundamental cause of poor performance. A recent study [29]
created a deep generative adversarial network (DGAN)
multi-class classifer capable of generating images of skin
disorders by learning the distribution of authentic data from
publicly available datasets. To handle the class-imbalanced
dataset, they used images from several Internet databases.
Improving the DGAN model’s stability during training is a
major task. To analyze GAN’s performance, they created two
CNN models based on ResNet50 and VGG16 and tested the
models with labelled and unlabelled data. DGAN out-
performed conventional data augmentation by 91.1% for
unlabelled and 92.3% for labelled datasets. CNNmodels with
data augmentation obtained 70.8% accuracy on unlabelled
data.

3. Materials and Methods

3.1.Dataset. Tis study utilized the HAM10000 [30] dataset,
which stands for “Human Against Machine with 10,000
training photos.” Tis dataset was used as the ISIC 2018
challenge training set (Task 3) [31]. In order to compile the
collection, dermatoscopic photographs from diverse com-
munities around the world were used. Data collection was
conducted to include all of the vital diagnostic categories
linked with the feld of pigmented lesions. Terefore, seven
distinct types of skin lesions, namely actinic keratosis
(AKIEC), basal cell carcinoma (BCC), benign keratosis
(BKL), dermatofbroma (DF), melanoma (MEL), nevus
(NV), and vascular lesion (VASC), were included.Te whole
data collection contains 10015 images, each with 600× 450
pixels resolution. Figure 1 depicts a selection of images
representative of all groups of lesions.

A metadata fle including demographic information for
each lesion in question was supplied as supplementary data.
In the other instances, the gold standard is a follow-up
examination, expert consensus (confocal), or confrmation
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by in-vivo confocal microscopy, with histopathology (histo)
accounting for more than half of them.

Te objective of the current work was the classifcation of
skin lesions. In order to expedite the development of the
model, the images in the dataset were rescaled to 256× 256
pixels. Te three distinct datasets were generated by parti-
tioning the original dataset into three sections. Tey were
train, validation, and test sets each consisting of 70%, 10%,
and 20% of the whole dataset’s images, respectively. Te
statistical breakdown for the seven diferent categories is
presented in Table 1.

3.2. Data Augmentation. From Table 1, it was evident that
the number of images for the seven classes spans a range of
115 (DF) to 6705 (NV). Te HAM10000 dataset was clearly
unbalanced. Te skewed dataset may cause overftting while
training the model [32]. To solve this data scarcity for some
classes that will afect the classifcation model’s efciency,
data augmentation method was employed. Data augmen-
tation is a method that undergoes random transformations
on the images to increase the count of images for

underrepresented classes without the overhead of collecting
more images [33]. Te possibilities for image augmentation
were enormous such as rotation, translation, and fipping.

In this study, we did a number of operations as shown in
Table 2. All of them were available on the Python library
imaging [34]. Te images after augmentation are shown in
Figure 2.

4. Image Generation Conditional Generative
Adversarial Networks (CGANs)

In addition, we investigated the idea of generating synthetic
data to solve the class imbalance issue. Te well-known
CGAN [35] architecture is used to generate the images.
Figure 3 depicts the high-level design of the network.

Generative adversarial networks (GANs) [36] normally
use a generator to learn how to create new images and a
discriminator to learn how to distinguish between artifcial
and genuine images. However, there was no mechanism to
regulate the images generated, such as the development of
multi-class data.

(a) (b) (c)

(d) (e) (f )

(g)

Figure 1: Sample skin lesion images from the dataset: (a) AKIEC, (b) BCC, (c) BKL, (d) DF, (e) MEL, (f ) NV, and (g) VASC.
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A conditional setting governs the training of the generator
and discriminator in cGANs (such as class labels or data).
Discrimination judgments will be based on both the generated
images and their labels, with the former being more important
to the discriminator. Te ideal model can learn multimodal

input-to-output mapping by being fed a range of contextual
inputs. Following the creation of the model, we retained only
the trained generator model that was utilized to generate the
synthetic images. Some of the synthetic images generated by
the trained CGAN model are displayed in Figure 4.

Table 2: Image augmentation techniques.

Flip 50% of horizontal and vertical fip on all images.

Afne
Translation: move each image −20 to +20% per axis
Rotation: rotate each image by −30 to 30 degrees
Scaling: zoom in each image by 0.5 to 1.5 times

Multiply Multiplication of each image by a random value sampled from [0.8, 1.2].

Linear contrast

Change contrast by equation
127 + alpha ∗ (v-127)

V: pixel value
Alpha: samples from [0.6, 1.4]

Gaussian blur Blur the images using Gaussian kernel with standard deviation sampled from the interval [0.0, 3.0].

(a) (b) (c)

(d) (e) (f)

Figure 2: Augmented images: (a) AKIEC, (b) BCC, (c) BKL, (d) DF, (e) MEL, and (f) VASC.

Table 1: Dataset statistics.

Class Train Validation Test Total Benign/malignant
Actinic keratosis (AKIEC) 236 26 65 327 Benign or malignant
Basal cell carcinoma (BCC) 371 41 102 514 Malignant
Benign keratosis (BKL) 792 88 219 1099 Benign
Dermatofbroma (DF) 83 9 23 115 Benign
Melanoma (MEL) 802 89 222 1113 Malignant
Nevus (NV) 4828 536 1341 6705 Benign
Vascular lesion (VASC) 103 11 28 142 Benign or malignant

Contrast Media & Molecular Imaging 5



5. Classification Model Development

Te majority of real-world datasets sufer from data insuf-
fciency issues, and constructing the most efective deep
learning model for computer vision applications necessitates
plenty of data. In addition, there will be insufcient pro-
cessing capability if the dataset is enormous. With the de-
velopment of the transfer learning [37] approach, such issues
were resolved. Transfer learning is the most extensively
utilized method for categorization tasks. As an alternative to
training from scratch, it is a popular strategy in deep
learning where pretrained models are employed as the
starting point. It is usual practice to utilize deep models such
as VGGNet and ResNet, which have been pretrained for a
large and challenging image classifcation task such as the
ImageNet 1000-class. Te feature extractors of such deep
models will be crucial for capturing critical features for
classifcation. Only the dense layers at the output must be
modifed in accordance with the number of classes we wish
to create.

In this study, we used three deep learning models,
namely VGG16 [38], ResNet50, and ResNet101 [39], all of
them pretrained on the ImageNet dataset. Te architecture
of the designed architectures is shown in Figure 5.

5.1. VGG16. Tere are 16 layers in VGG16 CNN. Te input
dimension to the network is (224, 224, 3). What makes
VGG16 stand out from other implementations is it uses a
2× 2 stride 2 flter with the same padding and max pool
layer, instead of having many hyper-parameters. Trough-
out the architecture, the convolution andmax pool layers are
arranged in the same manner. For output, there are two fully
connected (FC) and a softmax layer.

5.2. ResNet50. Deep learning research has seen a wide-
spread trend toward increasing the number of layers in

CNN architecture in order to improve performance.
However, there was a vanishing/exploding gradient
problem as layers rose. Terefore, the concept of “residual
network” was introduced in architecture. When the
network uses the “skip connection” idea, some subsequent
connections are skipped, and the output is directly con-
nected. Te ResNet variation that contains 50 layers is
called ResNet50.

5.3. ResNet101. Te 101 layered ResNet is ResNet101. Te
architecture is more complex than ResNet50 as it contains
more trainable parameters.

 . Ensemble Algorithm

We have trained three deep learning models for skin
lesion prediction. However, we knew that a single algo-
rithm might not provide the most accurate forecast for a
specifc dataset. Tere were limitations to machine
learning methods, and developing a model with great
accuracy is difcult. By combining multiple models,
overall accuracy could be improved. Te combination can
be done by averaging the output of each model with two
goals in mind: minimizing model error and preserving its
generalizability. Each model predicted the likelihood of
each class’s forecast given its class. Taking the average of
the prediction probabilities by the three models may result
in a performance increase. Te architecture for the en-
semble algorithm is shown in Figure 6.

6.1. Performance Evaluation. Te suggested model archi-
tecture was evaluated for its performance in predicting skin
lesions using many performance assessment indicators.
Accuracy, recall, precision, and F1-score are the four
measures. True positives (TP) and false negatives (FN) are
the numbers of positive images accurately predicted. In

Random noisy
images

Conditional
data

Fake images

X Dicriminator

Dicriminator loss

Generator loss
Real

FakeReal images

256 × 256 × 3

+

0
1
2
3
4
5
6

Generator

Trained
Generator

Figure 3: CGAN architecture.
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contrast, the number of incorrectly anticipated negative
images is known as false positives (FP), while the number of
accurately predicted negative images is known as true
negatives (TN) [40].

6.1.1. Accuracy. Te ratio of the number of classes a model
successfully predicts to the total number of predictions.

Accuracy �
(TP + TN)

(TP + TN + FP + FN)
. (1)

6.1.2. Precision. Precision is defned as the proportion of the
number of correct predictions divided by the total number of
positive class predictions. Precision is calculated as

Precision �
(TP)

(TP + FP)
. (2)

6.1.3. Recall. Recall is defned as the proportion of correct
predictions divided by the number of actual count of the
positive class in the dataset. Recall is calculated as

Recall �
(TP)

(TP + FN)
. (3)

6.1.4. F1-Score. TeF1-score represents the balance between
precision and recall.

F1 − score �
(2∗Precision∗Recall)

(PrecisionRecall)
. (4)

7. Results

7.1. Transfer Learning Model with the Unbalanced Dataset.
Following the conclusion of the training for the VGG16,
ResNet50, and ResNet101 architectures, predictions were
made on the test set to understand how well they performed.
Te fnal layer of our design is called the softmax, and it was
this layer that was responsible for producing the prediction
probability of each of the seven classes. It is necessary to be
aware of each model’s performance before selecting the most
appropriate model for the classifcation of skin lesions.

An analysis was carried out on the data obtained from
the VGG16, ResNet50, and ResNet101 models’ respective
experiments. Figure 7 depicts the validation accuracy, error
rate, and loss plots for each of the three models. It is possible
to see that the accuracy has improved while the loss has
decreased. Terefore, there was no evidence suggesting that
any models would overft.

Te confusionmatrices on the test predictions are shown
in Figure 8, indicating the number of correct and incorrect
predictions based on each class in the test dataset (AKIEC,
BCC, BKL, DF, MEL, NV, and VASC) on the test set.

Te performance evaluation metrics of the three models
are shown in Table 3.

7.1.1. Te Efect of the Ensemble Algorithm. Te ensemble
model combines the mean of the predictions by all three
models. Te confusion matrix of the ensemble model is
shown in Figure 9.Te performance analysis of the ensemble
model on the unbalanced dataset is shown in Table 3. Finally,
the class-wise performance is shown in Table 4.

7.2. Transfer Learning Model on the Balanced Data Obtained
by Data Augmentation. Several image augmentation tech-
niques were used to increase the number of images within
the six lesions. Te skin lesion type “NV” images were
excluded from the data augmentation process since it was an
overrepresented class. Only underrepresented groups un-
derwent the image augmentation procedure. In addition, we
attempted to create synthetic images for each class. How-
ever, as shown in Figure 4, the produced images did not
appear to possess the characteristics that diferentiate the
seven types of skin lesions. We anticipate that such data will
not be suitable for training the model for optimal perfor-
mance. Terefore, the resulting CGAN data were excluded
from the training data with augmentation. Te performance
of the developed models VGG16, ResNet50, and ResNet101
is shown in Table 5.

7.2.1. Te Efect of the Ensemble Algorithm. Te perfor-
mance analysis of the ensemble model on the balanced
dataset is shown in Table 5. Te class-wise performance is
shown in Table 4.

8. Discussion

Tere was a wide variety of categorizations for skin lesions,
some of which were cancerous while others were benign. It is
essential to determine the specifc type of skin lesion to
determine whether the condition may progress to cancer
and to ensure that the appropriate therapy is administered.
Obtaining a cancer diagnosis at an earlier stage is essential if
one wants to experience a full recovery from the disease. A
delayed detection could cause the problem to become more
complicated, putting a person’s life in danger.

It has been discovered that deep learning is the most
efective way of determining the diferent types of skin le-
sions. However, to extract the appropriate features for
identifying the various classes without the participation of a
human, they need a massive amount of the sampled data
acquired from patients in each class [41]. However, the
collection of such a massive volume of labelled data is nearly
impossible, particularly in the feld of medicine. As a con-
sequence of this, the majority of the medical datasets that are
accessible to the public have a problem with data imbalance
[42]. As can be observed in Table 1, the dataset that was used
for this investigation has some serious imbalances. Nevus, a
type of benign lesion, accounts for the majority of the images
and has an abundance of them in comparison to other
categories. If you train the model using this kind of dataset,
there is a chance that it will have a bias for the category that
has the most images. Te classifcation of skin lesions with a
relatively low number of available examples for training
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ended up being incorrectly identifed as the NV class. A
similar thing can be seen from the confusion matrices in
Figure 8, which show that the class dermatofbroma (DF),
which has the fewest number of images, is most commonly
misdiagnosed as nevus.

Data augmentation was the most straightforward re-
sponse to this problem. However, data augmentation might
be one of two diferent types: picture transformations using
the conventional methods or the development of synthetic
images using the capabilities of GAN architecture. Several of
the earlier researchers successfully implemented the GAN
algorithm as a means of image augmentation, and they

obtained performance improvements as a result [29, 43].
However, the synthetic images that were produced by our
CGAN generator and displayed in Figure 4 did not appear to
be efective enough to contribute to improved classifcation
performance even though a prior work successfully applied
the CGAN to produce synthetic skin lesion images using the
HAM10000 dataset. Training with such a signifcantly better
dataset has the potential to assist improve the proposed
model’s overall performance. However, the CGAN archi-
tecture that we designed was unable to generate images that
were similar to genuine images; in fact, even humans could
tell that these images had been artifcially created by looking

(a) (b) (c)

(d) (e) (f )

(g)

Figure 4: Some of the synthetic images from CGAN: (a) AKIEC, (b) BCC, (c) BKL, (d) DF, (e) MEL, (f ) NV, and (g) VASC.
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at them. Te model could only produce the pink hue pre-
sented in the actual image and it was evident that they were
unable to generate skin lesion images that had any dis-
tinctive characteristics for each class.

However, the conventional image enhancement was
successful in accomplishing the goal of achieving the per-
formance increase of all three models that were built. When
using the balanced dataset, all of the performance evaluation

VGG16

Conv2d,BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
ReLU

Conv2d,BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
ReLU

Conv2d,BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
ReLU, Conv2d, BatchNorm2d, ReLU

Conv2d,BatchNorm2d, ReLU, Conv2d, BatchNorm2d,
ReLU, Conv2d, BatchNorm2d, ReLU

BatchNorm2d, Conv2d, BatchNorm2d, ReLU, Conv2d,
BatchNorm2d, ReLU, Conv2d, BatchNorm2d, ReLU

MaxPool2d

MaxPool2d

MaxPool2d

MaxPool2d
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Figure 8: Confusion matrices: (a) VGG16, (b) ResNet50, and (c) ResNet101.
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measures show a higher value, which was achieved by having
less instances of incorrect classifcations. Te ensemble
model was another clever strategy that was utilized to obtain
a higher level of performance. If the predictions from all
three models are combined, there is a chance that the overall
performance will be improved. It is possible that some
models will not be able to identify certain classes, and the
probability of prediction of those classes might be low.
However, taking the average of the three models’ predictions
might help increase the probability of correctly classifying
those classes, which would help reduce the number of false
negatives and false positives. Within the scope of this study,
the combination of all three models unequivocally dem-
onstrated an increase in performance (Tables 3 and 5).
Incorporating the ensemble of models that were trained on
the balanced dataset may also improve the performance of
virtually all of the classes (Table 4).

8.1. Performance Comparison with Previous Works. A lot of
previous works played on the HAM10000 dataset as a
classifcation of skin lesions. Reference [44] developed a
MobileNet model for classifying skin lesions. But the overall
achieved accuracy of the classifcation was 83.1%. Reference
[45] followed the transfer learning approach for the efcient
feature extraction; they used ResNet50 and ResNet101
pretrained models. Te feature selection process was done
on the huge amount of extracted deep features. Te selected

features were given to the SVM and radial basis function
(RBF) for the classifcation. But the developed model could
achieve a performance of 89.8% even with the deep feature
extraction and feature selection. Reference [46] also used
MobileNet for the same task. Te model’s performance was
tried to improve by the upscaling and augmentation
methods, and the researchers succeeded in achieving the
task. But the improved accuracy was limited to 83.23%. Also,
[47] achieved 85.8% on the HAM10000 dataset. Reference
[48] enhanced the images by local color-controlled histo-
gram intensity values before training the CNN model. Te
developed model could achieve an accuracy of 90.67%. As
shown in Table 6, all the comparisons are done with respect
to our work.

Te currently developed model could achieve greater
results, but the dataset sufered from an imbalanced data
problem, which had a direct impact on the performance of
the model developed from the dataset. With the typical data
augmentation technique, performance has been enhanced,
but certain of the lesion classes in the dataset continues to
sufer from poor detection, particularly melanoma—a par-
ticularly serious form of skin cancer. In order to obtain high
performance for the low-performing classes in this study, a
future study will integrate a more extensive dataset derived
from various publicly available skin disease datasets. In
addition, a study of computation time vs accuracy will be
conducted to see how the model could be implemented in
real-time, low-power medical devices.

Table 3: Performance evaluation metrics of the three models.

Model Accuracy (%) Recall (%) Precision (%) F1-score (%)
VGG16 87.7 75.08 84.66 79.06
ResNet50 87.9 75.57 81.69 78.01
ResNet101 88.15 75.96 84.48 79.57
Ensemble model 90 80.66 88.06 83.77
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Figure 9: Confusion matrices of the ensemble model.
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9. Conclusions

Te cancer that afects the skin is one of the deadliest forms
of the disease, and identifying it using methods such as
dermatoscopy and the naked eye was time-consuming.
Identifying skin cancers at an early stage may allow for
treatment that prevents them from progressing to more fatal
forms.Tis work aimed to develop an efective deep learning
model that could be used for the early diagnosis of seven
diferent skin lesions. However, the process was not as easy
as it could have been because the HAM10000 that was being
used for this work appeared to be unbalanced. In order to
fnd a solution to this problem, we investigated data aug-
mentation methods, conventional image translations, and
image generation possibilities. However, the work showed
that the GAN architecture was not properly trained to
generate the appropriate authentic-looking skin lesion im-
ages that qualify as the model training input. Tis was
revealed by the GAN architecture failing to generate these
images. On the other hand, the image transformations might
be able to produce amagnifcent dataset to solve the problem
of image imbalance. In addition, an ensemble model that
consisted of the VGG16, ResNet50, and ResNet101 models
that had been trained on both balanced and unbalanced
datasets was developed, and its performance was analyzed.
According to the fndings of the study, an ensemble of

models that had been trained on a balanced dataset was able
to produce the best results for skin lesion classifcation while
also displaying less bias toward the category that contained
the most signifcant number of examples (nevus). Te ac-
curacy of the model, which was obtained to be 93.5%, was
signifcantly better than many of the previous eforts that
had been made on the same dataset.
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