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We study the dynamics of a disease under administration of a vaccine and antiviral
drug, where the disease transmits directly from the parents to the offspring
(vertical transmission) and also through contact with infective individuals
(horizontal transmission). While vaccination to those susceptible reduces the
horizontal transmission, administration of the antiviral drug to infected individuals
lessens the chance of vertical transmission. Thus the vaccine and antiviral drug play
different roles in controlling the disease, which has both vertical and horizontal
transmission. We develop a 3D model with Susceptible–Infected–Recovered under
vaccination to the susceptible and antiviral treatment to the infected and consider a
control theoretic approach using the Pontryagin maximum principle to analyse the cost-
effectiveness of the control process. Our results demonstrate that a mixed intervention
strategy of vaccination and antiviral drug in a proper ratio is the most effective way to
control the disease. We show that cost-effectiveness of both intervention strategies
intimately depends on disease-related parameters, such as force of infection,
probability of being infected to offspring from infected mothers, loss of immunity or
reinfection and also on cost of treatment.
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1. Introduction

Infectious diseases in humans are caused by pathogenic microbial agents such as bacteria,

virus, protozoa and fungi, which enter and infect a host individual. There are several

infectious diseases where the infection transmits from one infected individual host to

another susceptible through two distinct routes: horizontal transmission or direct contact

and vertical transmission [8]. Horizontal transmission refers to the passage of the infection

from one host individual to another, for example, by physical contact and by inhalation or

ingestion of infective material. In contrast, vertical transmission refers to transmission of

an infection from a mother to her offspring during the perinatal period, the period

immediately before and after birth. A few good examples of such vertically transmitted

diseases are HIV, hepatitis B or hepatitis C. These are few among all serious

communicable diseases which burden worldwide these days. For example, approximately
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30% of the world’s population have serologic evidence of hepatitis B virus (HBV)

infection. Of these, an estimated 350 million have chronic HBV infection, and at least 1

million chronically infected persons die each year from chronic liver disease, including

cirrhosis and liver cancer. Even in a low endemic country such as the United States,

hepatitis B causes more long-term sequelae and deaths than all other vaccine preventable

childhood diseases, before the availability of vaccines to prevent this disease [16].

The literature dealing with the biological as well as mathematical theory on these

diseases is quite extensive. The monograph of Bailey [1] and the survey article by

Hethcote et al. [19] are devoted to the discussion on models of such diseases. Busenberg

and Cooke [8] and Busenberg et al. [9] consider both continuous and discrete models of

vertically communicable diseases. Some works on this can be found in the book by

Thieme [31]. There are recent works [7,20,23,26,28,34] which focus on stability of such

vertically transmitted disease dynamics. The concept of vertical transmission plays an

important role in the cultural inheritance. This area has been studied by Cavalli-Sforza and

Feldman [10], and their monograph describes the results obtained in this field.

A lot of effort on controlling such diseases with administration of antiviral treatment

and vaccination has been taken up over the years [12,13,27,34]. For example, there are two

types of hepatitis B vaccines (recombinant vaccine and hepatitis B immunoglobulin G) and

seven FDA-approved antiviral drugs available for hepatitis B, as well as interferon and

ribavirin as vaccine and antiviral drug, respectively, for hepatitis C. Although a highly

active anti-retroviral therapy is available for HIV [2,3], there is currently no publicly

available vaccine or cure for HIV or AIDS. However, a vaccine that is a combination of two

previously unsuccessful vaccines was reported, in September 2009, to have resulted in a

30% reduction in infections in a trial conducted in Thailand (http://news.bbc.co.uk/2/hi/

health/8272113.stm). There are a number of field studies and research going on to evaluate

the effectiveness of several control measures and its administration [32]. Mathematical

theories about this are almost as numerous [15]! But optimal management of controlling

such diseases is comparatively less developed. In fact, an essential part in the control of

such diseases is the consideration of economic viability of the process concerned. For

instance, vaccination of infants in areas of high HBV prevalence is effective in reducing

both infection and chronic carriage, but the cost-effectiveness of universal vaccination in

low-risk areas such as the USA and Europe depends on a reduction in the cost of the

vaccine [33]. HBV vaccination is most cost-effective when screening, and immunization of

the newborn is combined with routine administration to all 10-year-old individuals [6].

There are works on optimal control on the ecological problems by Goh et al. [18] and Clark

[11], etc. Especially, on the pest management problem, there are recent works by

Bhattacharyya and Bhattacharya [4,5] and Ghosh and Bhattacharya [17], whereas its

application on epidemiological problems is less developed.

In the present paper, we consider the dynamic model of a disease in a very generic

sense, under administration of antiviral drug and vaccination to assess the clinical and

economic impact of these two interventions. To study the basic reproduction ratio,

stability of the solutions under realistic biological parameters and by the application of

Pontryagin’s maximum principle, we perform the optimal analysis of the control model

considering the antiviral drug to the infective and vaccination to the susceptible as control

parameters. The derivation of the model and its analysis are presented in Section 2. Section

3 considers the optimal analysis of the model and in Section 4, we consider some

numerical experiments under special choice of parameter values and lastly we make

certain conclusive remarks about the study.
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2. Model and preliminaries

We consider a three-compartment model consisting of Susceptible (S), Infected (I) and

Recovered (R) for a disease that propagates through contact between the infected and the

susceptible individuals and also through the possibility of infected parents. We assume

stable population with equal per capita birth and death rate m. There are many ways to

model vertically transmitted disease [8,23,28,34]. For instance, Busenberg and Cooke [8]

do not consider stable population. In fact, they assume susceptible and infected birth

separately, and that population grows exponentially in the absence of infection. The

horizontal transmission of disease propagation is denoted by the mass action term kSI,

where k represents the contact rate. For vertical transmission, we assume that a fraction q1

of newborns from infected class are infected and it is denoted by the term q1mI, ðq1 , 1Þ.

Similarly, a fraction q2 of newborns from recovered class are immune and it is denoted by

q2mR, ðq2 , 1Þ. Consequently, the birth flux into the susceptible class is given by

m2 q1mI 2 q1mR. As disease-induced death rate is not considered in the system, it is

assumed that the total population is constant, i.e. SðtÞ þ IðtÞ þ RðtÞ ¼ 1. We consider that

the infected class may undergo the antiviral treatment and switch to the recovered

compartment proportional to the rate of drug uptake. Moreover, vaccination is

administrated to the susceptible up to the younger age class and they move to recovered

class. We also consider the loss of immunity and so there is an inflow from recovered class

to susceptible class. A flow chart of this compartmental model is shown in Figure 1. These

assumptions, however, lead to the following dynamic model:

_S ¼ m2 mS2 kSI 2 q1mI 2 q2mRþ aR2 m1u1S; ð1Þ

_I ¼ kSI þ q1mI 2 mI 2 gI 2 m2u2I; ð2Þ

_R ¼ q2mR2 mRþ gI 2 aRþ m1u1Sþ m2u2I; ð3Þ

S I R

Vaccination

Antiviral drug

mS mRmI

kSI

m1u1S

m2u2I

g I

aR

Horizontal transmission
Vertical transmission

q2mRq1mI

m –q1mI – q2mR

Figure 1. Flow diagram of disease dynamics under application of vaccine and antiviral drug. S, I
and R denote three compartments of susceptible, infected and immune or recovered class,
respectively. The term kSI on the dotted line indicates the horizontal transmission from compartment
S to I, whereas q1mI on the dashed line denotes the vertical transmission from I to I by birth of
offspring from an infected individual. Similarly, q2mR represents the proportions of immune
newborn from recovered class. gI shows that individuals recover and move from compartment I to R
and aR denotes a portion that moves from compartment R to S due to loss of immunity. Each
compartment has their own death rate (in the slanted arrow). Curved arrows on top of the figure
indicate proportions of susceptible and infected move to recovered class by vaccination and antiviral
drug, respectively.
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where k denotes the transmission rate, g indicates the rate of recovery of the infective and

a denotes the rate of waning immunity or reinfection. The rate of vaccination and antiviral

treatment is denoted by u1 and u2, whereas m1 and m2 indicate the efficacy of the

respective control measures.

2.1 Equilibria

Models (1)–(3) possess mainly two equilibria:

. Disease-free equilibrium, �E ¼ ð�S; 0; �RÞ, Where

�S ¼
mþ a2 q2m

mþ a2 q2mþ m1u1

; ð4Þ

�R ¼
m1u1

mþ a2 q2m
�S: ð5Þ

In the absence of vaccination, this reduces to the equilibrium (1,0,0).

. Endemic equilibria, E * ¼ ðS*; I *;R*Þ, which has four different cases:

(i) No drug, no vaccine ðu1 ¼ 0; u2 ¼ 0Þ, E
*

1 ¼ S
*

1; I
*

1;R
*

1

� �
, where

S
*

1 ¼
mþ g2 q1m

k
; ð6Þ

I
*

1 ¼
ðmþ a2 q2mÞ½k2 ðmþ g2 q1mÞ�

kðgþ mþ a2 q2mÞ
; ð7Þ

R
*

1 ¼
gI

*

1

mþ a2 q2m
: ð8Þ

(ii) With drug, no vaccine ðu1 ¼ 0; u2 – 0Þ, E
*

2 ¼ S
*

2; I
*

2;R
*

2

� �
, where

S
*

2 ¼
mþ gþ m2u2 2 q1m

k
; ð9Þ

I
*

2 ¼
ðmþ a2 q2mÞ½k2 ðmþ gþ m2u2 2 q1mÞ�

k½ðgþ m2u2Þ þ ðmþ a2 q2mÞ�
; ð10Þ

R
*

2 ¼
ðgþ m2uÞI

*

2

mþ a2 q2m
: ð11Þ

(iii) No drug, with vaccine ðu1 – 0; u2 ¼ 0Þ, E
*

3 ¼ S
*

3; I
*

3;R
*

3

� �
, here

S
*

3 ¼
mþ g2 q1m

k
; ð12Þ

I
*

3 ¼
½kðmþ a2 q2mÞ2 ðmþ g2 q1mÞðmþ a2 q2mþ m1u1Þ�

k½gþ ðmþ a2 q2mÞ�
; ð13Þ

R
*

3 ¼
m1u1S

*

3 þ gI
*

3

mþ a2 q2m
: ð14Þ
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(iv) With drug, with vaccine ðg1 – 0; g2 – 0Þ, E
*

4 ¼ S
*

4; I
*

4;R
*

4

� �
, where

S
*

4 ¼
mþ gþ m2u2 2 q1m

k
; ð15Þ

I
*

4 ¼
½kðmþ a2 q2mÞ2 ðmþ gþ m2u2 2 q1mÞðmþ a2 q2mþ m1u1Þ�

k½ðgþ m2u2Þ þ ðmþ a2 q2mÞ�
;

ð16Þ

R
*

4 ¼
m1u1S

*

4 þ ðgþ m2u2ÞI
*

4

mþ a2 q2m
: ð17Þ

Feasibility of E
*

4 requires

k .
ðmþ gþ m2u2 2 q1mÞðmþ a2 q2mþ m1u1Þ

ðmþ a2 q2mÞ
: ð18Þ

Feasibility of other equilibria E
*

i , i ¼ 1; 2; 3, may be obtained from (18) by assuming u1

and/or u2 ¼ 0.

2.1.1 Reproduction ratio

The basic reproduction ratio R0 for the disease transmission in the above model is given

by

R0ðk; q1Þ ¼
k

mþ g2 q1m
; ð19Þ

which upon Taylor expansion gives

R0ðk; q1Þ ¼
k

mþ g
½1 þ vþ v 2 þ . . . �;¼ R00½1 þ vþ v2 þ . . . � ð20Þ

where

R00 ¼
k

mþ g
v ¼

q1m

mþ g
:

An interpretation of R0 is given as follows: over the mean infectious period 1=ðmþ gÞ, a

single infection produces k:1=ðmþ gÞ infected individuals through direct contact or

horizontal transmission. This is given by the first term of R0. Now each of these new

infected gives birth to m=ðmþ gÞ offspring during the mean infectious period and out of

which m=ðmþ gÞ:q1 are infected offspring. So, the total newly infected offspring are

k:1=ðmþ gÞ:m=ðmþ gÞ:q1 This is exactly the second term of the expression in Equation

(20). Similarly the third and higher ordered terms represent the contribution through

vertical transmission in the third generation and so on from the same group of infected

individuals.

Computational and Mathematical Methods in Medicine 373



We also define the control reproduction ratio Rc by

Rc ¼
kðmþ a2 q2mÞ

ðmþ g2 q1mþ m2u2Þðmþ a2 q2mþ m1u1Þ
: ð21Þ

Note that administration of either vaccine u1 or antiviral drug u2 reduces the value of Rc.

Remark 1. It may be observed from relation (19) that the equilibrium E
*

1 is positive, if

R0 . 1 holds, i.e. if k þ q1m . mþ g. This with (23) clears the fact that both horizontal

and vertical transmission play a substantial role in persistence of disease and it persists

only if both horizontal and vertical transmission should be sufficiently higher than a

certain threshold value dependent on birth and death of individuals. Relation (23)

quantifies their separate contribution in disease transmission. We should also note that

R0 ! 1 implies E
*

1 ! ð1; 0; 0Þ, the disease-free equilibrium and at R0 ¼ 1, we get

E
*

1 ¼ ð1; 0; 0Þ.

Remark 2. It is clear from (20) that endemic equilibrium E
*

i is stable if respective control

reproduction ratio Rc is greater than 1. We should note from (20) that application of

vaccine and antiviral drug both reduce the value of Rc, and simultaneous effects of both

intervention strategies on Rc are not simply the addition of two independent effects, rather

they multiply each other to enhance the sum of independent effects in population level.

Here lies the advantage for administration of integrated control. We show in numerical

simulation how Rc is regulated by different rates of u1 and u2. However, the threshold

values for rate of vaccine u1 and antiviral drug u2 to reduce Rc to less than 1 are given by

u
*

1 ¼
ðmþ a2 q2mÞ{k2 ðmþ g2 q1mÞ}

m1ðmþ g2 q1mÞ
; ð22Þ

u
*

2 ¼
1

m2{k2 ðmþ g2 q1mÞ}
; ð23Þ

respectively. Thus, effectiveness of vaccination naturally depends on the rate of waning

immunity a, proportion of immune newborns q2, etc.

2.2 Stability analysis

In this section, we will discuss the stability of different equilibria. The variational matrix

of the linearized system is given by

J ¼

2kI 2 m2 m1u1 2kS2 q1m a2 q2m

kI kS2 m2 gþ q1m2 m2u2 0

m1u1 gþ m2u2 q2m2 a2 m

0
BB@

1
CCA:

The characteristic equation for disease-free equilibrium �E is

ðl2 l1Þ{ðlþ mþ m1u1Þðlþ mþ a2 q2mÞ2 m1u1ða2 q2mÞ}; ð24Þ
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where l1 ¼ k �S2 m2 gþ q1m2 m2u2. This gives one root as, which is negative if

Rc , 1: ð25Þ

The other two roots are given by the polynomial l2 þ {ðmþ m1u1Þ þ ðmþ a2 q2mÞ}lþ

ðmþ m1u1Þðmþ a2 q2mÞ2 m1ða2 q2mÞ ¼ 0 and they have negative real parts.

The characteristic equation for interior equilibrium E
*

i ði ¼ 2; . . . ; 4Þ is given by

l3 þ a2l
2 þ a1lþ a0 ¼ 0; ð26Þ

where
a2 ¼ mþ m1u1 þ aþ m2 q2mþ kI

*

i ;

a1 ¼ ðmþ kI
*

i þ m1u1Þðmþ a2 q2mÞ þ ðkS
*

i þ q1mÞkI
*

i þ m1u1ðq2m2 aÞ;

a0 ¼ ðmþ a2 q2mÞ þ ðkS
*

i þ q1mÞk
*

i þ ðq2m2 aÞkI
*

i ðgþ m2u2Þ; i ¼ 1; 2; 3; 4:

It is seen that aj . 0 for all j ¼ 0; 1; 2 and a2a1 2 a0 . 0, if

Rc . 1; ð27Þ

and hence by Routh–Hurwitz criterion, E
*

i is stable (for all i ¼ 2; . . . ; 4).

Remark 3. It is interesting to note that a0 ¼ 0, whenever Rc ¼ 1. In fact, the system

converges to disease-free equilibrium �E when Rc , 1 and it switches to endemic

equilibrium E
*

i through saddle-node bifurcation at Rc ¼ 1. Endemic equilibrium E
*

i exists

and is stable when Rc . 1.

Remark 4. Stability of E
*

1 is assured similarly, if R0 . 1.

3. Optimization of the control policy

So far, we have seen that under some suitable threshold limits of different parameters, the

3D SIR model system is locally asymptotically stable around the endemic equilibrium E
*

4.

But during the process of applying control measures such as vaccination or antiviral

treatment, there is an obvious question of incurring some cost and allied benefit in the

whole process. Thus the objective is to quantify the units to express the net profit during

the given time of treatment. In other words, this is to construct an economic model out of

the given dynamic model of control. In this case the problem reduces to an optimal control

problem. Our task is then to formulate an optimal policy when the control measures in the

system are already defined in a mathematical form and finally to find out the restrictions on

the economic parameters of the model. We rewrite the model as

_S ¼ m2 mS2 kSI 2 q1mI 2 q2mRþ aR2 U1; ð28Þ

_I ¼ kSI 2 mI þ q1mI 2 gI 2 U2; ð29Þ

_R ¼ q2mR2 mRþ gI 2 aRþ U3; ð30Þ

where Uis are the total effects (gain/loss) to the growth equations of susceptible, infected

and recovered, respectively, due to simultaneous use of vaccine and antiviral drug. We still

assume that u1 and u2 should satisfy all the inequalities to make the system stable.
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3.1 Formulation of the objective function

The formulation of the objective function p ¼ pðS; I;RÞ, which is to be maximized over

the set of control parameters, is explained as follows:

Let cv be the cost per unit vaccine and cM be the cost per unit antiviral drug to be

applied. p denotes the projected price of the individual candidate in the system in terms of

their social value.

D1: Profit due to implementation of vaccination and antiviral treatment ¼ pRU3.

D2: Net expenditure for application of vaccine of amount m1u1 over the loss incurred

due to efflux of the susceptible ¼ cvm1u1 2 pSU1 ¼ ðcv=S2 pSÞU1.

D3: Net expenditure for application of antiviral treatment of amount m2u2 over the loss

incurred due to efflux of infected ¼ cMm2u2 2 pIU2 ¼ ðcM=I 2 pIÞU2.

Hence, the objective function for net benefit out of the control process is given by

p ¼ pRU3 2
cv

S
2 pS

� �
U1 2

cM

I
2 pI

� �
U2;

¼ pS2
cv

S

� �
U1 þ pI 2

cM

I

� �
U2 þ pRU3:

After the formulation of the objective function, our next task is to find out the functions

UiðtÞ which drive the dynamical system (28)–(30) from its initial state to a steady-state

optimal solution ðS**; I **;R**Þ so as to maximize the integral

J ðU1;U2;U3Þ ¼

ðT
0

pðS; I;R;Ui; tÞdt; ð31Þ

over

G ¼ ðU1;U2;U3Þj0 # UiðtÞ # miu
*

i ; i ¼ 1; 2; 0 # U3ðtÞ # m1u
*

1 þ m2u
*

2

n o
; ð32Þ

where T is the total time of applying both measures as shown in system (28)–(30). We

may point out that this steady state is a singular extremal in this case, because the control

variables Ui appear linearly in the system of Equations (28)–(30) and objective functional

(31). Applying Pontryagin’s maximum principle on the constructed Hamiltonian H, we

obtain the optimal steady-state solution ðS**; I **;R**Þ and corresponding control vector

U
*

i . Moreover, the main objective in this optimal control problem is to maximize J (which

is the same as minimizing the cost of vaccine and treatment). Thus, the generalized

Legendre condition requires that along the singular solution, the matrix ðaijÞ with

aij ¼
›

›ui
D2 ›H

›uj

� �� �
ði; j ¼ 1; 2; 3; 4Þ

must be negative semi-definite at ðS**; I **;R**Þ. This condition of semi-definiteness of the

above matrix imposes some restrictions on the economic parameters of the model, which

means that the cost and the allied benefit or gain in the process must have some necessary

limitations to get the maximum benefit or minimum cost of the whole process.

In this connection, we may point out that necessary conditions are more useful than the

sufficient conditions in the application of optimal control theory. This is because it is

extremely difficult to apply sufficient conditions in a real-world problem. There are, in

fact, several sets of necessary conditions in optimal control theory in ecological problems,

which in turn reflects the complexity in ecological systems. For example, a set of
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necessary conditions in this regard may be found in Goh et al.’s book [18]. The most useful

set of necessary conditions for singular control consists of the generalized Legendre

conditions. By applying this condition we have the following theorem.

Theorem 3.1. Consider the objective functional J given by Equation (31) with

ðU1;U2;U3Þ [ G constraint to the state system (28) – (30). Then there exists

U
*

1;U
*

2;U
*

3

� �
[ G such that J U

*

1;U
*

2;U
*

3

� �
¼ max{J ðU1;U2;U3ÞjðU1;U2;U3Þ [ G},

if the following conditions

p ,
2S**3ðmþ kI **Þ2 cvðm2 q1mÞI **

S**2
ðm2 q1mÞI **

; ð33Þ

I ** . max
pS** 2 cv

S **

� �
ðkS** þ q1mÞ

2pðkS** þ ðq1m2 m2 gÞÞ
;
pS** 2 cv

S **

� �
ða2 q2mÞ

pg

� �
ð34Þ

are satisfied.

Proof. We transform the integral occurring in I by choosing

f 1 ; f 1ðSÞ; f 2 ; f 2ðIÞ; f 3 ; f 3ðRÞ;

such that f 1ðSð0ÞÞ ¼ 0, f 2ðIð0ÞÞ ¼ 0, f 3ðRð0ÞÞ ¼ 0,

d

dt
½f 1ðSÞ� ¼ pS2

cv

S

� �
_S;

d

dt
½f 2ðIÞ� ¼ pI 2

cM

I

� �
_I;

d

dt
½f 3ðRÞ� ¼ pR _R:

Then

J ¼

ðT
0

pðS; I;R;UÞdt

¼

ðT
0

pS2
cV

S

� �
{m2 mS2 kSI 2 q1mI 2 q2mRþ aR2 _S}

h

þ pI 2
cM

I

� �
{kSI 2 mI þ q1mI 2 gI 2 _I} 2 pR{q2mR2 mRþ gI 2 aR2 _R}

i
dt;

¼

ðT
0

WðS; I;RÞdt2

ðT
0

d

dt
ðf 1ðSÞÞ þ

d

dt
ðf 2ðIÞÞ2

d

dt
ðf 3ðRÞÞ

� �
dt;

¼

ðT
0

WðS; I;RÞdt2 ½f 1ðSðTÞÞ þ f 2ðIðTÞÞ2 f 3ðRðTÞÞ�;

where

WðS; I;PÞ ¼ Afþ Bc2 C: ð35Þ
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A ¼ ðpS2 cV
S
Þ; B ¼ ðpI 2 cM

I
Þ; C ¼ pR{q2mR2 mRþ gI 2 aR}; f ¼ m2 mS2 kSI

2q1mI 2 q2mRþ aR and c ¼ kSI 2 mI þ q1mI 2 gI:
Now we consider the Hamiltonian

H ¼ WðS; I;R; tÞ þ
X2

i¼1

liðGi 2 UiÞ þ l3ðG3 þ U3Þ; ð36Þ

where G1 ¼ m2 mS2 kSI 2 q1mI 2 q2mRþ aR, G2 ¼ kSI 2 mI þ q1mI 2 gI, G3 ¼

q2mR2 mRþ gI 2 aR and li are co-state variables to be determined suitably. For steady-

state solution, we have

Gi 2 Ui ¼ 0; i ¼ 1; 2; ð37Þ

and

G3 þ U3 ¼ 0: ð38Þ

If we suppose that there exists U
*

1;U
*

2;U
*

3

� �
for which ðS**; I **;R**Þ gives a steady-state

optimal solution of (28)–(30), then from Pontryagin’s maximum principle, it follows that

at this steady state, we have

_l1 ¼ 2
›H

›S
¼ 2

›W

›S
2

X3

i¼1

li
›Gi

›S
; ð39Þ

_l2 ¼ 2
›H

›I
¼ 2

›W

›I
2

X3

i¼1

li
›Gi

›I
; ð40Þ

_l3 ¼ 2
›H

›P
¼ 2

›W

›R
2

X3

i¼1

li
›Gi

›R
; ð41Þ

and

›H

›Ui

¼ 0; ð42Þ

at U
*

1;U
*

2;U
*

3

� �
. This implies that li ¼ 0. The control vector U appears linearly in the

Hamiltonian. Therefore, U
*

1;U
*

2;U
*

3

� �
is a singular control variable. Now, the necessary

conditions of optimality further ensure that at this singular control

D
›H

›Ui

� �
¼ 0; ð43Þ

›

›Uj

D
›H

›Ui

� �� �
¼ 0; ð44Þ

which, in turn, shows that _li ¼ 0. This further implies through (39)–(41) that

›W

›S
¼ 0;

›W

›I
¼ 0;

›W

›R
¼ 0;
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which by (35) reduces to

pðm2 2mS2 2kSI 2 q1mI þ FRÞ þ
cv

S2
ðm2 q1mI þ FRÞ þ kðpI 2 2 cMÞ ¼ 0; ð45Þ

ðksþ q1mÞ pS2
cv

S

� �
þ 2pðkSI þ ðq1m2 m2 gÞIÞ2 pgR ¼ 0; ð46Þ

pS2
cv

S

� �
F 2 pgI þ 2pðaþ m2 q2mÞR ¼ 0; ð47Þ

where F ¼ a2 q2m. Using Equations (45)–(47), we get the optimal equilibrium or non-

trivial bionomic equilibrium ðS**; I **;R**Þ under the conditions:

p ,
2S**3ðmþ kI **Þ2 cvðm2 q1mÞI **

S**2
ðm2 q1mÞI **

;

I ** .max
pS** 2 cv

S **

� �
ðkS ** þ q1mÞ

2pðkS ** þ ðq1m2 m2 gÞÞ
;
pS** 2 cv

S **

� �
ða2 q2mÞ

pg

	 

:

These are exactly the conditions (33) and (34). Using the values of S**; I **;R** on model

Equations (28) and (29), we find out the values of singular control U
*

1;U
*

2;U
*

3

� �
, which

give the estimates on the rates of vaccination u1 and antiviral treatment u2 for optimum

control of the disease in the population. These inequalities (33) and (34), however, define

the constraints on disease-related parameters as well as economic parameters such as cost

of vaccine and medicines and also proportion of population to be vaccinated or to be given

antiviral treatment.

We can also find out the necessary condition for optimality by showing that the matrix

L ¼ ðaijÞ is negative semi-definite at ðS**; I **;R**Þ, where

aij ¼
›

›Ui

D2 ›H

›Uj

� �� �
¼ 2

›2W

›S›I
; ði; j ¼ 1; . . . ; 3Þ; etc:

Differentiating (38) twice with respect to S, I, R, we get

a11 ¼ 22 pðmþ kIÞ þ
cv

S3
ðm2 qmI þ FRÞ

h i
;

a22 ¼ 2pðkSþ q1m2 m2 gÞ;

a33 ¼ 2pðaþ m2 q2mÞ;

a12 ¼ a21 ¼ 22kpS2 pþ
cv

S2

� �
þ 2kpI;

a13 ¼ a31 ¼ pþ
cv

S2

� �
F;

a23 ¼ a32 ¼ 2pg:

Thus, negative semi-definiteness of matrix L may be obtained by making a11 , 0,

a11a22 2 a2
12 . 0 and detðaijÞ , 0 using the above expressions.

Remark 1. We may note that inequalities (33) and (34) and inequalities for negative semi-

definiteness of matrix L define certain constraints on the economic as well as disease-

related parameters for maximization of the allied benefit due to administration of antiviral

drug and vaccine. However, the rates of respective measures for maximum benefit can be
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found using model Equations (28) and (29) on substitution of optimal equilibrium

ðS**; I **;R**Þ, satisfying (33) and (34).

4. Numerical simulation

We make several interesting observations by numerically simulating the system Equations

(1)–(3) for a range of parameter values. A major part of the simulation covers the effect of

independent as well as integrated control of infection by application of antiviral drug and

vaccine. The main parameter values listed in Table 1 are obtained from [13,14,21,22,34] to

reflect the dynamics of vertically transmitted disease, for example, HBV. We also consider

(0.99999, 0.00001, 0) as initial condition for simulation of the model.

With the above parameter values, the system asymptotically approaches towards the

equilibrium E
*

1 ¼ ð0:3981; 0:0160; 0:5833Þ, where the basic reproduction ratio R0 ¼

2:5120 (Figure 2). As we have discussed and shown in Section 2, the equilibrium is

endemic and stable when R0 . 1.

We simulate the system at different values of rate of vaccine u1. As it is shown in

Figure 3, application of vaccination reduces the disease burden. In fact, the mean size of

the infected population density is decreased with higher rate of vaccine. The transient

behaviour of disease incidence also varies due to immunization. At a high rate of

vaccination, the infected population density is reduced to a very low level initially and

then it takes longer time to restore the steady-state value. In contrast to Figure 3, though

the application of antiviral drug reduces the disease incidence, it does not alter the

frequency and magnitude of initial oscillation in infected population density significantly

(Figure 4). However, the antiviral drug works more slowly than vaccination.

The effect of two control measures on disease dynamics may be understood well if we

consider Figure 5. It explains how control reproduction ratio Rc evolves with different

rates of u1 and u2. It is seen that both vaccination and antiviral drug reduce the value of Rc

effectively. But an integrated control works better than either of the control measures. We

have also observed in Section 1 that the effect of integrated control actually is more than

the sum of their independent effect. To explore the transient behaviour of disease

dynamics on using integrated control, we plot the infected population density after 25

years of administration of vaccine and antiviral drug at different rates (Figure 6).

In Figure 6, we see that initial oscillation in population dies out sooner if we use the

antiviral drug at higher rate with application of vaccination. So, a mixed intervention

strategy of vaccination and antiviral treatment is the best to reduce the disease burden

more effectively.

Table 1. Parameter values used in numerical simulations.

Parameters Description Value Reference

m Birth (and death) rate per capita 0.0121 [34]
k Transmission rate 10.22 [13,34]
q1 Probability of infected newborns 0.11 [13]
q2 Probability of immune newborns 0.1 [14]
g Recovery rate 4.0566 [13,34]
a Rate of waning immunity 0.1 [14]
m1 Efficacy of vaccine 0.81 [24]
m2 Efficacy of antiviral drug 0.71
u1 Rate of vaccination per year 0–2
u2 Rate of antiviral drug per year 0–20

S. Bhattacharyya and S. Ghosh380



We also experiment that how the disease evolves with change in rate of waning

immunity a. From Figure 7, it is observed that increase in a not only increases the mean

size of disease incidence, but it also reduces the initial oscillation in population and more

rapidly the population approaches towards the steady-state level. This is because high

waning increases the probability of reinfection, and the individuals move from recovered

compartment to susceptible compartment and this increases the disease prevalence by

horizontal transmission.

To explore the dependence of probabilities q1 and q2 on disease dynamics, we plot the

control reproduction ratio Rc with respect to q1 and q2 (Figure 8). It is seen that Rc
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Figure 2. A representative time series of the susceptible and the infected, when no intervention
strategies (vaccine or antiviral drug) is applied to the system. As discussed in Section 2, the system
stabilizes to some endemic equilibrium (0.3981, 0.0160, 0.5833). The basic reproduction ratio R0 at
this parameter value is 2.5120.
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Figure 3. Infected population density at different rates of vaccination per day. Application of
vaccination not only reduces the steady-state level of incidence, also decreases the mean size of
infected population, and the disease restores more slowly once it is reduced to a very low level.
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increases as q1 increases, but decreases as q2 increases. Increase in q1 increases the

probability of infected newborns, and so Rc is increased. But, higher value of q2 increases

the proportion of immune newborns, which in turn reduces the per capita susceptible birth

rate. This inhibits the horizontal transmission in unit time.

Hence, we observe that several disease-related parameters have nonlinear effect on the

dynamics of disease. Especially, transmission rate, rate of waning immunity, proportion of

perinatal infection, etc. have a major impact on the disease prevalence. Though we observe

that the use of both vaccine and antiviral drug reduces the disease burden, the integrated

control works more effectively than any other single control measure.
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Figure 4. Infected population density at different rates of antiviral drug per day. In contrast to
Figure 3, the steady-state level decreases more slowly with application of antiviral drug. Also, the
frequency and magnitude of oscillation of disease incidence do not change with a high rate of
antiviral drug.
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Figure 5. Control reproduction ratio Rc at different values of vaccination and antiviral drug.
Rc ¼ 2:5120, when there is no vaccination and antiviral drug (Figure 2). As it is also seen in earlier
figures, application of vaccination reduces Rc more rapidly than antiviral drugs; though mixed
intervention strategies always work better to reduce the disease burden.
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5. Discussion

In the present manuscript, we have proposed an SIR model of an infectious disease under

two different control measures. The disease propagates from the infected to the susceptible

in two different ways: through horizontal transmission or direct contact and through

vertical transmission from mother to her offspring. There are infectious diseases, for

instance hepatitis B and HIV, where there is a high probability in transmission of the

disease from the infected mother to her child. Though there are many vaccines that reduce

the disease transmission for most communicable diseases (presently there is no vaccine for

HIV), several antiviral drugs are also available on the market which play a major role in

the containment of the disease transmission.

We emphasize two key features in this paper and these are effective controls of disease

transmission using integrated measures and optimal analysis of the cost–benefit model.
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Figure 6. Infected population density after 25 years of application of vaccine and antiviral drug at
different rates. It is also seen that application of antiviral drug with vaccine reduces the disease
incidence in a very low level, and the higher the dose of drug, the sooner the incidence reduces to
minimum level.
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Figure 7. Infected population density at different values of waning immunity a. High waning rate
increases the infected population by increasing the susceptible pool. The mean size of infected
population is increased at higher a.
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Although we use the simple SIR model to describe the disease dynamics, our studies

demonstrate some interesting results that might have important clinical and

epidemiological aspects.

Analysing as well as numerically simulating the model, we see that under certain

parametric constraints, a combination of mixed control measures respond better rather

than any other independent control. In a very recent paper by Zou et al. [34], it is reported

that hepatitis B incidence in China is still increasing despite there being an effective

vaccination programme since 1990. HBV is a potentially life-threatening infectious

disease in China these days. Though our model is simple to describe specific infections

such as HBV, it shows that vaccination does not provide a permanent solution to control
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Figure 8. Control reproduction ratio Rc at different values of probabilities q1 and q2, whenever
u1 ¼ 0:0001 and u2 ¼ 0:005. High q1 increases the infected population density by increasing the
proportion of infected newborns, whereas high q2 decreases the infected population density by
decreasing the proportion of susceptible newborns.
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Figure 9. Figure exhibits optimal equilibrium at the intersection of three surfaces given by
Equations (45)–(47), where p ¼ 0.02, cM ¼ 0:03 and cv ¼ 0:015 with other default parameters
values given in Table 1.
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disease such as HBV, when there is a high probability of being re-infected. For example,

some case studies have shown that there is a high chance of reinfection post liver

transplantation in the case of HBV [29,30,33]. Also, vaccination of those at high risk has

been of only limited success [33]. However, these two control measures have different

mechanisms to control the overall transmission in population: vaccination reduces the

transmission by reducing the susceptible population density, whereas antiviral drugs

typically inactivate the enzymes needed for viral replication and reduce the rate of viral

growth. This minimizes the severity of disease and reduces the chance of transmission to

others. For instance, antiviral treatment cannot clear the infection, but they can stop the

virus from replicating, and minimize liver damage such as cirrhosis and liver cancer in

case of HBV [25].

Our result also shows that the use of antiviral drug with vaccination can reduce the

initial oscillations in the disease prevalence. In fact, the oscillation dies out rapidly with

higher rates of antiviral drug. We also show how the dynamics of disease evolves

depending on probability (q1) of infected newborns and probability (q2) of immune

newborns. In fact, the control remains more effective with higher values of q2, whereas it

works poorly with higher values of q1. Thus, if it is possible to make a more efficacious

vaccine to provide immunity that inherits from mother to child, then it might be helpful in

controlling the overall transmission of the disease.

Our work has some considerable scopes to extend further. For instance, it may be

considered as a more explicit model of vertical transmission with age-structured

framework or for emphasizing any specific disease. This might be helpful to quantify

particular parameter(s) that regulate the transmission or are most responsible for an

effective control measure. Also, disease with vertical transmission potentially depends on

the birth in population. We have assumed stable population, but it might be interesting to

look at how the disease propagates in a population with a fluctuating birth rate. It is also of

interest to consider periodic contact rates in disease transmission and to design the

immunization programme accordingly. Another important aspect of infection-prevalence

dynamics is the role of case importation. This is the only source of disease burden once

local chains of transmission have been interrupted through herd immunity due to

vaccination. Therefore, inclusion of case importation should potentially modify the

disease dynamics once herd immunity develops through the immunization programme.

However, modelling the disease and quantifying the rates of control measures do not

immediately assess the optimal control of the disease in the population. The essence of

management of disease in a population is to make the optimal decision subject to the

realistic constraints, so that it reduces the health care costs and/or improves quality-of-life

for individuals by preventing or minimizing the effects of a disease through integrative

care. This, in fact, is none other than an optimization problem. However, in practice there

are enormous difficulties in quantifying the variables, the objectives and the constraints in

a given decision problem. Here, we have focused our attention on the task of formulating

an optimal policy when a decision problem has already been defined in a mathematical

form.

In this regard, we may mention that the numerical solution of the optimal control

problem is much harder than that for the standard optimal control problem. In this case, the

steady-state optimization plays an important role. It has added advantage of being easily

implemented to the real-world problem. To keep the state of the system at such an optimal

steady state, if possible one can employ a globally stable control policy whenever the state

is displaced from the optimal steady state. Another important theoretical development in

the late 1960s was the derivation of necessary conditions for singular control. Singular
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control occurs in an optimal control problem in which one or more of the control variables

appear linearly in system dynamics and the objective function. In biological problems, the

concept of singular control is important because control variables often occur linearly in

the system dynamics. References in this connection may be given to the work of [11].

In this paper, we perform the optimal analysis of a cost-benefit model with two control

parameters and find out the necessary conditions on the parameters to make the control

optimum. For the same set of default parameter values, we show in Figure 9 that surfaces

defined by solutions of the Equations (45)–(47) intersect at a single point, which denotes

optimal values of susceptible, infected and recovered. We can, however, generalize the

same approach of optimization in the application to models with more than two control

parameters.
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