
A modified stochastic Gompertz model for tumour cell growth

C.F. Lo*

Department of Physics, Institute of Theoretical Physics, The Chinese University of Hong Kong,
Hong Kong SAR, PR China

(Received 4 June 2008; final version received 9 September 2008 )

Based upon the deterministic Gompertz law of cell growth, we have proposed a
stochastic model of tumour cell growth, in which the size of the tumour cells is
bounded. The model takes account of both cell fission (which is an ‘action at a distance’
effect) and mortality too. Accordingly, the density function of the size of the tumour
cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded
stochastic process. We apply the Lie-algebraic method to derive the exact analytical
solution via an iterative approach. It is found that the density function exhibits an
interesting kink-like structure generated by cell fission as time evolves.
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Cancer is a major death cause in our modern society. In recent years increasing attention has

been paid to the investigation of tumour growth because a better understanding of the highly

complex process is of paramount importance for the development of more successful

treatment strategies [8,12]. Taking the advantage of the methods of physics and engineering,

most studies stem out of mechanistic population growth models which consist of one or more

differential equations [17]. Despite their simplicity, such models of tumour growth make

possible the description of the principal regularities and provide effective guidelines for

cancer therapy, drug development and clinical decision-making [19]. In the past two

decades, the deterministic Gompertz law of population growth has been widely used to

describe in vivo tumour growth in experimental oncology [2,5,10,18,20,22]. If xðtÞ is the size

of the tumour cell at time t, then the Gompertz law models the cell growth by the equation

dx

dt
¼ A1x2 A2x ln x; A2 . 0; ð1Þ

where A1, the intrinsic growth rate of the tumour cell, is a parameter related to the initial

mitosis rate and A2, the growth deceleration factor, is related to the antiangiogenic processes.

However, it should be stressed that quite often discrepancies exist between clinical data and

theoretical predictions, due to more or less intense environmental fluctuations. For instance

[9]] analysed the effect of distinct chemotherapeutic strategies for the growth of avascular

tumours, and confirmed that an environment like chemotherapy would affect tumour growth

behaviour and lead to morphological transitions under certain conditions. Therefore, a better

model is needed to reflect the external randomness that affects the cell growth behaviour.

A few years ago, Ref. [8] proposed a stochastic version of the Gompertz law to account

for random fluctuations of the model parameters. They assume that the growth
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deceleration factor A2 does not change, while the variability of environmental conditions

induces fluctuations in the intrinsic growth rate A1. By assuming that the intrinsic growth

rate varies in time according to

uðtÞ ¼ A1 þ s1ðtÞ; ð2Þ

where A1 is the constant mean value of uðtÞ, s . 0 is the diffusion coefficient, and 1ðtÞ is a

Gaussian white noise process, the proposed stochastic model is defined by the stochastic

differential equation

dx ¼ {A1x2 A2x ln x} dt þ sx dzt; ð3Þ

where dzt denotes the standard Wiener process. By Ito’s lemma Equation (3) implies that

the exponent c ; 2ln x follows the Ornstein–Uhlenbeck process [11]:

dc ¼
1

2
s2 2 A1

� �
2 A2c

� �
dt þ s dzt

with the long term mean ðð1=2Þs2 2 A1Þ=A2. This model has been applied to simulate the

effects of a time-dependent therapy for the case of a parathyroid tumour [1].

Recently, Ref. [15] generalised the stochastic Gompertz model of tumour cell growth

to include both cell fission and mortality at given rates, and formulated the extended model

in terms of a functional Fokker–Planck Equation (FPE) of the form1

›Pðx; tÞ

›t
¼

›2

›x2
{Dðx; tÞPðx; tÞ} 2

›

›x
{gðx; tÞPðx; tÞ} þ a2Bðax; tÞPðax; tÞ2 ðBðax; tÞ

þ mðx; tÞÞPðx; tÞ; ð4Þ

where Pðx; tÞ denotes the density function of cells of size x $ 0 at time t $ 0, Dðx; tÞ ;
D0ðtÞx

2 is the dispersion coefficient, gðx; tÞ ; ½g0ðtÞ2 g1ðtÞ ln x�x is the rate of growth,

mðx; tÞ ; m0ðtÞ is the rate of death, and Bðax; tÞ ; B0ðtÞ is the rate at which cells divide

into a equally sized daughter cells. Here a . 1 is regarded as a constant, and the functions

Dðx; tÞ, gðx; tÞ, m0ðtÞ and B0ðtÞ are all non-negative. This functional FPE is a special case of

what Basse et al. [3,4] proposed for modelling the cell growth in plankton and human

tumours under the assumption that the cells undergo growth, fission and mortality at given

rates. It is found that in Lo’s model of tumour cell growth the density function exhibits an

interesting ‘multipeak’ structure generated by cell fission as time evolves. Within this

framework the action of therapy is also examined by simply incorporating a therapy term

into the deterministic cell growth term.

In all these studies the stochastic process is unbounded and the stochastic variable x

has a semi-infinite range ½0;1Þ. Thus, the tumour cells could grow without limit. This is

due to the fact that in the above stochastic Gompertz model the random fluctuations in the

intrinsic growth rate are assumed to be independent of the size of the tumour cells. In this

communication we modify the assumption in Equation (2) by introducing size-dependent

random fluctuations to the intrinsic growth rate as follows:

uðx; tÞ ¼ A1 þ s
ffiffiffiffiffiffiffiffiffiffiffi
2ln x

p
1ðtÞ: ð5Þ

The corresponding stochastic differential equation is then given by

dx ¼ {A1x2 A2x ln x} dt þ sx
ffiffiffiffiffiffiffiffiffiffiffi
2ln x

p
dzt ð6Þ
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and represents a bounded stochastic process, i.e. the stochastic variable x stays within a

finite interval I ; ½0; 1�.2 Similarly, by Ito’s lemma it can be shown that the exponent

c ; 2ln x obeys the square-root process [7]:

dc ¼ 2A1 2 A2 2
1

2
s2

� �
c

� �
dt þ s

ffiffiffi
c

p
dzt:

The constraint on the range of the stochastic variable x suggests that the cells do not

grow forever in size; in other words, there exists an upper bound on the size of the cells.

This bounded stochastic process, which was first presented by Pesz [16] and then further

generalized by Cardeal et al. [6] and Silva et al. [21], has found applications in various

systems with spatial confinement, e.g. a Brownian walker trapped between fixed plates

(see Ref. [14] and references therein). Hence, we shall thereafter focus on the functional

FPE characterized by the following specification of the time-dependent variable

coefficients: Dðx; tÞ ¼ 2D0x
2 ln x, gðx; tÞ ¼ ½g0 2 g1ðtÞ ln x�x, Bðx; tÞ ¼ B0ðtÞdðx2 lÞ and

mðx; tÞ ¼ m0ðtÞ, and the absorbing boundary conditions at x ¼ 0 and x ¼ 1.3 Undoubtedly,

this new constraint on the size of tumour cells would escalate the complexity of the

problem dramatically, and thus the systems are expected to exhibit more interesting

properties.

As is well known, while the stationary solution of the conventional FPE can be given in

closed form (at least up to quadratures) if the condition of detailed balance holds, the study

of its time-dependent solution is a much more complicated problem. This situation gives

rise to many stimulating opportunities for the development of approximate methods to

analyse such problems. Beyond question, the ‘action at a distance’ effect would make the

functional FPE much more challenging to treat (both analytically and numerically). Here

we apply the Lie-algebraic method to derive the exact analytical solution of the functional

FPE associated with the bounded stochastic process via an iterative approach and examine

its properties. Obviously, the knowledge of the exact analytical solution not only provides

a conceptual basis for understanding the dynamics behind the functional FPE, but it can

also be useful as a benchmark to test approximate numerical or analytical procedures.

To begin with, we propose a change of variables y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðxÞ

p
and rewrite the

functional FPE in Equation (4) as follows:

›uðy; tÞ

›t
¼

1

4
D0

›2uðy; tÞ

›y2
þ

1

2
jðtÞy2

n

y

� �
›uðy; tÞ

›y
þ

1

2
jðtÞ þ

n

y2

� �
uðy; tÞ

2 m0ðtÞuðy; tÞ þ aB0ðtÞd y2
ffiffiffiffiffiffiffiffi
2ln

p
l=a
� �� 	

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t

� 	

2 B0ðtÞd y2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p� 	
u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t

� 	
ð7Þ

for 0 , y , 1, where uðy; tÞ ¼ 2yexpð2y2ÞPðx; tÞ, jðtÞ ¼ g1ðtÞ2 D0 and

n ¼ 2½g0 þ D0=2�. This equation represents a generalization of the functional FPE

associated with the well-known Rayleigh process [11]. In the absence of cell fission (i.e.

B0ðtÞ ¼ 0), it is not difficult to show that Equation (7) can be recast in the following form:

›uðy; tÞ

›t
¼ {a1ðtÞK̂þ þ a2ðtÞK̂0 þ a3ðtÞK̂2 þ bðtÞ}uðy; tÞ; ð8Þ
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where

K̂2 ¼
1

2

›2

›y2
2

2n

D0y

›

›y
þ

2n

D0y2

� �
; K̂0 ¼

1

2
y
›

›y
2

2n2 D0

2D0

� �
; K̂þ ¼

1

2
y2;

a3ðtÞ ¼
D0

2
; a2ðtÞ ¼ jðtÞ; a1ðtÞ ¼ 0; bðtÞ ¼

1

4
1 þ

2n

D0

� �
jðtÞ2 m0ðtÞ:

ð9Þ

The operators K̂þ, K̂0 and K̂2 are the generators of the Lie algebra su(1,1) [24]:

½K̂þ; K̂2� ¼ 22K̂0; ½K̂0; K̂^� ¼ ^K̂^: ð10Þ

We may define the evolution operator Ûðt; t0Þ such that

uðy; tÞ ¼ exp

ðt
t0

dt0bðt0Þ


 �
�Ûðt; t0Þuðy; t0Þ: ð11Þ

Inserting Equation (11) into Equation (8) yields the evolution equation

›

›t
Ûðt; t0Þ ¼ {a1ðtÞK̂þ þ a2ðtÞK̂0 þ a3ðtÞK̂2}Ûðt; t0Þ; Ûðt0; t0Þ ¼ 1: ð12Þ

Since the su(1,1) algebra is a real ‘split 3-dimensional’ simple Lie algebra, the Wei–

Norman theorem states that the evolution operator Ûðt; t0Þ can be expressed in the form [23]

Ûðt; t0Þ ¼ exp{c1ðt; t0ÞK̂þ}�exp{c2ðt; t0ÞK̂0}�exp{c3ðt; t0ÞK̂2}; ð13Þ

where the coefficients ciðt; t0Þ are found to be given by (see the Appendix)

c1ðt; t0Þ ¼ 0; c2ðt; t0Þ ¼

ðt
t0

jðt0Þ dt0; c3ðt; t0Þ ¼
1

2
D0

ðt
t0

exp½c2ðt
0; t0Þ� dt0: ð14Þ

Without loss of generality, we suppose that uðy; t0Þ ¼ y ðbþ1Þ=2f ðy; t0Þ, where and f ðy; t0Þ
is defined in terms of the Fourier–Bessel integral:

f ðy; t0Þ ¼

ð1
0

dzzJðb21Þ=2ðyzÞ

ð1
0

dy0y0Jðb21Þ=2ðy
0zÞf ðy0; t0Þ; ð15Þ

for b . 1. Then it is not difficult to show that uðy; tÞ is given by

uðy; tÞ ¼

ð1
0

dy0Gðy; t; y0; t0Þuðy
0; t0Þ; ð16Þ
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where

Gðy; t; y0; t0Þ ¼ gðt; t0Þ y0ð1 2 bÞy ð1þbÞexp
bþ 3

2
c2ðt; t0Þ


 �� �

£

ð1
0

dzzexp 2
c3ðt; t0Þ

2
z2


 �
Jðb21Þ=2ðy

0zÞ £ Jðb21Þ=2ðyzexp½c2ðt; t0Þ=2�Þ

gðt; t0Þ ¼ exp 2

ðt
t0

dt0m0ðt
0Þ

� �
: ð17Þ

The function Jp is the Bessel function of the first kind of order p. Here we have made use of

the fact that y ðbþ1Þ=2Jðb21Þ=2ðyzÞ is an eigenfunction of the operator with the eigenvalue

2z2=2 as well as the well-known relation

exp hy
›

›y

� �
gðyÞ ¼ gðyexpðhÞÞ: ð18Þ

The integral over z can be evaluated to give [13]

1

c3ðt; t0Þ
exp 2

y02 2 y 2exp½c2ðt; t0Þ�

2c3ðt; t0Þ

� �
Iðb21Þ=2

y0yexp{c2ðt; t0Þ=2}

c3ðt; t0Þ

� �
ð19Þ

for ðb2 1Þ=2 . 21, y0 . 0 and yexp½c2ðt; t0Þ=2� . 0. The function Ip is the modified

Bessel function of the first kind of order p. The desired propagator Gðy; t; y0; t0Þ is thus

found to be

Gðy; t; y0; t0Þ ¼
gðt; t0Þ

c3ðt; t0Þ
y0ð1 2 bÞy ð1þbÞexp

bþ 3

2
c2ðt; t0Þ


 �� �

£ exp 2
y02 2 y2exp½c2ðt; t0Þ�

2c3ðt; t0Þ

� �
£ Iðb21Þ=2

y0yexp{c2ðt; t0Þ=2}

c3ðt; t0Þ

� �
: ð20Þ

Consequently, provided that uðy; 0Þ ¼ dðy2 y0Þ, the time evolution of the stochastic

system is described by the propagator Gðy; t; y0; 0Þ.
Next, it is straightforward to show that, in terms of the propagator Gðy; t; y0; t0Þ, the

solution of the functional FPE in Equation (7) for B0 tð Þ . 0 can be expressed as a

generalized Volterra integral equation of the second kind:

uðy; tÞ ¼

ð1
0

dy0Gðy; t; y0; 0Þuðy0; 0Þ þ

ðt
0

dt0B0ðt
0Þ

� aG y; t;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
; t0

� 	
2 G y; t;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t0

� 	n o
£ u

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t0

� 	
; ð21Þ

which can be solved by the standard iterative approach:

. Initial guess:

u ð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t

� 	
¼

ð1
0

dy0G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t; y0; 0

� 	
uðy0; 0Þ: ð22Þ
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. Nth iteration:

u ðNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t

� 	
¼

ð1
0

dy0G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t;y0;0

� 	
uðy0;0Þþ

ðt
0

dt0B0ðt
0Þ

� aG
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
;t0

� 	
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0

� 	on

£u ðN21Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0

� 	
forN¼1;2;3;...

ð23Þ

. Converged solution:

uðy; tÞ ¼

ð1
0

dy0Gðy; t; y0; 0Þuðy0; 0Þ þ

ðt
0

dt0B0ðt
0Þ

� aG y; t;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
; t0

� 	
2 G y; t;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t0

� 	n o

£ u ðNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
; t0

� 	
: ð24Þ

If cell fission does not occur frequently, i.e. B0ðtÞ is small, then the converged solution can

be obtained after a few iterations. Alternatively, we could also express the solution uðy; tÞ
in powers of B0ðtÞ as follows:

uðy;tÞ¼

ð1
0

dy0uðy0;0ÞGðy;t;y0;0Þþ

ð1
0

dy0uðy0;0Þ

ðt
0

dt0B0ðt
0Þ aG y;t;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
;t0

� 	h

2G y;t;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0

� 	i
G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0;y0;0

� 	
þ

ð1
0

dy0uðy0;0Þ

ðt
0

dt0
ðt0

0

dt00B0ðt
0ÞB0ðt

00Þ

£ aG y;t;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
;t0

� 	
2G y;t;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0

� 	h i

£ aG
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðl=aÞ

p
;t00

� 	
2G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t0;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t00

� 	ih

�G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lnðlÞ

p
;t00;y0;0

� 	
þ···

ð25Þ

For illustration, in Figure 1 we plot the density function u, y, t versus y for different

values of B0ðtÞ and different time t, provided uðy; 0Þ ¼ dðy2 y0Þ. The input model

parameters are selected as follows: l ¼ e21, a ¼ 2, D0 ¼ 1, g0 ¼ 1:5, g1ðtÞ ¼ 1, m0ðtÞ ¼

0:1 and y0 ¼ 1:2. In the absence of cell fission, i.e. B0ðtÞ ¼ 0, the stochastic system evolves

in accordance to the Rayleigh process, and the initial density function spreads out steadily

toward both endpoints due to dispersion. As we switch on the cell fission, i.e. B0ðtÞ . 0, the

qualitative features of the time evolution of the density function does not change

significantly, but the cell fission induces an overall increase in the magnitude of the density

function. The enhancement becomes more prominent as the rate of cell fission increases.

Moreover, the density function develops a kink near y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ lnðaÞ

p
, which corresponds to

the size of the daughter cells. As shown in the figure, the kink becomes more conspicuous

with the rate of cell fission and time. Finally, it should be noted that all these results are

C.F. Lo8



obtained by evaluating the converged solution in Equation (25) up to third order of B0ðtÞ,

with the tolerance of error being less than 1.5%.

In summary, based upon the deterministic Gompertz law of cell growth, we have

proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is

bounded, i.e. there exists an upper bound on the size of the cells. The model takes account

of both cell fission (which is an ‘action at a distance’ effect) and mortality too.

Accordingly, the density function Pðx; tÞ of the size of the tumour cells obeys a functional

FPE which can be solved analytically. Beyond question, a bound on the stochastic process

of the size of the tumour cells can have a large effect on the density function Pðx; tÞ and

Figure 1. (a) uðy; tÞ versus y for B0ðtÞ ¼ 0:1 at time t ¼ 2, 4 and 8. (b) uðy; tÞ versus y for
B0ðtÞ ¼ 0:2 at time t ¼ 2, 4 and 8. (c) uðy; tÞ versus y for B0ðtÞ ¼ 0:3 at time t ¼ 2, 4 and 8. (d) uðy; tÞ
versus y for B0ðtÞ ¼ 0:4 at time t ¼ 2, 4 and 8. (e) uðy; tÞ versus y for B0ðtÞ ¼ 0:5 at time t ¼ 2, 4 and
8. (f) uðy; tÞ versus y for B0ðtÞ ¼ 0:6 at time t ¼ 2, 4 and 8. The input model parameters are: l ¼ e21,
a ¼ 2, D0 ¼ 1, g0 ¼ 1:5, g1ðtÞ ¼ 1, m0ðtÞ ¼ 0:1 and y0 ¼ 1:2. For comparison, we also plot the
results for the case B0ðtÞ ¼ 0.

Computational and Mathematical Methods in Medicine 9



escalate the complexity of the problem dramatically. Furthermore, within this framework

we are also able to examine the action of therapy by simply incorporating a therapy term

2WðtÞx ln x into the cell growth term gðx; tÞ. The additional term WðtÞ must be non-

negative definite in order to model the elimination of a portion of tumour cells. We are

now undergoing a thorough investigation in this direction, and the results will be reported

elsewhere in the near future.

Notes

1. The functional FPE is a modification of the conventional FPE when the ‘action at a distance’
effect (i.e. cell fission in this case) is present.

2. It should be pointed out that without loss of generality we have normalized the upper bound of x
to unity for simplicity.

3. Following Basse et al. [3,4], in this model cell division is assumed to occur only at one critical
size x ¼ l instead of over a specified size interval in order that the solution is analytically
tractable.

References

[1] G. Albano and V. Giorno, A stochastic model in tumor growth, J. Theor. Biol. 242 (2006), p.
329.

[2] L. Bass, H.S. Green and H. Boxenbaum, Gompertzian mortality derived from competition
between cell-types: congenial, toxicologic and biometric determinants of longevity, J. Theor.
Biol. 140 (1989), p. 263.

[3] B. Basse, G.C. Wake, D.J.N. Wall, and B. van Brunt, On a cell-growth model for plankton,
IMA. J. Math. Med. Biol. 21 (2004a), p. 49.

[4] B. Basse, B.C. Baguley, E.S. Marshall, G.C. Wake, and D.J.N. Wall, Modelling cell population
growthwith applications to cancer therapy in human tumour cell lines, Prog. Biophys. Mol. Biol.
85 (2004b), p. 353.

[5] I.D. Bassukas, Comparative Gompertzian analysis of alterations of tumor-growth patterns,
Cancer Res. 54 (1994), p. 4385.

[6] J.A. Cardeal, M. de Montigny, F.C. Khanna, T.M.R. Filho, and A.E. Santana, Galilei-invariant
gauge symmetries in Fokker-Planck dynamics with logarithmic diffusion and drift terms,
J. Phys. A: Math. Theor. 40 (2007), p. 13467.

[7] J.C. Cox and S.A. Ross, Valuation of options for alternative stochastic processes, J. Financial
Econ. 3 (1976), p. 145.

[8] L. Ferrante, S. Bompadre, L. Possati, and L. Leone, Parameter estimation in a Gompertzian
stochastic model for tumor growth, Biometrics 56 (2000), p. 1076.

[9] S.C. Ferreira Jr., M.L. Matrins, and M.J. Vilela, Morphology transitions induced by
chemotherapy in carcinomas in situ, Phys. Rev. E 67 (2003), p. 051914.

[10] P. Fuchshuber, M. Günther, W. Feaux de Lacroix, and R. Fischer, A mathematical model for
metastatic growth illustrated by invivo and invitro growth of a transplantable mammary-
carcinoma in mice, Anticancer Res. 6 (1986), p. 819.

[11] C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural
Sciences, 2nd ed., Springer-Verlag, Berlin, 1985.

[12] C. Guiot, P.G. Degiorgis, P.P. Delsanto, P. Gabriele, and T.S. Deisboeck, Does tumor growth
follow a universal law?, J. Theor. Biol. 225 (2003), p. 147.

[13] L.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals Series and Products, 5th ed., Academic
Press, UK, 1994.

[14] C.F. Lo, Exact propagator of the Fokker-Planck equation with logarithmic factors in diffusion
and drift terms, Phys. Lett. 319 (2003), p. 110.

[15] ———, Stochastic Gompertz model of tumour cell growth, J. Theor. Biol. 248 (2007), p. 317.
[16] K. Pesz, A class of Fokker-Planck equations with logarithmic factors in diffusion and drift

terms, J. Phys. A: Math. Gen. 35 (2002), p. 1827.
[17] L. Preziosi ed., Cancer Modelling and Simulation, Chapman & Hall, London, 2003.

C.F. Lo10



[18] A.S. Qi, X. Zheng, C.Y. Du, and B.S. An, A cellular automaton model of cancerous growth,
J. Theor. Biol. 161 (1993), p. 1.

[19] B. Ribba, T. Colin, and S. Schnell, A multiscale mathematical model of cancer, and its use in
analyzing irradiation therapies, Theor. Biol. Med. Model. 3 (2006), p. 7.

[20] K. Rygaard and M. Spang-Thomsen, Quantitation and Gompertzian analysis of tumor growth,
Breast Cancer: Res. Treat. 46 (1997), p. 303.

[21] E.M. Silva, T.M.R. Filho, and A.E. Santana, Lie symmetries of Fokker-Planck equations with
logarithmic diffusion and drift terms, J. Phys.: Conference Series 40 (2006), p. 150.

[22] N.Y. Tyurin, A.Y. Yakovlev, J. Shi, and L. Bass, Testing a model of aging in animal
experiments, Biometrics 51 (1995), p. 363.

[23] J. Wei and E. Norman, Lie algebraic solution of linear differential equations, J. Math. Phys. 4
(1963), p. 575.

[24] B.G. Wybourne, Classical Groups for Physicists, Wiley, New York, 1974.

A Appendix: Derivation of Equation (14)

Differentiating Uðt; t0Þ in Equation (13) with respect to time t, we obtain

›

›t
Uðt; t0Þ ¼ ½hþðtÞKþ þ h0ðtÞK0 þ h2ðtÞK2�Uðt; t0Þ ðA1Þ

with

hþðtÞ ¼
dc1

dt
2 c1

dc2

dt
þ c2

1expð2c2Þ
dc3

dt
; h0ðtÞ ¼

dc2

dt
2 2c1expð2c2Þ

dc3

dt
;

h2ðtÞ ¼ expð2c2Þ
dc3

dt
:

ðA2Þ

Then, substituting Equations (A.1) and (A.2) into Equation (12), and comparing the two sides,
we have after simplication

dc1ðt; t0Þ

dt
¼ a3ðtÞc

2
1ðt; t0Þ þ a2ðtÞc1ðt; t0Þ; c1ðt; t0Þ ¼ 0 ðA3Þ

c2ðt; t0Þ ¼

ðt
t0

½2a3ðt
0Þc1ðt

0; t0Þ þ a2ðt
0Þ� dt0 ðA4Þ

c3ðt; t0Þ ¼

ðt
t0

a3ðt
0Þexp½c2ðt

0; t0Þ� dt0: ðA5Þ

Equation (A.3), which is just a Bernoulli equation, is the equation we have to solve first to
determine c1ðt; t0Þ, and obviously the only admissible solution is the trivial solution c1ðt; t0Þ ¼ 0
since it is the only one satisfying the initial condition c1ðt; t0Þ ¼ 0. Once c1ðt; t0Þ is determined,
c2ðt; t0Þ and c3ðt; t0Þ can be obtained readily by direct integration, as given in Equation (14).
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