
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2012, Article ID 342602, 9 pages
doi:10.1155/2012/342602

Research Article

Time-Course Analysis of Main Markers of Primary Infection in
Cats with the Feline Immunodeficiency Virus

B. Ribba,1 H. El Garch,2 S. Brunet,2 E. Grenier,1

F. Castiglione,3 H. Poulet,2 and P. Vanhems4, 5, 6, 7

1 INRIA, Project-team NUMED, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69007 Lyon Cedex 07, France
2 Discovery Research, Merial SAS, 69007 Lyon, France
3 Institute for Computing Applications “M. Picone”, National Research Council of Italy (CNR), Rome, Italy
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Studies of the response of the immune system to feline immunodeficiency virus (FIV) during primary infection have shown that a
subpopulation of CD8+ T-cells with an activated phenotype and reduced expression of the CD8β chain (denoted CD8βlow T cells)
expands to reach up to 80% of the total CD8+ T cell count. The expansion of this subpopulation is considered to be a signature
of FIV and an indicator of immune system alteration. We use a simple mathematical formalism to study the relationships over
time between the dose of infection, the size of the CD8βlow population, and the circulating viral load in cats infected with FIV.
Viremia profiles are described using a combination of two exponential laws, whereas the CD8βlow percentage (out of the total
CD8+ population) is represented by a Gompertz law including an expansion phase and a saturation phase. Model parameters are
estimated with a population approach using data from 102 experimentally infected cats. We examine the dose of infection as a
potential covariate of parameters. We find that the rates of increase of viral load and of CD8βlow percentage are both correlated
with the dose of infection. Cats that develop strong acute viremia also show the largest degree of CD8βlow expansion. The two
simple models are robust tools for analysing the time course of CD8βlow percentage and circulating viral load in FIV-infected cats
and may be useful for generating new insights on the disease and on the design of therapeutic strategies, potentially applicable to
HIV infection.

1. Introduction

Cats infected with the feline immunodeficiency virus (FIV)
develop an acquired immunodeficiency syndrome (AIDS)
much like humans infected with HIV [1]. The infection
causes an acute viremia, which decreases after several weeks,
and the development of a partial immunity [2]. The acute
stage is followed by a chronic asymptomatic phase, often
persisting for years, during which the immune system is
progressively impaired. As in the case of HIV infection, the
more common signs of the asymptomatic phase are the

depletion of CD4+ peripheral T cells and the reduction of
the CD4/CD8 ratio [3]. At the end of the asymptomatic stage
of the disease, infected cats develop chronic opportunistic
infections and eventually die [4].

The immune response to FIV during acute infection is
well documented in the literature (see in particular [5–7]).
In addition to anti-FIV neutralizing antibodies and cytotoxic
and noncytotoxic CD8+ T cells, the primary (acute) stage
of infection is known to be characterized by the appearance
and expansion of a CD8+ T-cell subpopulation with an
activated phenotype showing reduced expression of the
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CD8β chain and the complete disappearance of the L-selectin
CD62L surface molecule [8]. These CD8βlow CD62L− T cells,
hereafter referred to as CD8βlow cells, persist throughout
the course of infection. The persistence of this activated
T-cell population, which has been shown to possess anti-
FIV activity, suggests a profound homeostatic disorder, as in
healthy animals activated CD8 cells are generally present only
during peak immune responses.

The observed expansion of the CD8βlow cell subpop-
ulation—which can reach, during the acute stage, up to 80%
of the total population of CD8+ T cells—may be driven by
CD8βlow cells’ sensitivity to apoptosis, a sensitivity that is
enhanced by antigen recognition [2]. CD8βlow cells might be
chronically activated as a result of persistent virus replication
and antigen recognition, die by apoptosis and get replenished
quickly. Thus, it is believed that FIV can alter the immune
homeostasis by inducing chronic activation of CD8+ T cells
into CD8βlow, driving their expansion, and, at the same time,
inducing cytotoxicity against infected CD4+ T cells.

The expansion of the CD8βlow subpopulation is con-
sidered to be an important marker of FIV infection and
disease [2]. A characterization of the process of expansion,
in addition to other markers of disease, is likely to increase
researchers’ understanding of FIV infection and AIDS
pathogenesis, thus facilitating the design of new therapeutic
strategies.

Mathematical models to describe longitudinal data from
HIV-infected patients have been extensively developed [9].
To describe the dynamics of viremia and CD4+ T cells,
numerous models have used systems of ordinary differential
equations based on the prey-predator modelling framework
[10–13]. In this type of model, viral particles infect healthy
CD4+ T cells, which later die, liberating new replicated virus
into the plasma. One of the most interesting aspects of this
mechanistic approach is that each model parameter has a
clear biological meaning, such as rate of infection of CD4+

T cells, the cell lifespan, or the virus replication rate. Such
models have been shown to correctly predict circulating viral
loads in HIV-infected patients undergoing antiviral therapies
[11]. Some variations of this modelling approach have been
discussed in the literature. For instance, the integration
of cytotoxic CD8+ T cells has been shown to potentially
describe with more accuracy the kinetics of viremia in HIV
patients [14]. Models based on the prey-predator framework
can provide interesting insights into the life cycle of the
virus and its interaction with the host. However, these
models tend to be complex, as they generally integrate a
large number of parameters and variables such as viral load,
CD4+ T cells of different status (e.g., uninfected, early-
stage infected, late-stage infected), and different types of
CD8+ T cells. Proper estimation of such parameters requires
a large number of observations (ideally, observations for
all variables should be available) for all individuals to be
analyzed. Obviously, these are difficult conditions to meet
in a clinical setting. Furthermore, it is known that the
immune response can vary significantly across subjects, and
it might therefore be too simplistic to assume parameters
to be constant in a given population of patients. The need
to integrate interindividual results adds an additional level

of complexity to the already complex mechanistic model.
Finally, to our knowledge, such models have not yet been
challenged with data from untreated primary infection (e.g.,
data from untreated HIV-infected patients or from FIV-
infected cats), so the information they provide regarding the
natural progression of disease may be limited.

In this study, we propose two phenomenological models
that correctly reproduce the time-evolution of the percentage
of CD8βlowCD62L− T cells and of circulating viral load
during the early primary infection phase in 102 cats infected
with various doses of FIV.

2. Materials and Methods

2.1. Ethic Statement. All animal experiments were conducted
in accordance with the European Community regulations,
and all procedures were supervised and approved by the
Merial Ethical Committee.

2.2. Animals. In this experiment, 102 cats (49 males and
53 females; mean age: 22.8 weeks, SD: 7.7, range: 13–
36.5) were randomized into 23 groups of 4 to 7 cats each.
Each group was assigned an FIV strain (Petaluma clade
A, Glasgow-8 clade A, or EVA clade B) and inoculum
size. Each cat was challenged with a single intramuscular
injection of 1 mL of viral suspension of one of the three FIV
strains examined. In preliminary in vitro experiments, the
three strains were observed to be comparable in terms of
viremia and impact on lymphocyte subpopulations. Virus
dilutions ranged from 1/90,000 to 1/3, and the infection
doses, expressed in log10/mL of cell culture infectious dose
50% (CCID50), ranged from 0.26 to 4.09 (median: 2.5, SD:
1.21).

2.3. Longitudinal Measurements. Viral load was measured
using quantitative real-time polymerase chain reaction. For
each cat, a measurement was taken at time 0, and, when
possible, additional measurements were taken at the ends
of weeks 1, 3, 4, 6, 9, 12, 15, 18, and 23. Values were
expressed as log10 of viral RNA copies per millilitre of
plasma. For these measurements, the detection threshold, or
the limit of quantification (LOQ), was 80 copies per mL,
which corresponds to 1.9 on the log10 scale. In total, 485
measurements were analyzed, but there was high variability
in the number of measurements per cat (mean = 4.75
measurements/cat, min = 1, max = 7, SD = 1.2). The values
themselves (all taken together) were also highly variable
(median = 3.95 log10 RNA copies/mL of plasma, min = 1.9
(LOQ), max = 6.91, SD = 1.37).

The number of CD8βlow cells and the total number
of CD8+ T cells were measured by flow cytometry as
described in [2]. However, data on these lymphocytes were
available for only 79 cats out of the total 102. The size of
the CD8βlowCD62L− subpopulation was expressed as the
percentage of CD8βlowCD62L− T cells in the entire CD8+

T-cell population. The analysis was carried out on 377
observations with an average of 4.8 observations per animal
(min = 3, max = 6, SD = 0.8). The median observed value of
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Figure 1: Time-evolution of circulating viral load, expressed as log10 of viral RNA copies per mL plasma (a); CD8βlow population size
expressed as the percentage of the CD8βlowCD62L− T-cell subpopulation out of the total population of CD8+ T cells (b). Time is expressed
as weeks after infection. Viral load was measured in 102 cats, but CD8βlow cell counts were measured in only 79 cats.

CD8βlow percentage was 22% (min = 1%, max = 96%, SD =
20.5). Figure 1 shows the time-evolution of viral load in all
102 cats (Figure 1(a)) and CD8βlow percentage in the 79 cats
(Figure 1(b)) for which lymphocyte counts were available.
The curves indicate high variability across cats in both viral
load and CD8βlow percentages.

2.4. Data Analysis. The high variability in the number of
available data points per animal, as well as the variability
across animals in the patterns of the data, required the
use of mixed-effects regression techniques. Mixed-effects
models take into account different forms of variability and,
in particular, interindividual variability [15]. More precisely,
they use the available information from all individuals of an
analyzed population to retrieve both population-level and
individual-level values for the dynamic parameters. As a
consequence, they are particularly suited for the analysis of
datasets with large numbers of individuals, even if data are
sparse for some of the individuals.

In their general form, such models can be written as
follows:

yi j = f
(
xi j ,φi

)
+ g
(
xi j ,φi

)
εi j , 1 ≤ i ≤ N ; 1 ≤ j ≤ ni,

(1)

where N is the number of animals, ni the number of obser-
vations for individual i, x the regression variable (e.g., time),
and y the observations. The term f represents deterministic
equations; in our case, these are simple phenomenological
laws. The residual error is g(xi j ,φi)εi j , where εi j ∼ N(0, σ2).
In what follows we will consider constant error models, that
is, g(xi j ,φi) = 1.

Each individual parameter φi can be defined as follows:

φi = h
(
μ + ηi

)
, ηi ∼ N(0,Ω), i = 1, . . . ,N , (2)

where ηi is a p-vector of random effects and h is some pre-
defined transformation. Here, we assume that the individual
parameters are log-normally distributed (i.e., h(u) = eu).
μ is a p-vector of fixed population parameters (i.e., h(μ)
is the median value across individuals for each of the p
parameters). Ω is the p× p variance-covariance matrix of the
random effects. We assume potential correlations between
the random effects, meaning that Ω is a full matrix.

The unknown set of parameters in the model is then

θ = (μ,Ω, σ2). (3)

The likelihood function related to this problem can be
written as follows:

L
(
θ, y

) =
N∏

i=1

Li
(
θ, yi

)
, (4)

with

Li
(
θ, yi

) =
∫
p
(
yi,ηi, θ

)
dηi

= C
∫
σ−ni|Ω|−1/2e−1/(2σ2)‖yi− f (xi,φi)‖2−(1/2)η′iΩ−1ηidηi.

(5)

If f is nonlinear with respect to the random effects,
the likelihood function cannot be easily computed and
maximized. One intuitive means of addressing this problem
is to analyze the data from each individual separately. This
approach, however, requires a large number of observations
per individual, and therefore it is clearly not feasible in
our case. An alternative method is the SAEM algorithm
(stochastic approximation of the EM algorithm [16]), which
can be used to calculate the maximum likelihood, without
any approximation of the likelihood function and to estimate
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population (θ) and individual (φi) parameters. We used
Monolix software (Lixoft) to estimate those parameters. The
software analyzes all individual data simultaneously. In a
first step, a likelihood function is minimized in order to
estimate the mean values of the model parameters as well
as their variability throughout the population. The resultant
estimates are referred to as the population parameters. In a
second step, information on the mean parameter values is
used to estimate, on the basis of each individual dataset, the
best model parameters for each individual. These are called
individual parameters.

Mixed-effects models also have the advantage of being
associated with a large panel of validation tools. The log-
likelihood (LLH) value (actually −2 × LLH) is generally
used to select the best model from among multiple models.
However, since a model with a greater number of parameters
is more likely to produce a better fit because it has more
degrees of freedom, a penalty term is generally added to the
likelihood function to account for the number of parameters.
Examples of criterion functions that include such penalty
terms are the Akaike information criterion (AIC):

AIC = −2× LLH + 2× n, (6)

where n is the number of free parameters to be estimated,
and the Bayesian information criterion (BIC):

BIC = −2× LLH + log(k)× n, (7)

where k is the sample size.
We tested different types of phenomenological models,

and we selected the best ones on the basis of three criterion
functions—namely, −2 × LLH, AIC, and BIC values—
goodness of fit, residual plots, and precision of parameter
estimates as relative standard errors. We assessed simulation-
based diagnostics through visual predictive check, that is, we
graphically compared the observed data and the simulated
data (using population parameters and both interindividual
and residual variability). We calculated ε-shrinkage and η-
shrinkage to evaluate the degree of shrinkage of individual
predictions towards the observations [17]. High values of
shrinkage (>30%) are considered to impair diagnostics based
on individual predictions and covariate analysis [17].

3. Results

3.1. Modelling Viremia. We first formulated a model to
describe the observed pattern of acute increase in viral load
followed by decay, as shown in Figure 1(a). The best model
we identified was a sum of two exponentials, describing,
respectively, the growth and decay parts of the curves:

V = A0kin

kin − kout

(
e−koutt − e−kint

)
, (8)

where V is the viral load, expressed as log10 of the number
of viral RNA copies per mL of plasma; kin and kout are
the two parameters regulating, respectively, the increase and
decay of viral load; A0 is a scaling adimensional parameter.
Figure 2(a) shows a schematic view and focuses on the effect

of changing the value of the parameter kin. The higher the
parameter value, the more rapid the increase in viral load.
Interanimal variability in the model parameters (A0, kin, kout)
was assumed to be log-normally distributed, and cat-specific
estimates are given as follows, for example, for kin:

kini = kine
η
kin
i , (9)

where kin is the typical value for the population (mean value)
and ηkin

i is an inter-animal random effect that follows a
normal distribution with mean 0 and variance ω2

kin
.

In a second step, the dose of infection and the virus strain
were evaluated as continuous and, respectively, categorical
covariates. We used a backward-stepwise method to test
how inclusion of these covariates affected the three model
parameters [18]. Virus strain had no significant effect on
the values of any of the three parameters, whereas dose of
infection, expressed in log10/mL of CCID50, affected the
constant rate of increase of viral load. Dose of infection
was successfully integrated into kin, which can be written as
follows:

kin = kine
βkin× DOSE. (10)

With this covariate integration, the objective function (−2×
LLH) was reduced by 58 points, the parameter βkin was
estimated with high precision (P < 0.001), and the variability
on the kin parameter decreased by 30%.

Consequently, the value of parameter kin increases as
the inoculum size increases, ranging from 0.074 weeks−1

for the lowest dose to 3.55 weeks−1 for the highest dose.
This result indicates that the higher the dose of infection,
the stronger the increase of viral load in the acute phase.
The parameter kout was estimated at 0.025 weeks−1, and
the scaling factor A0 at 5.56. All parameters were estimated
with low-standard errors. Table 1 presents the parameter
estimates of the model as mean values, with standard
deviation of random effects or inter-animal variability (IAV).
Figure 3 shows model diagnostics with a visual predictive
check, that is, the simulation of the population model with
95% of variability together with the data points (Figure 3(a))
and individual predictions plotted against the actual obser-
vations (Figure 3(b)). Correlation between predictions and
observations is good (r2 = 0.81, P < 0.001). In Figure 4, we
show individual predictions with a 95% confidence interval
around the predictions for six cats taken from the analyzed
population and who were challenged with infection doses
from 1.65 to 4.09 log10/mL. The model correctly predicts
the time-evolution of viral load in the individual cats, and a
relationship is demonstrated between the dose of infection
and the rate of increase of viral load in plasma during
the primary stage of infection. This correlation is shown
in Figure 5(a), where the estimated values of parameter kin

for all 102 cats are plotted against the actual values of the
infection dose (r2 = 0.73, P < 0.001).

3.2. Modelling CD8βlowCD62L−. In the study presented in
[2], the percentage of CD8βlow cells is shown to increase
in the weeks following infection, eventually reaching a
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Figure 2: Schematic view and basic simulations of selected models for viremia (a) and CD8βlow percentage (b). We highlight here the role
of the parameters regulating the increase of viremia and CD8βlow, respectively.

Table 1

Parameters Description Mean value (SE) IAV η-shrinkage

Viral load

kin Increase rate of viral load 0.06 week−1 (21%) 97% 21%

βkin Covariate (cell line) on parameter kin (exponential formulation) 1.01 (12%) —

kel Decay rate of viral load 0.02 week−1 (9%) 46% 66%

A0 Scaling parameter 5.56 (2%) 35% 26%

aV Parameter of the error residual model (constant formulation) 0.56 (5%) —

CD8βlow

λE Expansion rate of CD8βlow 0.07 week−1 (28%) 74% 35%

βλE Covariate (cell line) on parameter λE (exponential formulation) 0.77 (17%) —

K Maximal CD8βlow percentage 39.4 (6%) 56% 23%

E0 Scaling parameter 1.42 (6%) 54% 31%

aE Parameter of the error residual model (exponential formulation) 0.41 (5%) —
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Figure 3: Viremia model diagnostics. (a): Simulation of the population model with 95% of variability together with the data points (visual
predictive check). (b): Individual predictions versus the actual observations.
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Figure 4: Goodness of individual predictions of viral load. A 95% confidence interval around the prediction for six cats taken from the
analyzed population is shown. The corresponding infection doses, expressed as log10/mL of cell culture infectious dose 50% (CCID50), are
shown.

saturation level. We tested several laws, such as a sigmoid
function, in an attempt to reproduce this pattern. The best
model selected was the Gompertz equation. The model can
be written as follows:

E = Ke−E0e−λEt , (11)

where E represents the percentage of CD8βlow cells, and the
parameter E0 is involved in the expression of the percentage
of CD8βlow cells at time 0. More precisely, we set E(t = 0) =
Ke−E0 . λE is a constant term determining the expansion rate
and K is the maximal percentage of CD8βlow cells. The larger
the parameter λE, the sharper the expansion. Figure 2(b)
shows a schematic view of the model and highlights the
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Figure 5: (a) Correlations found between the dose of infection, expressed in log10/mL CCID50, and the increase rate of viral load. (b)
Resulting correlation between the rate of increase of viral load and CD8βlow expansion rate.
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Figure 6: CD8βlow model diagnostics. (a): Visual predictive check. (b): Individual predictions versus the actual observations.

impact of a change in the value of λE on the shape of the
curve. Inter-animal variability in the model parameters (E0,
λE, K) was assumed to be lognormal; the dose of infection
and virus strain were evaluated as before as covariates. Only
the dose of infection, expressed as log10/mL of CCID50, was
finally successfully integrated into the constant expansion
rate of CD8βlow. With this covariate integration, the objective
function was reduced by 33 points, and the variability on the
λE parameter decreased by 44%.

The mean value of the maximal percentage (K) was
estimated at 39.4%. The constant rate of CD8βlow expansion
increases as the dose increases, ranging from 0.08 weeks−1

for the lowest dose to 1.62 weeks−1 for the highest dose.
This range is very similar to the range of the rate of increase
of viral load. Consequently, we observe that the higher the

dose of infection, the stronger the expansion of CD8βlow.
Notably, we observe a linear relationship between the rate of
expansion of the CD8βlow population and the rate of increase
of viral load (Figure 5(a)). Figure 6, similarly to Figure 3,
shows model diagnostics with a visual predictive check
(Figure 6(a)) and individual predictions plotted against
actual observations (Figure 6(b)). Correlations between pre-
dictions and observations are fairly good (r2 = 0.80, P
< 0.001), although the highest observations seem to be
underestimated by the model. In fact, the proposed model
is able to reproduce only the expansion of the CD8βlow

percentage, whereas in many cases the highest observed
CD8βlow percentages were followed by lower percentages
at subsequent time points (see Figure 6(a)). The latter
observation might be attributable to technical variability in
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performing the laboratory measurements or to fluctuations
around a saturation point.

4. Discussion

FIV is a major pathogen affecting cats and is recognized as a
relevant model for the study of HIV infection. In particular,
during the primary infection phase, the clinical signs and
virus localization in FIV-infected cats have been shown to
be similar to those observed in HIV infection [1]. The study
of primary HIV infection is likely to shed new light on
the development of the disease, as a relationship has been
shown to exist between the characteristics of acute-stage HIV
infection and progression to death due to AIDS [19, 20]. As
primary infection in HIV might be difficult to document,
the study of the early phase of FIV infection could be an
alternative means of gaining insights into HIV that might
contribute to the design of new efficient therapy.

In addition to being a valuable model for HIV, FIV on
its own constitutes an important research interest. As a result
of the growing prevalence and severity of FIV infection, an
effective FIV vaccine is greatly needed in veterinary medicine
[2]. The issues that researchers have faced in the process of
FIV vaccine development are similar to those encountered
for HIV, and it is believed that effective vaccines against HIV
and against FIV will elicit cellular immune responses [21–
24].

We performed a longitudinal analysis of important
markers of FIV—that is, viral load and CD8βlow per-
centage—in cats undergoing primary infection. The analysis
was carried out retrospectively, using data from cats that were
infected in an experimental protocol.

This analysis led us to propose two phenomenological
models that correctly reproduced the time-evolution of
CD8βlow percentage and viremia during primary FIV infec-
tion in cats. These simple models allowed us to integrate, at
the level of the parameters, the intersubject variability that
often characterizes preclinical and clinical data.

Expansion of CD8βlow percentage was modelled with
a Gompertz law, and viremia was modelled using two
exponential laws to reproduce the initial burst of viral load
followed by decay. All model parameters were estimated
with low-standard errors, and, as expected, variability was
elevated for some of the parameters. Even if the models
are phenomenological, some of the parameters, and in
particular the rate of expansion of the CD8βlow population
and viral load, can be easily related to the shapes of the
curves (see Figure 2 for illustration), and so can be easily
interpreted. The dose of infection, expressed as log10/mL of
CCID50, was found to be a relevant covariate of the rate
of expansion of the CD8βlow population and the rate of
increase of viral load; this covariate explains a large part (up
to 30%) of the inter-animal variability on the distribution
of these two parameters. Finally, the rate of expansion of
viral load and the rate of expansion of CD8βlow percentage

were observed to be correlated (r2 = 0.73, P < 0.001; see
Figure 5(b)). Obviously, this correlation does not provide
any clues regarding the mechanism of action of CD8βlow

or the relationship between the CD8+ T-cell subpopulation
and viremia, but it reinforces the prevalent hypothesis that
CD8βlow percentage is a relevant marker of FIV progression.

The results we obtained with the proposed models may
provide insight into the time course of viremia or viral
load and the size of the CD8βlow population following
infection. Our study points to phenomenological models
as a potentially valuable complement to the numerous
mechanistic models used to study HIV infection and AIDS
progression. For example, researchers have identified a linear
relationship between a patient’s viral load, taken as the
average of all the patient’s viral load measurements (allegedly
compatible with the concept of a viral set point), and his
or her survival time [25, 26]. Our study provides evidence
that disease progression in patients can be well described by
a simple phenomenological model that does not rely on any
biological assumptions. The dynamic approach we adopted
here could provide insights into the link between viremia and
patient survival [26]. Indeed, the analysis of the time course
of viral load might be a better predictor of survival than the
average viral load parameter used by Arnaout et al. [25].

5. Summary

Cats infected with the feline immunodeficiency virus (FIV)
develop an acquired immunodeficiency syndrome (AIDS),
similarly to humans infected with HIV. FIV infection causes
an acute viremia, which decreases after several weeks, and
the appearance of a subpopulation of activated CD8+ T cells
that we refer to as CD8βlow cells. The expansion of this
activated T-cell population is recognized as an important
marker of FIV infection and disease. Characterization of
the CD8βlow population’s complex pattern of expansion,
including its correlation with other disease markers such as
viral load, is likely to increase researchers’ understanding
of FIV infection and AIDS pathogenesis. We propose two
simple and independent mathematical equations to analyze
the time-evolution of CD8βlow population size and of viral
load during primary infection in cats with FIV. We develop
the models using a population approach and mixed-effects
regression techniques, based on repeated measurements in
more than 100 cats infected with FIV.
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