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1 Coarse-grained Modelling Method

1.1 Overview

The nature of the macromolecular structure data is hierarchic so it is natural use

a hierarchic data structure to capture it. With a view to generality, each unit

in the hierarchy at any level should be identical with the distinction between

levels being made only through externally specified (user) parameters. The most

fundamental aspects to be specified include the shape of the unit, its linkage to

other units (such as whether it is in a chain or multiply bonded) and how units

interact with each other. For ease of description, a unit contained in a higher level

unit will be called its ”child” with the higher level referred to as the ”parent” of

the lower level unit. Units with the same parent are therefore ”siblings” and if

they form a chain, are designated ”sister” (preceeding) and ”brother” (following).

Anthropomorphic terms based on family relationships will be used through.

Interactions can be distinguished as inter- and intra-level. Within a level

(intra) these will either be repulsive (active for a pair of units in collision) or

attractive (active between a bonded pair). However, there are no bonds between

levels (unless individually specified by the user) and no bumps between levels.

Inter-level interaction consists only of coordination of motion and containment.

Coordinate movement means that when a parent moves, all its children move

too, which by implication, continues down through all successive generations.

In the opposite direction, the centroid of the children determines the position

of the parent. This relationship also implies indirect interaction between the

levels so that when children in different families collide then their parents will

also experience a lesser repulsion. Containment was implemented as a simple

kick-back to any children that had ’strayed’ beyond the shape boundary of their

parent.

The motion of each unit is purely random with a fixed step-size defined in
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the user-specified parameter file. Every move is accepted whether it violates

bond geometry of leads to collisions [Katsimitsoulia & Taylor, 2010]. Clearly

this would lead to a degradation in the molecular structure so independently of

this imposed motion, the bond lengths and local chain geometry (if there is a

chain) are continually refined towards their initial configuration. Similarly, units

in collision are also corrected. All these processes run concurrently (implemented

as separate threads) and in addition a user specified process also runs in parallel

in which the directed elements of the model are specified. All of these processes

operate on a single representation of the coordinates so care has been taken

to ensure that undefined states do not arise in one process that would disrupt

another. In general, this can be avoided with each process working on a temporary

copy of the coordinates it needs then writing these in one step back into the

structure.

The overall structure of the implementation is shown in Figure 1 along with

the names of the processes that will be referred to below. The two processes that

maintain the integrity of the molecular structure are the collision detection and

correction process and the process that maintains the specified links in the chain:

respectively, called the bumper and the linker which will be considered first.

1.2 Steric exclusion

It is intended that the implementation should be applied to very large systems

so any collision detection based on a full pairwise algorithm would be imprac-

tical. This is commonly avoided in molecular (and other) dynamics programs

through the use of a neighbour list in which each atom maintains a list of its

current neighbours and checks only these for collision. This has the unavoid-

able problem that the list must be revised periodically. We adopted a similar

approach except that we used the hierarchic structure of the data to provide

built-in neighbour lists where any unit only checks its siblings for collisions. As
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each family is usually in the order of 10–100 units, this would not be a large task

to compute in a pairwise manner, however, we use a faster approach based on

ranked lists of units that are maintained for each dimension (X,Y,Z). As sorting

avoids quadratic operations in the number of objects, this is much faster for large

families [Taylor & Katsimitsoulia, 2010].

When two units are in collision, they are repelled only if they have no children.

Again a single (user specified) kick-back step is applied equally to each unit

along the line connecting their centres. If the units have children, then collisions

are found between their joint families within a restricted range along the line

connecting the two parent centres. If there are no grandchildren, repulsion is

again implemented along the line connecting their two centres, otherwise the

process is repeated at each lower level until the lowest atomic 1 level is reached.

As mentioned above, parents of different families will automatically adjust

their position indirectly to the repulsion between their families as the centroid of

the children will move slightly apart. This is often a small effect, and before it

becomes significant, the children can become bunched at the collision interface

which has the reverse effect of bringing the parents (and hence their children)

even closer together. To avoid this, on the return path from the traversal of the

family hierarchy (ie: revisiting the parents of the colliding children), the parents

themselves are given a small direct displacement proportional to the number of

their children that were in collision. If only the positions of the atomic level

units were observed, this would have the appearance of a repulsive ’field’ as there

would seem to be ”action at a distance” across a family. Alternatively it can

be imagined that the children are embedded in a soft parental jelly-like matrix.

Computationally the approach means that in any collision at a high level, there

will be fewer low-level collisions generated which saves on computational expense.

This approach to the treatment of collisions has an additional effect in that

1The term ”atomic” only means the lowest level in the hierarchy, which in the protein
applications discussed, is the residue level (based on the α-carbon position).
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it is relatively insensitive to the shape of the colliding objects, which in our

implementation can be spheres, ellipsoids or tubes (discussed in mode detail

below). If we assume that the atomic level consists of spheres, then different

shapes at higher levels are primarily defined by the distribution of their children

within them which in turn is determined by the shape within which the family

is confined. The only discrepancy comes through the point at which units at

the parental level detect collision as, for computational simplicity, this is kept as

an isotropic test at the radius of their (user defined) bumping sphere. Objects

that are long/thin tubes or extremely prolate ellipsoids which are fully contained

in a bumping sphere can therefore be considered in collision before any of their

family members come in contact. At worst, however, this is just a slight waste

of computer time as the count of colliding children will be zero and the parents

will not respond.

1.3 Polymers and Cross-linking

1.3.1 Specifying chain connectivity

Unless liquids are bring modelled, the links between units (which are not dis-

tinguished from bonds) are the components that impart greatest structure. For

biological polymers, links between just adjacent units along a chain, combined

with steric exclusion, are sufficient to define a basic model. However, even this,

apparently simple, imposition of structure leads to complications in a hierarchic

model. If the atomic level is a linear chain, then so too are all higher levels but

this is not so if each atomic family forms a separate or a circular chain. Then

higher levels can be unlinked (eg; a liquid of cyclic peptides) or otherwise linked

in their own way. The linkage polymer state of each level can be specified by

the user independently but chain interdependencies are checked internally and

imposed by the program.

The structural hierarchy (family structure) is not determined by chain connec-
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tivity but should be based on groups of units that will tend to move together as

they are all acted upon by their parent’s transform operations. At the lower level,

such groupings will typically consist of consecutive units along a chain (such as

an α-helix), however, at the domain level and secondary structure level for RNA,

families of units will also be composed of sequentially discontinuous segments.

Computationally, this requires some book-keeping to keep note of which mem-

bers are linked across families. To facilitate this, each unit holds a record of

its preceding unit, referred to as its ”sister”, and its following unit, referred to

as its ”brother”; both of which may specify any unit in any family at the same

level. Together, the sisters and brothers constitute two linked-lists, with brothers

running from the start of the chain to the end and sister in the opposite direction.

As chain connectivity is not restricted by family groupings, its path at the next

higher level is not necessarily linear and can be branched. This means that each

unit may have more than one brother or sister which is equivalent to branches in

the chain in both directions. In general, this specifies a network and to deal with

the associated ”book-keeping”, each unit holds a stack of its brothers and sisters.

Following a chain is therefore not simple and when listing a chain in ”sequential

order”, the lists of brothers and sisters are followed recursively from any given

starting unit.

1.3.2 Inter-chain cross-links

Polymer chain links are such a common feature of biological macromolecules

that the capacity to encode them was included as a general feature in the data

structure of each unit. Inter-chain cross-links, which are less ubiquitous, were

allocated only as requested by the user in the data file that specifies the model.

For any level, a fixed number of links could be specified, not all of which need

necessarily be used. If no linking capacity was specified then computer memory

was not allocated.

6



Although links can be individually specified, some automated features were

incorporated to ease the burden of assigning the local cross-links associated with

secondary structure, both in proteins and RNA. For proteins, two types of sec-

ondary structure can be defined: the α-helix and β-sheet. The former is purely

local and two links were automatically set to the relative chain positions +4 and

-3 of the ideal length found in proteins. Similarly, two local links were made

along a β-strand to the +2 and -2 positions. However, each strand in a sheet

makes non-local links which can be specified by data provided in the coordinate

input specification which is automatically generated by a separate program that

calculates the definition of secondary structures.

1.4 Geometric regularisation

Steric exclusion combined with the range of linkage described above can generate

a relatively stable structure. However, given a background of ”thermal” noise,

any less constrained parts of the structure will be free to diverge from their start-

ing configuration under the given distance constraints. Typically, this involves

twisting and shearing that can generate large motions with little violation of

the specified distances, which in principle, cannot constrain chirality. A general

mechanism, based only on local angles and distances was provided to reduce these

distortions and was applied equally to all levels that form a chain.

In a chain segment of five units (designated: b2,b1,c0,a1,a2), six distances

were recorded from the starting configuration in the upper half of the matrix of

pairwise distances excluding adjacent units. Three angles were also recored as

b1-c0-a1 and the torsion angles around b1-c0 and c0-a1. These local distances

were continually refined as were the angles. Distances can be regularised with

little disruption, however, refining torsion angles can sometimes lead to an error

propagation with dramatic effects. To limit the potential for this the torsion

angles were dialled-up exactly to generate new positions for b2 (b2’) and a2
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(a2’). These were used to form a basis-set of unit length vectors along: x =

a2′ − b2′, y = c0 − (a2′ + b2′)/2, with z mutually orthogonal. Starting from

the centroid of the five points, the coefficients of an equivalent basis-set defined

on the original positions were applied to the new basis-set to generate the new

coordinate positions. The result is a compromise between angle and position that

remains stable over repeated application.

Although only local information is used, its application over all levels leads

to a global effect and indeed is sufficient by itself to recapitulate a large struc-

ture. As the procedure was designed to correct defects caused by the addition of

random motion (caused by mover in Fig.1), it was not implemented as an inde-

pendent parallel process but included in mover and applied after the coordinates

had been displaced, so keeping a balance between disruption and correction. A

final feature was included to allow for the necessary requirement that in a dy-

namic model, the starting configuration of the structure should not be exclusively

maintained. This was accommodated by periodically shifting the target distances

and angles towards those found in the current configuration. The overall effect

of this procedure is to provide a buffering effect against random motion and is

similar to giving rigidity to the structure but still allowing movement under a

persistent ”force”. In the current implementation, this shift is by 1% once in

roughly every 100 activations of mover. This can be adjusted depending on the

application.

1.5 Shape specification

Three basic shapes were implemented: cylinder, ellipsoid and sphere. Although

the sphere is a special instance of an ellipsoid, there are implementation details,

described below, that make them distinct. Each shape type by itself has elements

of symmetry that can make their orientation arbitrary, however, this symmetry is

broken when a unit contains children in an irregular configuration. Thus each unit
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needs to have an associated reference frame that determines its orientation and

is acted on by rotational operations. For a unit in a chain, the current reference

frame is based on the direction from its sister to brother (X) with the Y direction

as the projection of the unit’s position onto this line in an orthogonal direction

and Z as their mutual perpendicular. A consequence of this is that flexing of the

chain does not preserve the end-point distances between consecutive cylinders or

ellipsoids along the chain.

The length of cylinders and ellipsoids is set by reading in two end-points from

the coordinate input data which have been pre-calculated from the inertial axes of

the point-set that comprises the current unit (say, a secondary structure element

or a domain). As well as the length, the line linking these end-points specifies

the axis that corresponds with the X direction in the internal reference frame.

The two end-points are then set within the data-structure that defines each unit

as two points equidistant from the central point along the X direction. While

the length of a unit is determined by these end-points, this is different from the

size of each unit which is set generically for every unit on a given level by a value

specified in the parameter file that describes the model. For a sphere, this is

the only value that is needed and specifies the radius. For a cylinder, it also

specifies the radius which is the thickness of the tube. For an ellipsoid, the end-

points specify the length along the X axis and the size parameter specifies the

other two axes. Therefore all ellipsoids are radially symmetric around X, giving

a progression from oblate (disc) through spherical to prolate (cigar). Ignoring

scalene ellipsoids excludes only long flat discs which are not common shapes for

secondary structures or domains.

9



1.6 Implementation

1.6.1 Time and memory allocation

The adoption of a common data structure for each node in the hierarchy can

lead to the allocation of memory for variables that are seldom, if ever, used.

For example; the data structure allows for a general shape type which includes

the coordinates of the end-points for tubes and ellipsoids yet if the object is a

sphere, which it commonly is on the most populated atomic level, then space is

wasted. Fortunately, with a reasonable workstation or laptop, memory is seldom

a limitation for the system and tests have been made using over a million allocated

nodes.

With a parallel implementation (using threads), the time allocated to the

different processes can present scheduling considerations. A simple solution was

adopted in which the call-back loop of each process was interleaved with a sleep

call which suspended the process for a fixed period of time (currently 0.1 sec.).

Within each process, higher priority was allocated to branches in the hierarchy

that were in an active state, such as undergoing collision or close to a component

that had been selected as being of special interest (such as the myosin molecule

in the example considered below).

1.6.2 Visualisation

Objects were visualised in a simple viewer with all levels except the atomic being

rendered as transparent according to the shape they had been given. Objects in

a chain were linked by a thin tube which for spheres ran along the centre-centre

direction and so was always normal to the spherical surface. For cylinders and

ellipsoids, the linker tube ran from a sphere placed on the end-points, which for

cylinders had the same radius as the cylinder (producing sausage-like objects)

and for ellipsoids, was only slightly larger than the linker tube. This provides a

visual distinction between spheres and spherical ellipsoids.
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2 Actin/Myosin Example Application

To illustrate how such a system can be implemented in more concrete terms,

we take the example of myosin-V on an actin filament, described in the main

paper, in which large directed changes are applied to a component of the system

(myosin) to drive it from one defined (bound) state to another then back to the

original state but bound to a different actin molecule along the actin filament.

The system will be introduced in two parts: firstly, by describing how the model

was set-up as a hierarchical data structure, then secondly, how the dynamics

were introduced. The first part is done through data files that have been alluded

to in the previous section, however, the second part requires direct run-time

interaction with the simulation and this is implemented as a specific user-defined

routine called the driver (Fig.1) which interacts only with the common data

structure and executes as an independent parallel process.

2.1 Model Construction

We will introduce the data-structure from the top down, starting with file (actmyo.run)

that specifies the two main components: a myosin-V dimer and the actin filament.

—————————————— actmyo.run ——————————————

PARAM myosin.model

PARAM actin.model

END

GROUP 2

MODEL 0

INPUT myosin.dimer.dat

MODEL 1

INPUT actin.linear.dat

——————————————————————————————————

The above run file directs the INPUT from two files for the myosin dimer

(myosin.dimer.dat) and an actin filament (actin.linear.dat) that constitute

two units (GROUPs) at the highest level. Each group is preceded by a specifica-
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tion of the parameter set (MODEL) that they will use (0 and 1) which corresponds

to the PARAMeter files: myosin.model and actin.model, respectively. These

files consist of columns of numbers with each column specifying the values for

the different parameters at each level in the hierarchy. The file myosin.model

consists of seven columns:

—————————————– myosin.model —————————————–

0, 0, 0, 3, 1, 2, 1

9999, 1000, 500, 140, 70, 24, 5

0, 100, 100, 50, 20, 20, 11

0, 0, 0, 1, 2, 6, 4

0, 0, 0, 1, 3, 1, 1

0, 0, 1, 1, 1, 1, 1

0, 1, 1, 1, 1, 1, 0

0, 0, 1, 5, 5, 5, 5

0, 0, 0, 1, 0, 0, 3

——————————————————————————————————

where the first is the state of the ’world’ and the following six define six levels

in the hierarchy. For example; the top line specifies the shape associated with

each level with: 1=sphere, 2=cylinder, 3=ellipsoid and 0 being a virtual sphere

that is not rendered. The following two lines specify the size of each object

and its bumping radius (both in arbitrary units). The equivalent lines for the

actin.model file show a slightly different structure using different values:

————————————– actin.model (part) ————————————–

0, 0, 1, 3, 1, 2, 1

9999, 3000, 120, 120, 70, 24, 5

0, 400, 100, 0, 70, 20, 11

:

——————————————————————————————————

2.1.1 Myosin

Considering firstly the myosin model, the file myosin.dimer.dat contains an-

other two GROUPs both specified by the file myosin.dat:
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————————————– myosin.dimer.dat ————————————–

GROUP 2

SPINY 180.0

TRANS 55.0 -250.0 -450.0

INPUT myosin.dat

TRANS -55.0 -250.0 -450.0

INPUT myosin.dat

——————————————————————————————————

The first INPUT is preceded by two geometrical transforms in which the

contents of the file are rotated 180◦ about the Y axis (SPINY) then translated

(TRANS x y z). The second file is only translated but in the opposite direction

along X producing two copies related by a twofold axis, as seen in the X-ray

crystal structure (PDB code: 2DFS) [Liu et al., 2006]. (Figure 2).

The file myosin.dat contains two components of the myosin molecule which

are referred to as the ”head” and the ”tail” and are set up as two GROUPs in

what is now the third level in the hierarch. From the parameter file myosin.model

it can be seen (col:4) that these objects are the first to have a defined shape and

will behave and be rendered as ellipsoids.

—————————————— myosin.dat ——————————————

GROUP 2

TRANS -31.0 136.5 59.0

INPUT myosin.head.dat

INPUT myosin.tail.dat

——————————————————————————————————

The file myosin.head.dat specifies the structure of the myosin head-group

which is the globular kinase domain of the protein while the file myosin.tail.dat

specifies the extended alpha-helical tail with its associated calmodulin-like light

chains. (Sometimes referred to as the lever-arm or the ”leg”). Although these

files contain coordinate data from the same protein structure (1DGS), they have

been processed separately which put their centroid to the origin and a translation

(TRANS) was applied to the head group to restore their proper relative positions.
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(a) (b)

(c) (d)

Figure 1: Myosin-V structure. The structure of dimeric myosin-V (2DFS), de-
termined by single-particle cryo-electron microscopy is shown (a) with secondary
structures represented in cartoon style (using RASMOL) with α-helix coloured
pink and β-strands yellow. (b) The same structure is shown as a virtual α-
carbon backbone with the two heavy chains coloured cyan and green and their
associated light-chains in alternating yellow/orange and red/magenta, respec-
tively. Secondary structure line-segments (“sticks”) are shown as green tubes for
β-strands and thicker red tubes for α-helices. (c) For the full structure of heavy
and light chains (excluding the coiled-coil C-terminus) and (d) for the globular
foot domain. (The amino-terminus lies in the all-β SH3 domain to the right)
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By specifying the head and the tail as separate groups (units), they can be

operated on independently by geometric transforms allowing the driver routine

to recreate a large relative motion between them called the ”power-stroke” in

which the tail swings through a large angle.

The myosin head group was split into seven domains as described previously

() all of which are contained in distinct files: head.dom[1-7].dat. The level-3

unit that contains the domains was defined as an ellipsoid and its end-points

are defined on the GROUP definition line (along with the number of children it

contains).

————————————— myosin.head.dat —————————————

GROUP 7 -1.2 -42.6 -37.2 4.32 34.44 39.0

INPUT head.dom1.dat

INPUT head.dom2.dat

INPUT head.dom3.dat

INPUT head.dom4.dat

INPUT head.dom5.dat

INPUT head.dom6.dat

INPUT head.dom7.dat

REBOND 134 169

REBOND 275 320

REBOND 411 429

REBOND 495 412

REBOND 428 276

REBOND 292 541

REBOND 667 496

REBOND 540 293

REBOND 319 135

REBOND 168 668

——————————————————————————————————

The path of the chain through the seven head-group domains does not cor-

respond simply to the domain order. Since each domain group is defined auto-

matically by compactness, (giving sets of units that should move together), it is

necessary to specify the chain path through the domains. This is done using the

identity of units at the atomic level, sequentially numbered over the scope of the
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(a) (b) (c)

Figure 2: (a) SSEs allocated to produce seven domains: 3 core domains (light-
blue, cyan, green), two binding domains (yellow, orange) and two ankle domains
(blue, red). (b) The SSEs represented in Figure 2 are redrawn with space-filling
spheres placed on each SSE end-point and sliced through by a plane that would
also contain the ‘leg’ extension. (c) As in part b but with domain boundaries
sketched and domain codes added: A1–2 (ankle), B1–2 (binding) and C1–3 (core).
The direction of the X and Y axes of the internal reference frame are indicated
by arrows.

current group. Each rewiring of the units is specified by a REBOND command

which states that the unit with the first identity number should be bonded to the

unit with the second identity number. For example; ”REBOND 134 169” speci-

fies that residue 134 should now link to residue 169. The resulting loose end at

135 is picked-up by the later command ”REBOND 319 135”. These connections

can be specified ”by-hand” but are written automatically by the preprocessing

program that defines the domains.

Each domain file now takes us down to the lowest (atomic) level at which the

actual X,Y,Z, coordinates are encountered. To avoid the proliferation of many

small files, the two lowest levels (secondary structures and residues) are defined

together with the first GROUP command stating that there are nine secondary

structures in the group and the second (lower level) GROUP command specifying

six ATOMS (atomic-level units) in each subgroup. The coordinate data (from

the PDB file) is given at the atom level along with the secondary structure state

encoded in the final column as: 1=loop, 2=beta and 3=alpha. As the secondary
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structures are defined in the parameter file as cylinders, they are given end-point

coordinates on the GROUP command line. If these are omitted, as with the first

loop segment, default end-points are generated inside the program.

————————————— head.dom1.dat —————————————

GROUP 9

GROUP 6

ATOM 1 CA GLY A 1 -3.537 -37.198 -20.771 1.00 1.00

ATOM 2 CA GLY A 2 -1.470 -34.014 -20.628 1.00 1.00

ATOM 3 CA GLY A 3 1.589 -35.231 -18.657 1.00 1.00

ATOM 4 CA GLY A 4 3.165 -37.036 -21.663 1.00 1.00

ATOM 5 CA GLY A 5 6.875 -37.568 -22.449 1.00 1.00

ATOM 6 CA GLY A 6 8.601 -34.333 -23.626 1.00 1.00

GROUP 7 6.15 -31.57 -21.01 12.09 -24.98 -5.29

ATOM 7 CA GLY A 7 6.079 -32.117 -21.857 1.00 2.00

ATOM 8 CA GLY A 8 7.638 -29.779 -19.295 1.00 2.00

ATOM 9 CA GLY A 9 6.751 -28.831 -15.716 1.00 2.00

ATOM 10 CA GLY A 10 7.995 -26.626 -12.874 1.00 2.00

:

SHEET

BETA 44 36

BETA 43 37

BETA 37 43

BETA 36 44

BETA 36 23

BETA 23 36

——————————————————————————————————

The links between β-strands in a SHEET are specified as pairings on the

BETA records at the end of the file.

The structure of the tail component follows along similar lines and will not

be described in detail.

2.1.2 Actin

The highest level actin specific file, actin.linear.dat describes a segment of

an actin filament which consists of repeated actin molecules related by helical

symmetry with a rotation of -167◦ and 55Å translation. Because of the way they
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interact with the myosin, actins were taken in pairs (called a dimer) giving a

shift between dimers of 23◦ and 110Å2. These relationships could be encoded by

separate rotate and translate commands but as helical symmetry is common, a

combined HELIX command was created specifying the two components together:

————————————— actin.linear.dat —————————————

GROUP 16

INPUT actin.dimer.dat

HELIX 0.0 0.0 -5.8 26.0

INPUT actin.dimer.dat

HELIX 0.0 0.0 -11.6 52.0

INPUT actin.dimer.dat

HELIX 0.0 0.0 -17.4 78.0

INPUT actin.dimer.dat

HELIX 0.0 0.0 -23.2 104.0

INPUT actin.dimer.dat

:

——————————————————————————————————

Each actin.dimer.dat file simply introduces another level in the hierarchy

and maintains the same symmetry around the fibre axis but because the dimer

centre lies on the axis, only a shift along Z is needed at the higher level.

————————————— actin.dimer.dat —————————————

GROUP 2

HELIX -3.55 -0.45 0.0 0.0

INPUT actin.one.dat

HELIX 3.55 0.45 -2.9 -167.0

INPUT actin.one.dat

——————————————————————————————————

The actin molecule consists of four domains forming a flat disc which was natu-

rally encoded as an oblate ellipsoid. This was (hand) specified by an axis of length

10 (-5 to 5) which relative to the size of the domain specified in actin.model

gives an excessive axial ratio which is set to the maximum allowed ratio of 5.

—————————————– actin.one.dat —————————————–

2NB: the internal coordinates in the data structure are not Ångstroms
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GROUP 4 -5.0 0.0 0.0 5.0 0.0 0.0

INPUT actin.dom1.dat

INPUT actin.dom2.dat

INPUT actin.dom3.dat

INPUT actin.dom4.dat

RELINK 32 127

RELINK 172 33

RELINK 90 173

RELINK 216 281

RELINK 372 217

RELINK 280 91

ENDS 372 126

——————————————————————————————————

As with the myosin head domains, the chain path through the actin domains

must be relinked. This also entails the creation of a new terminal position which

is specified by the ENDS command. (The equivalent myosin command falls in

the tail segment).

Each domain file (actin.dom[1-4].dat) is similar to the equivalent myosin

head group domain files and introduce no novel features.

2.2 Driver construction

The driver routine encodes the dynamic aspect of the myosin motor. This in-

cludes specifying the actin/myosin bound state along with motion at the hinge

points between the myosin head and tail and the myosin dimer. From any given

starting configuration, the actin lying closest to the myosin head was identified

and the myosin molecule moved towards it. When the myosin came within a

predefined distance, its orientation was also refined. Together these operations

”docked” the myosin molecule into a configuration relative to the actin that cor-

responded to the known structure. When in this position (referred to as “tightly

bound”), the orientation of the myosin tail relative to the head was rotated about

an axis that corresponded to what can be inferred from the structures of myosin

with tails in different positions. This motion, known as the ”power-stroke” can
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only occur if the other half of the myosin dimer is unbound. In this situation,

the free myosin will be carried along towards a new region of the actin filament

where it will then search for a new binding site. Cycling through these states

leads to a processive motion of myosin along the actin filament3.

The mechanics of the myosin walking motion can be decomposed into three

distinct components: the myosin can be bound or unbound to actin, the head

can be either in a pre- or post- power-stroke position and the two halves of

the myosin dimer can swivel around their dimer interface. There is no explicit

communication between the binding states of the two myosin molecules, except

what can be communicated through their dimer interface. This has the form of

an alpha-helical coiled-coil but little is known of how it responds under stress

(tension) or how it affects the diffusion search of an unbound head. By contrast,

the power-stroke (PS) transition is well characterised by many structural studies

and the forward stroke (from pre- to post-PS positions) occurs only when the

myosin is bound to actin whereas the reverse stroke (cocking the trigger) occurs

in the unbound state.

2.2.1 The myosin dimer hinge

The most independent component of the myosin machine is the dimeric interface

which, by analogy to walking motion, will be referred to as the ’hip’ joint. As

little is known about its’ structure or dynamics, it was modelled simply as a

constraint to hold the ends of the legs at a fixed distance.

Walking motion requires movement of the legs about the hip-joint and rather

than rely on the generic diffusion built into the geometry engine, an additional

motion was included in the driver routine to give any unbound myosin a rota-

tional displacement about the hip. This provides an example of how the driver

3Note that this processive, or proper walking, motion of myosin-V differs from that of muscle
myosin (II) in which the actin myosin contact is only transient. The latter is more akin to a
bank of rowers in which each myosin oar is dipped into the actin river.
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routine can utilise structural information across levels in the hierarchy as the

rotation is applied to the whole myosin molecule (level-2) whereas the axis is de-

termined by the domain positions at the end of the tail in both molecules (level-4

in separate sub-trees).

While a faster rate of driven motion reduces the search time for the free myosin

head to find a new binding site without disrupting the position of the bound head,

it also gives less time for the generic collision detection algorithm to avert clashes

between the myosin molecules and the actin filament. To rectify this, a specific

high-level check was made on the moving myosin based on the distance of the

head from the actin filament (the actin dimer centre) and the other head group.

The tail was also checked but as this is an elongated substructure, the closest

approach of the ellipsoid major axes was monitored and if these fell below a

fixed cutoff (set at the same distance as the hip joint) then the two myosins were

separated.

2.2.2 The actin/myosin binding

The distance of the myosin head from each actin dimer centre was monitored and

when this fell within a given range, the myosin was moved closer to the selected

actin. This choice is made afresh every time the driver routine is activated,

so the target actin can vary as the configuration of molecules changes. This

approach mode, referred to as ”loose binding”, which includes no orientation

component, continues until a shorter threshold is reached at which point the closer

actin molecule is selected and the myosin is orientated and translated towards

its known binding position. The orientation component is calculated based on

the internal reference frames of the actin and the myosin head by applying the

rotation matrix and translation vector that reproduces the docked complex. A

fully-bound state is declared if this transformation can be applied and the end of

the tail is placed within the range of the hip-joint to the other myosin.
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2.2.3 The power-stroke

The power-stroke (PS) consists of a large swinging motion of the tail relative to

the head which is easily encoded in the driver routine as a rotation about an

axis that lies within the head. Structural studies have associated the swivel point

with a particular α-helix and the coordinates of this helix centre were taken as

the hub. The rotation axis is less well defined but can also be inferred from the

known structures and this was calculated and set as a fixed axis in the driver

routine. Similarly, the extent of the left and right swing were preset with reference

to the internal reference frame of the myosin head.

Given these constraints, a simple mechanism was encoded that maintained a

position at the end of the swing range depending on the bound state of the myosin.

If the myosin was unbound the tail angle was incremented until it attained the

pre-PS position and only when the myosin became fully bound, was this motion

reversed towards the post-PS position. These two states were used to impose

an additional condition on binding: that the myosin can only select an actin for

binding when it is in the pre-PS position. This means that the post-PS state must

detach from the actin and revert to the pre-PS position before it can rebind.
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