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One of the most famous algorithms that appeared in the area of image segmentation is the Fuzzy C-Means (FCM) algorithm.
This algorithm has been used in many applications such as data analysis, pattern recognition, and image segmentation. It has the
advantages of producing high quality segmentation compared to the other available algorithms. Many modifications have been
made to the algorithm to improve its segmentation quality. The proposed segmentation algorithm in this paper is based on the
Fuzzy C-Means algorithm adding the relational fuzzy notion and the wavelet transform to it so as to enhance its performance
especially in the area of 2D gel images. Both proposed modifications aim to minimize the oversegmentation error incurred by
previous algorithms. The experimental results of comparing both the Fuzzy C-Means (FCM) and the Wavelet Fuzzy C-Means
(WFCM) to the proposed algorithm on real 2D gel images acquired from human leukemias, HL-60 cell lines, and fetal alcohol
syndrome (FAS) demonstrate the improvement achieved by the proposed algorithm in overcoming the segmentation error. In
addition, we investigate the effect of denoising on the three algorithms. This investigation proves that denoising the 2D gel image
before segmentation can improve (in most of the cases) the quality of the segmentation.

1. Introduction

Two-dimensional gel electrophoresis (2D gel) allows sepa-
ration of mixtures of proteins due to differences in their
isoelectric points (pI), in the first dimension, and subse-
quently by their molecular weight (MWt), in the second
dimension. Other techniques for protein separation exist,
but currently 2D gel provides the highest resolution allowing
thousands of proteins to be separated. The great advantage
of this technique is that it allows, from very small amounts
of material, the investigation of the protein expression for
thousands of proteins simultaneously [1].

In this paper, one of the issues and challenges related to
digital image analysis of the 2D gel images will be addressed,
namely, the segmentation of the images. This segmentation
is very crucial in such images as it is used to conclude the

existence (or not) of malicious cells in the patient’s protein
sample. Image segmentation is defined as the process of
dividing images into regions according to its characteristic,
for example, color and objects present in the images. The
result of image segmentation is in the form of images that are
moremeaningful, easier to understand, and easier to analyze.
Correct segmented results are very useful for the analysis,
predication, and diagnoses [2–5].

Fuzzy C-Means (FCM) is a method of clustering which
allows one piece of data to belong to two or more clusters.
This method (developed by Dunn in 1973 [4] and improved
by Bezdek in 1981 [6]) is frequently used in pattern recog-
nition. It also has been in image analysis processes such as
segmentation [2–5, 7–11].

Clustering involves the task of dividing data points into
homogeneous classes or clusters so that items in the same
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class are as similar as possible and items in different classes
are as dissimilar as possible. Clustering can also be thought
of as a form of data compression, where a large number of
samples are converted into a small number of representative
prototypes or clusters. Depending on the data and the
application, different types of similarity measures may be
used to identify classes, where the similaritymeasure controls
how the clusters are formed. Some examples of values that can
be used as similarity measures include distance, connectivity,
and intensity [3, 4, 7].

In nonfuzzy or hard clustering, data is divided into crisp
clusters, where each data point belongs to exactly one cluster.
In fuzzy clustering, the data points can belong to more
than one cluster, and associated with each of the points are
membership grades that indicate the degree to which the data
points belong to the different clusters [2, 8].

However, one disadvantage of standard FCM is that it
does not consider any spatial information in image context,
which makes it very sensitive to noise and other imaging
artifacts. Recently, many researchers have incorporated local
spatial information into the conventional FCM algorithm to
improve the performance of image segmentation [5, 8, 9].
Some research studies developed a Sugeno-type rule-based
system that imposed spatial constraints in order to enhance
the results of fuzzy clustering.

Others modified the FCM objective function by includ-
ing a spatial penalty on the membership functions which
leads to an iterative algorithm that is very similar to the
conventional FCM and allows the estimation of spatially
smooth membership functions. An FCM S algorithm was
introduced by modifying the objective function of FCM to
compensate for the gray (intensity) inhomogeneity and to
allow the labeling of a pixel to be influenced by the labels in its
immediate neighborhood [5, 9, 11]. Variants of this algorithm
were introduced, called FCM S1 and FCM S2. Both of them
replaced the neighborhood term of FCM S by computing in
advance the extra mean-filtered image and median-filtered
image, respectively.

An interesting modification of the FCM algorithm was
to apply a wavelet function to the image before starting
to segment it. In [10], Noreen et al. applied the Discrete
Wavelet Transform (DWT) to MRI image to extract high
level details and after some processing on this high pass
image, they added it to the original image to get a sharpened
image. The wavelet transformed image is then segmented
by Fuzzy C-Means algorithm followed by Kirch’s line/edge
detection mask to further enhance the edge detail in the
image. The wavelet transform has been also applied prior to
other segmentation techniques like Watershed as in [12]. In
both cases the application of wavelet greatly improved the
quality of segmentation.

In our work, we propose an algorithm that makes use
of wavelets and FCM and adds the relation notion to it
in order to obtain better segmentation results. Through
wavelets we extract the high pass image. The noise-robust
nature of wavelets and the noise sensitivity of FCM com-
bined in our algorithm ensure giving better segmentation
results. The proposed algorithm focuses on the solution

of over- and undersegmentation problem of low contrast
images by applying preprocessing to the input image. The
algorithm will be applied here to 2D gel images; however, it
can be applied to any type of images.

This paper is organized as follows. This section gives
the introduction to the area of interest of the research;
then the basics of the Fuzzy C-Means algorithm and the
fuzzy relation are introduced in Section 2. The details of the
proposed algorithm are given in Section 3. The parameters
of the algorithm are obtained experimentally in Section 4.
Section 5 demonstrates the experimental results on real 2D
gel images, as well as comparisons with the FCM and the
wavelet FCM. Section 6 investigates performing denoising
on the image before segmentation on the quality of the
proposed segmentation algorithm. Finally, conclusions and
future perspectives of this work are discussed in Section 7.

2. Background and Related Work

2.1. Fuzzy C-Means Algorithm. Fuzzy clustering belongs to
the group of soft computing techniques which is often better
suited for the real applications and there is very often no
sharp boundary between clusters [13]. In fuzzy clustering we
use membership values, instead of crisp values, which range
between zero and one.

The resulting data partition improves data understanding
and reveals its internal structure. Partition clustering algo-
rithms divide up a dataset into clusters, where similar data
objects are assigned to the same cluster, whereas dissimilar
data objects should belong to different clusters [4, 13].

The standard Fuzzy C-Means uses the Euclidean distance
as a cost function to be minimized and expressed as
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of the cluster, and ‖∗‖ is any norm expressing the similarity
between any measured data and the center [3, 8, 10].

In the standard use of Fuzzy C-Means, the weighting
coefficient (𝑚) is set to 𝑚 = 2. The FCM algorithm runs
iteratively in the following steps.
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Step 4. If ‖𝑈(𝑘 + 1) − 𝑈(𝑘)‖ < threshold, then
STOP;

otherwise return to Step 2.

The computation of the updated membership function is
the condition for the minimization of the objective function.
With Fuzzy C-Means, the centroid of a cluster is computed
as being the mean of all points, weighted by their degree of
belonging to the cluster [3, 8, 10].

The degree of being in a certain cluster is related to the
inverse of the distance to the cluster. By iteratively updating
the cluster centers and the membership grades for each data
point, FCM iteratively moves the cluster centers to the “right”
location within a dataset.

2.2. Fuzzy Relations. A Fuzzy relation [14] generalizes clas-
sical relation into one that allows partial membership and
describes a relationship that holds between two or more
objects.

Let 𝑋 and 𝑌 be nonempty sets. A fuzzy relation 𝑅 is a
fuzzy subset of𝑋×𝑌. In other words,𝑅 ∈ 𝐹(𝑋×𝑌). If𝑋 = 𝑌,
then we say that 𝑅 is a binary fuzzy relation in 𝑋. A fuzzy
relation 𝑅 is a relation that measures the degree by which 𝑋
is related to 𝑌.

Let 𝑅 be a binary fuzzy relation on 𝑅. Then 𝑅(𝑢, V) is
interpreted as the degree of membership of the ordered pair
(𝑢, V) in 𝑅.

As a demonstrating example, let 𝑅 be a binary fuzzy
relation on 𝑈 = {1, 2, 3}, called “approximately equal,” and
can be defined as

𝑅 (1, 1) = 𝑅 (2, 2) = 𝑅 (3, 3) = 1,

𝑅 (1, 2) = 𝑅 (2, 1) = 𝑅 (2, 3) = 𝑅 (3, 2) = 0.8,

𝑅 (1, 3) = 𝑅 (3, 1) = 0.3.

(4)

The membership function of 𝑅 is given by

𝑅 (𝑢, V) =
{{

{{

{

1 if 𝑢 = V,

0.8 if |𝑢 − V| = 1,

0.3 if |𝑢 − V| = 2.

(5)

2.3.Wavelet Transform. Wavelets [15] aremathematical func-
tions that allocate data into different frequency components
and then study each component with a resolution matched
to its scale. They have advantages over traditional Fourier
methods in analyzing physical situations where the signal
contains discontinuities and sharp spikes.

The wavelet transform has become a useful computa-
tional tool for a variety of signal and image processing
applications. For example, the wavelet transform is useful
for the compression of digital image files; smaller files are
important for storing images using less memory and for
transmitting images faster and more reliably.

There are two basic types of wavelet transform. One
type of wavelet transform is designed to be easily reversible
(invertible); that means the original signal can be easily
recovered after it has been transformed. This kind of wavelet

transform is used for image compression and cleaning (noise
and blur reduction). The second type of wavelet transform is
designed for signal analysis, for example, to detect faults in
machinery from sensor measurements, to study biomedical
signals or filter medical images, and to determine how the
frequency content of a signal evolves over time. In these
cases, a modified form of the original signal is not needed
and the wavelet transform need not be inverted. In our
work, we will use the second type to enhance and filter the
image before executing segmentation. There are a number
of ways of defining a wavelet (or a wavelet family) through
scaling filter, scaling function, and wavelet function. An
orthogonal wavelet is entirely defined by the scaling filter—
a low-pass finite impulse response (FIR) filter of length 2𝑁
and sum 1. In biorthogonal wavelets, separate decomposition
and reconstruction filters are defined. Also, wavelets are
defined by the wavelet function𝜓(𝑡) (i.e., themother wavelet)
and scaling function 𝜑(𝑡) (also called father wavelet) in
the time domain. Moreover, the wavelet only has a time
domain representation as the wavelet function 𝜓(𝑡). We can
divide the wavelets according 𝑡 the wavelet function to: con-
tinuous wavelet transform and discrete wavelet transform.
A continuous wavelet transform (CWT) is used to divide
a continuous-time function into wavelets. Unlike Fourier
transform, the continuous wavelet transform possesses the
ability to construct a time-frequency representation of a
signal that offers very good time and frequency localization.

A discrete wavelet transform (DWT), for example, “Haar”
wavelet used in our algorithm, is any wavelet transform for
which the wavelets are discretely sampled. As with other
wavelet transforms, a key advantage it has over Fourier
transforms is temporal resolution: it captures both frequency
and location information (location in time). The DWT of a
signal 𝑥 is calculated by passing it through a series of filters.
First the samples are passed through a low pass filter with
impulse response 𝑔 resulting in a convolution of the two:

𝑦 [𝑛] = (𝑥 ∗ 𝑔) [𝑛] =

∞

∑

𝑘=−∞

𝑥 [𝑘] 𝑔 [𝑛 − 𝑘] . (6)

The signal is also decomposed simultaneously using a
high-pass filter ℎ. The outputs give the detail coefficients
(from the high-pass filter) and approximation coefficients
(from the low-pass filter).

3. The Proposed Wavelet Relational Fuzzy
C-Means Algorithm

The proposed algorithm is a version of the well-known Fuzzy
C-Means clustering algorithm. It builds on the conventional
Fuzzy C-Means algorithm and introduces the notion of fuzzy
relations to it in order to efficiently differentiate spot pixels
from the varying background. The proposed algorithm has
several phases.

The first phase of the proposed algorithm is to use
a wavelet function on the image before performing the
segmentation to enhance its quality. We extract the high level
details for the image (four subbands (LL, LH, HL, and HH)).
Thenwe set the approximation coefficients in LL equal to zero
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Figure 1: Part of 2D gel electrophoresis image when number of
clusters (𝐶) = 6.

and apply inverse wavelet transform to obtain a high pass
image (L1). Subsequently, we add L1 to the original image
to get a sharpened image. This will help filtering the small
irrelevant pixels that should not be confused with the spots
found in the image, thus minimizing the oversegmentation
error. (The oversegmentation error is to consider a non spot
as a spot which increases the number of detected spots in the
image leading to erroneous quantification results).

Second, we use the conventional Fuzzy C-Means algo-
rithm to obtain initial set of clusters. The only modification
made to the FCM algorithm is setting the number of clusters
(𝐶) to more than two clusters, which was taken to be exactly
two in the usual usage of the FCM algorithm. This setting
is intended so as not to ignore the detection of the lighter
protein spots from the background. A simple application of
such an assumption is shown in Figure 1. From the figure, we
can observe that even the lighter protein spots were detected
at cluster 𝐶

4
.

However, this is not sufficient to detect proteins spots and
quantify them accurately. A more robust method must exist
to differentiate protein spots from the background varying
gel rather than increasing the number of clusters only. This
reveals the need of introducing the notion of fuzzy relations
into the FCM algorithm which will be third phase of the
proposed algorithm following the application of the FCM
algorithm.

We create a fuzzy relation𝑅(𝑥, 𝑦) between each two pixels
(𝑥, 𝑦) belonging to different clusters produced by the FCM.
This fuzzy relationwill define the degree of closeness between
these pixels. Then, for each two pixels (𝑥, 𝑦), we compare
𝑅(𝑥, 𝑦) (which is the absolute value of the difference between
the gray values of pixels 𝑥 and 𝑦) to 𝛽, where 𝛽 is a linguistic
variable representing the fuzzy value “High.” Now if𝑅(𝑥, 𝑦) is
“High,” then the pixel (𝑥 or 𝑦) representing the highest gray
value is a spot pixel.

Figure 2 shows a representation of a fuzzy relation,
𝑅(𝑥, 𝑦), between two points (𝑥, 𝑦) in two different clusters:
Cluster

1
and Cluster

2
. The arrows represent the degree of

closeness between two pixels from different clusters.The dark
arrow marks a strong closeness between the two pixels while
the light arrow marks a weak closeness.

As a total, the proposed algorithm is composed of 7
steps, where the first three steps represent the first phase
which uses the wavelet decomposition concept to filter the
image before applying the FCM algorithm. The fourth step
represents the second phase which applies the FCM to
the produced image with number of clusters more than 2,
to produce preliminary clusters. Finally, these clusters are
internally refined to identify the inner spots by separating the
backgroundpixel from the contained pixel in the cluster using
the fuzzy relational concept at steps (5) to (7) (third phase).
A summary of the steps of the proposed algorithm is given in
Algorithm 1.

The proposed algorithm with the above added features
has the following advantages.

(1) The number of spots detected in the image is
increased by increasing the number of clusters to
which the pixels in the image must be partitioned.

(2) The problem of the collected protein spots in the same
area will be solved since we put into consideration the
luminance of the pixels in the image (i.e., degree of
intensity). In this case, the quantification of protein
spots will be much easier.

(3) In the proposed algorithm, we do not care about the
neighborhood pixels when investigating if the pixel
is a spot pixel or not. Rather, we consider the pixels
in different clusters. This means that even very small
spots can be detected as long as they belong to a
cluster which will solve the problem of the missing
value.

4. Choice of Algorithm Parameters

4.1. Fuzzification of Parameter (𝛽). The performance of the
proposed WRFCM algorithm relies greatly on two main
parameters: 𝐶 = number of clusters and 𝛽 = degree of
closeness between the two pixels. The determination of the
proper value of parameter (𝛽), which represents the threshold
between the differences in the intensity of any two pixels in
different clusters, is very important and critical. In order to
estimate it, we used the trapezoidal fuzzy function [13] shown
in Figure 3.

To illustrate the need for such function, let 𝑘 represents
the absolute difference between the two pixels 𝑥 and 𝑦. If 𝑘 is
high, then max(𝑥, 𝑦) is a spot pixel. While if 𝑘 is low and one
of them is a spot pixel, then the other is a spot pixel. Now the
objective is to define the membership functions low and high
of this function.

The membership function low will be defined by four
points (𝑥

0
, 𝑥
1
, 𝑥
2
, 𝑥
4
). However, in order to have a real

trapezoid, we need four points at the left of 𝑥
1
. Following

the same reasoning, the membership function high will be
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WaveletRelationalFuzzyCMeans (Original image, No of clusters, Beta)
Input: Original image, No of clusters, 𝛽
Output: Segmented image
(1) Apply Wavelet transform to the input image to obtain wavelet decomposed image

resulting in four subbands (LL, LH, HL and HH).
(2) Set approximation coefficients in LL equal to zero and apply inverse wavelet transform

to obtain a high pass image (L1)
(3) Add L1 to the original image to get a sharpened image.
(4) Apply the FCM algorithm with 𝐶 > 2
The output is the partitioning of image pixels into 𝐶 clusters, each having a center value V.
(5) For each two pixels 𝑥, 𝑦 belonging to two different clusters,

Create a Fuzzy Relation between 𝑥 and 𝑦:
𝑅(𝑥, 𝑦) = absolute (gv(𝑥) − gv(𝑦));

(6) if absolute 𝑅(𝑥, 𝑦) > 𝛽 then
pixel representing max(gv(𝑥), gv(𝑦)) is a spot pixel

end if
(7) Mark spot pixels and differentiate them from the background.

Algorithm 1: AlgorithmWRFCM.

P1

P2

P3

P6

Cluster1 Cluster2

P4

P5

Figure 2: Representation of the fuzzy relation between pixels in two
clusters.

HighLow

1

x0 x1 x2 x3 x4 x5 x6 x7

Figure 3: Trapezoidal membership function.

defined by four points (𝑥
3
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5
, 𝑥
6
, 𝑥
7
) (𝑥
7
any positive point

> 𝑥
6
, being 𝑥

6
the highest possible value for 𝑥). In case when

the membership function is trapezoid (or pseudotrapezoid

which in this case will be “low” and “high”), the membership
function can be defined as

𝑦
low
(𝑥; 𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
4
)
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𝑦
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− 𝑥
3

, 1,
𝑥
7
− 𝑥

𝑥
7
− 𝑥
6

) , 0) .

(7)

4.2. Determining the Parameters by Software. The proper
determination of the two parameters, number of clusters
(𝐶) and degree of closeness between the two pixels (𝛽),
ensures obtaining optimal or near-optimal performance of
the algorithm. Both values will be computed experimentally.
We performed the experiments on a data sample of human
leukemia (a 2D gel image) with variable values of both 𝐶
and 𝛽 as shown in Figure 3. We use the evaluation method
𝐹, which indicates the average squared error proposed [3], to
determine the performance of the algorithm at each test case.
The objective quantitative evaluation function (𝐹) for image
segmentation is computed as

𝐹 (𝐼) = √𝑁

𝑁

∑

𝑗=1

𝑒
2

𝑗

√𝑆𝑗

, (8)

where𝑁 is the number of regions in the segmented image and
𝑆
𝑗
is the area of region 𝑗 (measured by number of pixels in this

region 𝑗). We use 𝐶
𝑥
(𝑝) to denote the value of component 𝑥
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4: 2D gel electrophoresis image of sample of patient-human leukemia: (a) original image, (b) gradient image, (c) gradient image after
applying WRFCM when 𝐶 = 4, 𝛽 = 20, (d) gradient image when 𝐶 = 6, 𝛽 = 20, (e) gradient image when 𝐶 = 8, 𝛽 = 20, (f) gradient image
when 𝐶 = 10, 𝛽 = 20, (g) gradient image when 𝐶 = 4, 𝛽 = 19, (h) gradient image when 𝐶 = 4, 𝛽 = 21, (i) gradient image when 𝐶 = 4, 𝛽 = 22,
(j) gradient image when 𝐶 = 4, 𝛽 = 23, (k) gradient image when 𝐶 = 4, 𝛽 = 24, and (l) gradient image when 𝐶 = 4, 𝛽 = 25.

for pixel 𝑝. We define the average value of component 𝑥 in
region 𝑗 by

𝐶
𝑥
(𝑅
𝑗
) =

(∑
𝑝∈𝑅𝑗

𝐶
𝑥
(𝑝))

𝑆
𝑗

. (9)

The squared color error of region 𝑗 (𝑅
𝑗
) is defined as

𝑒
2

𝑥
(𝑅
𝑗
) = ∑

𝑝∈𝑅𝑗

(𝐶
𝑥
(𝑝) − 𝐶

𝑥
(𝑅
𝑗
))
2

. (10)

For any segmentation 𝐼 in which the color error is zero
for all segments (i.e., there is no variance in color within each
region), the value of 𝐹(𝐼) = 0 and hence a segmentation in
which each pixel is in its own region will minimize the value
of 𝐹.

For a complex image in which all cannot be zero, except
for a segmentation in which each pixel is its own region, still
𝐹 has two strong biases: segmentations with lots of regions
are heavily penalized by √𝑁, and segmentations that have
regions with large areas are heavily penalized unless the large
region is very uniform in color, since the total error (not
average error) is used and only divided by the square root

of the area of the region (versus being divided by 𝑆
𝑗
, which

would give the average squared error).
We have used the sample image of patient-human

leukemia [16] to obtain the proper values of 𝛽 and 𝐶. We
have experimentally changed both values in the algorithm to
choose the values that give the least possible error as shown
in Figure 4.

Part of the experimental results is listed in Table 1. The
proper values of 𝛽 used in the membership function, shown
in Figure 3, can be concluded from these results as follows:
when the value of 𝛽 ≤ 21, 𝛽 ≥ 23, the error is low, while
when 𝛽 is 22, the error is high. So, we will take 𝛽 to be 19.

The proper value of𝐶 accompanied with the proper value
of 𝛽 is 4. It is worth notifying that when 𝐶 = 6, 8, and 10, the
algorithm gave slightly better results; however, it consumed
muchmore time as seen in Table 1 that is why we have chosen
𝐶 = 4.

5. Software Results

In this section, we aim to evaluate the performance of the
proposed algorithm against the conventional FCM algorithm
and the Wavelet Fuzzy C-Means (WFCM) proposed by
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(a) (b)

(c) (d)

(e)

Figure 5: 2D gel electrophoresis image of the first sample of patient-human leukemias: (a) original image, (b) gradient image, (c) gradient
image after applying FCM segmentation algorithm, (d) gradient image after applyingWFCM segmentation algorithm, and (e) gradient image
after WRFCM segmentation algorithm.

Noreen et al. [10]. We will use seven data samples chosen
from the dataset for human leukemias (Eric Lester, Peter
Lemkin), HL-60 cell lines (Eric Lester, Peter Lemkin), and
fetal-alcohol-syndrome- (FAS-) serum (James Myrick, Mary
Robinson, Peter Lemkin) in [16] to show the effectiveness
of the proposed algorithm. The dataset is composed of
four types of experiments with over 300 gif images with
annotation and landmark data in html, tab-delimited, and
xml formats. 2D gel images used in experiments are of
resolution 512 × 512 pixels and are grayscale images.

To judge the performance of the algorithm, we will
use two different methods: the visual acceptance of the
segmented image and the numerical values that measure
segmentation error𝐹 and also the qualitymetric PSNRwhich

we introduce in this section to evaluate the segmentation.
This quality metric is defined as follows [17]:

PSNR = 20 ⋅ log
10
(
MAXI
√MSE

) , (11)

where MAXI is the maximum possible pixel value of the
image. When the pixels are represented using 8 bits per
sample, MAXI = 255, and the mean squared error (MSE) for
two𝑚 × 𝑛 images 𝐼 and𝐾 is defined as

MSE = 1

𝑚𝑛

𝑚−1

∑

𝑖=0

𝑛−1

∑

𝑗=0

[𝐼 (𝑖, 𝑗) − 𝐾 (𝑖, 𝑗)]
2

. (12)
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Figure 6: The average squared error (𝐹) of the FCM algorithm, the
WFCM algorithm, and the WRFCM algorithm on the seven data
samples.
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Figure 7: The PSNR of the WFCM algorithm, and the WRFCM
algorithm on the seven data samples.

A higher PSNR would normally indicate that the segmenta-
tion is of higher quality.

The visual results of applying the conventional Fuzzy
C-Means segmentation algorithm on one of these images
(2D gel electrophoresis image of the first sample of Patient-
Human Leukemias) at 𝐶 = 2, the results of applying the
Wavelet Fuzzy C-Means (WFCM) proposed, and the results
of applying the proposed Wavelet Relational Fuzzy C-Means
(WRFCM) algorithm at 𝐶 = 4 and 𝛽 = 19 are shown in
Figure 5. All the implementations in this section had been
performed using MATLAB 7.3.

From the results shown in Figure 5, we can conclude
that the proposed algorithm (WRFCM) achieves high perfor-
mance and detects the protein spots more precisely, as shown

Table 1: 𝐹 values at different values of WRFCM parameters 𝐶 and
𝛽 on sample of patient-human leukemia.

Test case no. RFCM parameters 𝐹 Time (sec.)
1 𝐶 = 4, 𝛽 = 20 1.456501 79.84
2 𝐶 = 6, 𝛽 = 20 1.454982 199.23
3 𝐶 = 8, 𝛽 = 20 1.444162 210.29
4 𝐶 = 10, 𝛽 = 20 1.428890 228.86
5 𝐶 = 4, 𝛽 = 19 1.456453 88.89
6 𝐶 = 4, 𝛽 = 21 1.456501 92.09
7 C = 4,𝛽 = 22 1.485222 93.19
8 𝐶 = 4, 𝛽 = 23 1.456928 96.18
9 𝐶 = 4, 𝛽 = 24 1.457071 90.82
10 𝐶 = 4, 𝛽 = 25 1.457357 88.09

Table 2: The average squared error (𝐹) of the FCM algorithm, the
WFCM algorithm, and the WRFCM algorithm on the seven data
samples.

Sample no. F
(FCM)

F
(WFCM)

F
(WRFCM)

Improvement
%

Human leukemia
1 5.2670 1.5336 1.4564 5.033907
2 4.8006 1.5889 1.4747 7.187362
3 4.7877 1.5762 1.5093 4.244385

Human blood lymphocytes
4 5.0801 1.5655 1.4957 4.458639
5 5.4390 1.5341 1.5299 0.273776

Fetal alcohol syndrome
6 4.4498 1.6903 1.5126 10.51293
7 4.3001 1.0270 1.5379 −49.7468

in Figure 5(e); even the less dark spots in the image appear. In
Figure 5(c) when applying the FCM algorithm, those protein
spots disappeared totally which affects the spot quantization
step in the whole process of 2D gel image analysis, whereas
the WFCM algorithm suffered from oversegmentation error
by detectingmore spots thanwhat exist in the original images
(Figure 5(d)).

However, the visual acceptance is not enough thus we will
use the 𝐹-average squared error and PSNR as segmentation
evaluation metrics to evaluate the performance of the pro-
posed Wavelet Relational Fuzzy C-Means (WRFCM) versus
the conventional Fuzzy C-Means algorithm (FCM) and the
Wavelet Fuzzy C-Means algorithm (WFCM). The results are
plotted in Figures 6 and 7 and summarized in Tables 2 and 3.

From Table 2, we notice that all the results of the pro-
posed algorithm are better than those of the FCM, while
the results are better in 6 data samples than the WFCM
(85.7% of the samples). The bold numbers in Table 2 rep-
resent the improvement caused by the proposed algorithm
(WRFCM) over the WFCM algorithm. In the unimproved
case, which is sample 7, the 𝐹 error increases by (49.74%),
while in the improved cases, the 𝐹 error decreased down to
(10.51%) in case 6.
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(a) (b)

(c) (d)

Figure 8: A close look at the 2D Gel electrophoresis image of the first sample of patient-human leukemias: (a) original image, (b) gradient
image after applying FCM, (c) gradient image after applying WFCM, and (d) gradient image after WRFCM segmentation algorithms.

FromTable 3, we notice that the results are better in 5 data
samples than the WFCM (71.4% of the samples). The bold
numbers in Table 3 represent the improvement caused by the
proposed algorithm (WRFCM) over the WFCM algorithm.
In the unimproved cases, which are samples 2 and 4, the
PSNR decreases by 1.327% and 5.65%, respectively. While in
the improved cases, the PSNR increased up to (6.964%) in
case 6.

We can also observe that in the first five data samples,
which are data for the human leukemia and human blood
lymphocytes, where the problems of ghost (weak) spots and
noisy background exist, the proposed WRFCM algorithm,
compared to the FCM algorithm and the WFCM algorithm,
succeeded in identifying weak spots in all data samples. The
reason behind the unimproved cases is that they suffered
from noise that is why we will investigate the effect of
removing the noise before segmentation in Section 6.

Figure 8 shows a close look at the left corner region of
the image after applying the three segmentation algorithms.
The figure proves the previous discussion on the effectiveness
of the proposed algorithm and its ability to handle the
oversegmentation error. We can also see that the parts that
contain ghost spots (the parts that are found in light gray
in the image background) were not considered as spot
as they were get rid off through the wavelet application
phase.

6. Applying Wavelet Denoising

In this section, we investigate the effect of performing denois-
ing on the 2D gel images before segmenting the image using
the proposed segmentation algorithm (WRFCM). We have
chosen the orthogonal wavelet denoising, with its parameters
adjusted using the genetic algorithm experimentally.

The orthogonal wavelet function has 4 parameters.

(1) The threshold selection rule which can be “heursure”
which is a heuristic variant of the Stein’ Unbiased
Risk Estimation (SURE) or minimax thresholding
which uses a fixed threshold chosen to yield minimax
performance for mean square error against an ideal
procedure.

(2) The type of thresholding which can be soft or hard
thresholding.

(3) The multiplicative threshold rescaling which can be
no rescaling, rescaling using a single estimation of
level noise based on first-level coefficients or rescaling
using level-dependent estimation of level noise.

(4) The wavelet decomposition level.

We used the genetic algorithm to find the best values
of these parameters using the PSNR as the fitness function.
The parameters obtained by the genetic algorithm were
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Table 3: The PSNR of the WFCM algorithm, and the WRFCM algorithm on the seven data samples.

Sample no. PSNR
(WFCM)

PSNR
(WRFCM)

Improvement
%

Human leukemia
1 32.795091 33.599365 2.452421
2 31.231596 30.817014 −1.327444
3 31.623994 32.855681 3.894786

Human blood lymphocytes
4 35.118125 33.130932 −5.658596
5 33.354534 35.391646 6.107451

Fetal alcohol syndrome
6 30.116019 32.213339 6.964134
7 29.504009 31.513995 6.812586

Table 4: The average squared error (𝐹) of the WFCM and the WRFCM algorithm with and without denoising on the seven data samples.

Sample no.
𝐹

(WRFCM without
denoising)

𝐹

(WRFCM with
denoising)

Improvement
%

𝐹

(WFCM without
denoising)

𝐹

(WFCM with
denoising)

Improvement
%

Human leukemia
1 1.456453 1.456405 0.003295 1.533642 1.5383 −0.3088
2 1.474703 1.474900 −0.013358 1.588977 1.5912 −0.1439
3 1.509377 1.488963 1.352478 1.576237 1.5781 −0.1225

Human blood lymphocytes
4 1.495710 1.495196 0.034364 1.565566 1.5621 0.2178
5 1.529938 1.529718 0.014379 1.534169 1.5336 0.0343

Fetal alcohol syndrome
6 1.512667 1.616971 −6.895370 1.690317 1.6887 0.0954
7 1.537931 1.537763 0.010923 1.027005 1.7973 −75.0117

Average −0.784755 Average −10.7485

“heursure” as the threshold selection rule, hard thresholding,
rescaling using level-dependent estimation of level noise, and
decomposition level = 2.

We will compare the results of applying the proposed seg-
mentation algorithm (WRFCM) with and without denoising
performed before it. We intend to prove that the denoising
can improve the segmentation results of these images.

The parameters of the WRFCM used in this section are
number of clusters (𝐶) = 4 and 𝛽 = 19. We measured the 𝐹
average squared error and the PSNR of the images with and
without denoising before being segmented. Figure 9 shows
applying the proposed WRFCM with and without denoising
on one of the 7 data samples (the first sample of patient-
human leukemias).

By visual inspection, we can observe that the problem
of noisy background which leads to misclassified pixels had
been overcome. In the resulted segmented image, after using
denoising, many pixels which had been defined as “spot
pixels” disappear. Only pixels which belong to the shape of
spots had been classified as spot pixels. So, we can conclude
that discarding noise from the 2D gel images is necessary

for the accuracy of segmentation and the quantification
step.

Then, we will use the 𝐹 and PSNR evaluation errors
(previously presented) to evaluate the performance of the
(WFCM) algorithm without denoising versus (WRFCM)
with and without denoising as shown in Tables 4 and 5 and
Figures 10 and 11. N.B.: Samples in Tables 4 and 5 are the same
and in the same order as in Tables 2 and 3.

The improvement in the𝐹qualitymetric (which evaluates
the oversegmentation) is poor in the resulted images after
performing the denoising step before the segmentation but
still this is an improvement. In the worst case which is case
6, the error increases by 6.895% while in the best three
cases which are 3, 4, and 5, the error decreases by (1.352%),
(0.034%), and (0.014%), respectively.

The improvement in the PSNR quality metric is also poor
in the resulted images after performing the denoising step
before the segmentation but still this is an improvement.
In the worst case which is case 5, the PSNR decreases by
(6.827%) while in the best case which is 2, the PSNR increases
by (7.441%).
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Table 5: The PSNR of the WFCM and the WRFCM algorithm with and without denoising algorithm with and without denoising on the
seven data samples.

Sample no. PSNR (WRFCM
without denoising)

PSNR (WRFCM
with denoising)

Improvement
%

PSNR (WFCM
without denoising)

PSNR (WFCM
with denoising)

Improvement
%

Human leukemia
1 33.599365 34.649476 3.125389423 32.795091 32.797204 0.006443
2 30.817014 33.110287 7.44158081 31.231596 31.241120 0.030495
3 32.855681 32.955918 0.305082704 31.623994 31.765727 0.448182

Human blood lymphocytes
4 33.130932 33.153382 0.067761 35.118125 32.373676 −7.81491
5 35.391646 32.975295 −6.827461 33.354534 33.361656 0.021352

Fetal alcohol syndrome
6 32.213339 30.802307 −4.380272 30.116019 30.124187 0.027122
7 31.513995 31.558443 0.141042 29.504009 29.511908 0.026773

Average −0.018125 Average −1.03636

(a) (b)

(c) (d)

Figure 9: 2D gel electrophoresis image of the first sample of patient-human leukemias: (a) original image, (b) gradient image, (c) gradient
image after applying proposed WRFCM without denoising, and (d) gradient image after applying proposed WRFCM with denoising.

We can also observe that in the first five data samples,
which are data for the human leukemia and human blood
lymphocytes, where exist the problems of ghost (weak) spots
andnoisy background, the application of denoising technique

before the proposed algorithm, compared to the WRFCM
algorithm without denoising, succeeded in reducing the
problem of oversegmentation and identifying weak spots as
in all data samples.
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Figure 10: The average squared error (𝐹) of the WFCM and
WRFCM algorithms with and without denoising on the seven data
samples.

7. Conclusions

The Fuzzy C-Means algorithm has the advantages of pro-
ducing high quality segmentation compared to the other
available algorithms. Our work in this paper was based on
the Fuzzy C-Means algorithm by adding the notion of fuzzy
relations and wavelets to it so as to enhance its performance
especially in the area of 2D gel images. The parameters of the
proposed algorithm,which are the number of clusters and the
degree of closeness, were chosen experimentally.

We conducted experiments by applying the conventional
(FCM) algorithm, the Wavelet Fuzzy C-Means algorithm,
and the proposed algorithm (WRFCM) on 2D gel images
acquired from the following:

(1) Human leukemias (Eric Lester, Peter Lemkin),
(2) HL-60 cell lines (Eric Lester, Peter Lemkin),
(3) Fetal-alcohol-syndrome- (FAS-) serum (James Myr-

ick, Mary Robinson, Peter Lemkin).

We compared the results of the algorithms both visually
and numerically (using the 𝐹 error and the PSNR quality
metric). From these results we concluded that the proposed
algorithm (WRFCM) surpasses the two other algorithms
in most of the test cases under study in both criteria of
comparison.

We also applied the wavelet denoising before the pro-
posed algorithm and compared it to the results without
denoising and the results of the Fuzzy C-Means with and
without denoising to investigate the effect of denoising on the
quality of the segmentation. From the results, we found out
that the denoising enhanced the algorithm greatly.

1 2 3 4 5 6 7
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WRFCM with denoising
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Figure 11: The PSNR of the WFCM and WRFCM algorithms with
and without denoising on the seven data samples.
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