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In the supplement, we will provide the proof of Theorem 1, which directly follows the

counterpart in Wang and Fang (2013). In the following, model (3.1) is the true model,

with θtrue = (βT0 , γ
T )T = (βT0 , δ

T/
√
n)T . Let L(θ) = ‖Y − Zθ‖2/2n, Qλ(θ) = L(θ) +∑M

m=1 pλ(‖θm‖), and θ0 = (βT0 ,0
T
q )T . Additionally, assume that ZTZ/n → Q as n → ∞.

Let Sfull = {1, . . . ,M} denote the full model, S0 = {1, . . . , K} denote the narrow model, and

A = {S : S ⊂ Sfull} be the collection of all submodels of Sfull. For any given S ∈ A , let ZS

be the n×
∑

m∈S dm submatrix of Z consisting of those columns indexed by S, and similarly,

we can define θS and QS . Firstly, based on the work by Wang and Fang (2013), we have

following two lemmas.

Lemma 1 (Wang and Fang, 2013) As n→∞,
√
n∂L(θ0)/∂θ

d−→ N (QS0δ,Q/σ
2
ε).

Lemma 2 If S ⊇ S0, then σ̂
2
S

P−→ σ2
S = σ2

ε . If S + S0, then σ̂
2
S

P−→ σ2
S > σ2

ε .

Wang, Chen and Li (2007) showed the oracle property of group SCAD, i.e., θ̂λ =

argminθQλ(θ) with λ = λn where λn → 0 and
√
nλn → ∞, providing the sparse model

S0 is the true model. We extend it to the local model.

Lemma 3 Under the same conditions of Theorem 1 in Wang, Chen and Li (2007), except

assuming that model (3.1) is the true model with γ = δ/
√
n, if λn → 0 and

√
nλn → ∞,

then with probability tending to 1, Ŝλn = {m : θ̂λnm 6= 0dm} = S0.
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Proof of Lemma 3: By Lemma 1,
√
n∂L(θ0)/∂θ = Op(1). Following proofs of Theorem

1 in Fan and Li (2001) and Theorem 1 in Wang, Chen and Li (2007), we can show that

there exists a local minimizer of θ̂ of Qλn(θ) such that ‖θ̂ − θ0‖ = Op(n
−1/2). Note that, for

m = K + 1, . . . ,M ,

∂Qλ

∂θm
=

∂L

∂θm
+ p′λ(‖θm‖)

2

‖θm‖
(|θm|sgn(θm)),

where |θm|sgn(θm) is in componentwise meaning. Furthermore, following the proof of Lemma

1 of Fan and Li (2001), we can show that with probability tending to 1, for any given β∗ satis-

fying ‖β∗−β0‖ = Op(n
−1/2) and some constant C, Q((β∗T ,0Tq )T ) = min‖γ∗‖≤Cn−1/2 Q((β∗T , γ∗T )T ).

Then Lemma 3 follows. �

Lemma 4 Pr(BICλn = BICS0)→ 1, as n→∞.

Proof of Lemma 4: Let BICλ = log(σ̂2
λ) + dfλ log(n)/n (the objective function in (??)) and

BICS = log(σ̂2
S) +

∑
m∈S dm log(n)/n. If λn satisfies λn → 0 and

√
nλn → ∞, we have

‖θ̂λn − θ0‖ = Op(n
−1/2) (obtained from Lemma 3) and Pr(Ŝλn = S0) → 1. Let θ̂Tλn =

(θ̂Tλn,S0 , θ̂
T
λn,Sc0

), clearly θ̂λn,S0 → β0 6= 0p follows. Thus Pr(‖θ̂λnm‖ > aλn,m ∈ S0) → 1, and

a is the constant in the group SCAD penalty. Based on similar techniques in the proof of

Lemma 3 of Wang et al. (2007), Lemma 4 follows. �

Based on all previous lemmas, it suffices to prove Theorem 1. Let Ω− = {λ ∈ Ω : Sλ + S0}

and Ω+ = {λ ∈ Ω : Sλ % S0}, where Ω is a possible bounded positive range of λ.

Proof of Theorem 1: The proof, similar with Theorem 1 in Wang and Fang (2013),

addresses two cases, i.e., lack-of-fit and over-fit.

Case 1: if λ ∈ Ω−. Lemma 4 shows that, BICλn = log σ̂2
S0 + p log(n)/n with probability

1, and Lemma 2 shows, BICλn → log(σ2
ε) in probability. Since σ̂2

λ ≥ σ̂2
Ŝλ

by the meaning

of OLS estimates, BICλ ≥ log(σ̂2
Ŝλ

) ≥ min{S:S+S0} log(σ̂2
S) → min{S:S+S0} log(σ̂2

S) > log(σ2
ε),

where the last inequality follows from Lemma 2. Hence, Pr(infλ∈Ω−BICλ > BICλn)→ 1.

Case 2: if λ ∈ Ω+. Given any S∗ % S0 with dfλ =
∑

m∈S∗ dm = d∗, SSES0 −

SSES∗ = Y T (HS∗ −HS0)Y follows non-central chi-square distribution σ2
εχ

2
d∗−p(θ

T
trueZ

′(HS∗ −

HS0)Zθtrue) = σ2
εχ

2
d∗−p(δ

′U ′(HS∗−HS0)Uδ/n), where the last equality follows from projection

properties of HS∗ and HS0 . Therefore SSES0 − SSES∗ = Op(1).
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Again based on the simple fact σ̂2
λ ≥ σ̂2

Ŝλ
and Lemma 4, BICλ − BICλn ≥ log(σ̂2

Ŝλ
) −

log(σ̂2
S0) + (dfλ− p) log(n)/n with probability tending to 1. With standard Taylor expansion

technique, log(σ̂2
Ŝλ

)− log(σ̂2
S0) = σ̂−2

S0 (SSEŜλ − SSES0)/n+Op((SSEŜλ − SSES0)
2/n2). Hence,

with probability tending to 1,

n(BICλ − BICλn) ≥ σ̂−2
S0 (SSEŜλ − SSES0) + (dfλ − p) log(n) + op(1).

Finally, with probability tending to 1, infλ∈Ω+n(BICλ − BICλn) ≥ σ̂−2
S0 minS%S0(SSES −

SSES0) + log(n) + op(1) = log(n) +Op(1). Therefore, Pr(infλ∈Ω+BICλ > BICλn)→ 1.

By combining results in previous two cases, we prove Pr(infλ∈Ω−∪Ω+BICλ > BICλn)→ 1.

Consequently, Theorem 1 follows. �
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