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Amethod based on grey relational analysis andD-S theory of evidence is proposed for fuzzy soft sets in decisionmaking. Firstly, grey
relational analysis is used to calculate grey mean relational degrees and determine uncertain degrees of parameters. Then based on
uncertain degrees, suitable mass functions of different independent alternatives with different parameters can be constructed. Next,
D-S rule of evidence combination is applied to aggregate these alternatives into a collective alternative. Finally, these alternatives
are ranked and the best alternative(s) are obtained. Moreover, the effectiveness and feasibility of this method are demonstrated by
comparing with the mean potentiality approach and giving an application to medical diagnosis.

1. Introduction

There are various types of uncertainty, imprecision, and
vagueness in our real life. We do not always successfully deal
with the complicated problems with uncertainty by existing
theories, such as probability theory, fuzzy set theory [1], and
rough set theory [2], which have difficulties as pointed out
in [3]. One major problem shared by those theories is their
incompatibility with the parameterizations tools.

Molodtsov [3] initiated soft set theory as a new math-
ematical tool for dealing with uncertainties which classical
mathematical tools cannot handle. Recently, there has been
a rapid growth of interest in soft set theory. Many efforts
have been devoted to further generalizations and extensions
of Molodtsov’s soft sets. Maji et al. [4] defined fuzzy soft
sets by combining soft sets with fuzzy sets; in other words,
a degree is attached with the parameterization of fuzzy sets
while defining a fuzzy soft set. The study of hybrid models
combining soft sets or fuzzy soft sets with othermathematical
structures and new operations is emerging as an active
research topic of soft set theory [5–7]. Aktaş and Çağman
[8] initiated soft groups. Jun applied soft sets to the theory

of BCK/BCI algebras and discussed applications of soft sets
in ideal theory of BCK/BCI algebras [9–11]. Later Feng et
al. [5] defined soft semirings and established a connection
between soft sets and semirings. Jiang et al. [6] extended
soft sets with description logics. Recently, Feng and Li [12]
ascertained the relationships among five different types of
soft subsets and considered the free soft algebras associated
with soft product operations. It has been shown that soft
sets have some nonclassical algebraic properties which are
distinct from those of crisp sets or fuzzy sets.

At the same time, there has been some progress con-
cerning practical application of soft set theory, especially
the use of soft sets in decision making. Since there is no
limitation for the description of the unreal objects in soft sets,
researchers can select the form of parameters they require,
which immensely simplifies the decision making process and
makes it more efficient in the absence of partial information.
Maji and Roy [13] first applied soft sets to solve the decision
making problem with the help rough approach. Chen [14]
defined the parameterization reduction of soft set and dis-
cussed its application of decision making problem. Çağman
and Enginoğlu [15, 16] investigated soft matrix theory and
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uni-int decision making, which selected a set of optimum
elements from different alternatives. Feng et al. [17] improve
and further extend Çağman and Enginoğlu’s uni-int decision
making method in virtue of choice value soft sets and k-
satisfaction relations. Moreover, Roy and Maji [18] discussed
score value as the evaluation basis to finding an optimal
choice object in fuzzy soft sets. But Kong et al. [19] argued
that Roy’smethodwas incorrect in general and they proposed
a revised algorithm. To address the divergence of different
opinions, Feng et al. introduced level soft sets and initiated
an adjustable decision making scheme using fuzzy soft sets
[20]. Jiang et al. [21] generalized the adjustable approach
to fuzzy soft sets based decision making and presented an
adjustable approach to intuitionistic fuzzy soft sets based
decision making by using level soft sets of intuitionistic fuzzy
soft sets. Based on Feng’ works, Basu et al. [22] further
investigated the fuzzy soft set based decision making and
introduced a more efficient fuzzy soft set based decision
making method, namely, the mean potentiality approach.

The existing approaches have significant contributions
to solve fuzzy soft sets in decision making. However, these
approaches are mainly built on the level soft set, and the
decision makers select any level soft set with much sub-
jectivity and uncertainty [22]. What’s more, there does not
exist any unique or uniform criterion for the selection, and
the same decision problem may obtain different results from
using a different evaluation criterion. As a result, it is difficult
to judge which result is right, and we do not know which
method or level soft sets should be chosen for selecting the
optimal choice object. The key to this problem is how to
reduce subjectivity and uncertainty when we choose making
decisions method.Then it is necessary to pay attention to this
issue.

Grey relational analysis initiated by Deng in 1989 [23]
is utilized for generalizing estimates under small samples
and uncertain conditions, and it can be regarded as an
effective method to solve decision making problems [24–
26]. D-S theory of evidence is a new important reasoning
method under uncertainty, which has an advantage to deal
with subjective judgments and to synthesize the uncertainty
knowledge [27]. Compared to probability theory, D-S theory
of evidence captures more information to support decision
making by identifying the uncertain and unknown evidence.
It provides a mechanism to derive solutions from various
vague evidences without knowing much prior information.
Since it is introduced by Dempster [28] and Shafer [29],
D-S theory of evidence has become a hot research issue
and has been successfully applied into many fields such as
intelligent medical diagnosis [30], knowledge reduction [31],
fault diagnosis [32],multiclass classification [33], and supplier
selection [34]. Moreover, applying both theories enables the
ultimate decision makers to take advantage of both methods’
merits and make evaluation experts to deal with uncertainty
and risk confidently [34, 35]. The hybrid model has been
proved to have its usefulness and versatility in successfully
solving a variety of problems in the information sciences,
such as data mining, knowledge discovery, and decision
making.Therefore, it is very meaningful to explore fuzzy soft

set based decision making by using grey relational analysis
and D-S theory of evidence.

In the paper, we propose a method for fuzzy soft sets in
decision making based on grey relational analysis and D-S
theory of evidence and compare the newly proposed method
with the mean potentiality approach to fuzzy soft set based
decision making. Moreover, we give an illustrative example
to interpret the basic principle and an application to medical
diagnosis.

The remaining part of this paper is organized as follows.
In Section 2, we present some concepts about the soft set,
fuzzy soft sets, and D-S theory of evidence. In Section 3,
we recall the mean potentiality approach to fuzzy soft sets
in decision making and give an example to illustrate this
method. In Section 4, we apply grey relational analysis to
determine uncertain degrees of parameters and by means of
them suitable mass functions with respect to each parameter
are constructed. And we use D-S rule of evidence combi-
nation to make the decision. In Section 5, the feasibility of
this method is demonstrated by comparing with the mean
potentiality approach and giving an application to medical
diagnosis problems. In Section 6, we conclude this paper.

2. Preliminaries

Throughout this paper, 𝑈 denotes an initial universe, 𝐸
denotes the set of all possible parameters, 2𝑈 denotes the set
of all subsets of𝑈, and 𝐼𝑈 denotes the set of all fuzzy sets in𝑈.
We only consider the case where𝑈 and 𝐸 are both nonempty
finite sets.

In this section, we briefly recall some basic concepts about
soft set, fuzzy soft sets, the measure of performance of a
method, and D-S theory of evidence.

2.1. Fuzzy Soft Sets

Definition 1 (see [3]). Let 𝐴 ⊆ 𝐸. A pair (𝐹, 𝐴) is called a soft
set over 𝑈, if 𝐹 is a mapping defined by 𝐹 : 𝐴 → 2

𝑈.

In other words, a soft set over 𝑈 is a parameterized
family of subsets of the universe 𝑈. For 𝑒 ∈ 𝐴, 𝐹(𝑒) may be
considered as the set of 𝑒-approximate elements of (𝐹, 𝐴).

To illustrate this idea, let us consider the following
example.

Example 2. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
, ℎ
6
} be a set of houses

and let 𝐴 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} ⊆ 𝐸 be a set of status of houses

where 𝑒
𝑗
(𝑗 = 1, 2, 3, 4) stands for the parameters “cheap,”

“beautiful,” “modern,” and “in the green surroundings,”
respectively.

Now, we consider the mapping 𝐹 given by “houses(⋅),”
where (⋅) is to be filled in by one of the parameters 𝑒

𝑗
∈ 𝐴.

For instance,𝐹(𝑒
1
)means “houses (cheap),” and its functional

value is the set consisting of all the cheap houses in 𝑈.
Let 𝐹(𝑒

1
) = {ℎ

1
, ℎ
2
, ℎ
6
}, 𝐹(𝑒

2
) = {ℎ

1
, ℎ
6
}, 𝐹(𝑒

3
) =

{ℎ
3
, ℎ
5
}, and 𝐹(𝑒

4
) = {ℎ

3
, ℎ
4
, ℎ
6
}. Then the soft set (𝐹, 𝐴) is

a parameterized family {𝐹(𝑒
𝑖
) | 𝑖 = 1, . . . , 4}, which describes

the attractiveness of the houses that Mr. X is going to buy.
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Table 1: Tabular representation of the soft set (𝐹, 𝐴).

ℎ
1

ℎ
2

ℎ
3

ℎ
4

ℎ
5

ℎ
6

𝑒
1

1 1 0 0 0 1
𝑒
2

1 0 0 0 0 1
𝑒
3

0 0 1 0 1 0
𝑒
4

0 0 1 1 0 1

Table 2: Tabular representation of the fuzzy soft set (𝐹, 𝐴).

ℎ
1

ℎ
2

ℎ
3

ℎ
4

ℎ
5

ℎ
6

𝑒
1

1 1 0.2 0.3 1 0.7
𝑒
2

1 0.1 0.3 0.2 0.1 0.9
𝑒
3

0.1 0.4 1 1 0 0.1
𝑒
4

0.1 0.3 1 1 0 1

Besides, (𝐹, 𝐴) is also described in Table 1, in which the value
= 1 whenever ℎ

𝑖
∈ 𝐹(𝑒

𝑗
) (1 ⩽ 𝑖 ⩽ 6, 1 ⩽ 𝑗 ⩽ 4). Otherwise,

the value = 0.

Definition 3 (see [4]). Let𝐴 ⊆ 𝐸. A pair (𝐹, 𝐴) is called a fuzzy
soft set over 𝑈, where 𝐹 is a mapping given by 𝐹 : 𝐴 → 𝐼

𝑈.

It is easy to see that every soft set may be considered as a
fuzzy soft set [20]. Let 𝑥 ∈ 𝑈 and 𝑒 ∈ 𝐴. 𝐹(𝑒) is a fuzzy subset
of𝑈 and it is called fuzzy value set of parameter 𝑒. If 𝐹(𝑒) is a
crisp subset of𝑈, then (𝐹, 𝐴) is degenerated to be the standard
soft set. Let 𝐹(𝑒)(𝑥) denote the degrees of membership that
object 𝑥 holds parameter 𝑒, and then 𝐹(𝑒) can be written as a
fuzzy set such that 𝐹(𝑒) = {𝑥/𝐹(𝑒)(𝑥) | 𝑥 ∈ 𝑈}.

Example 4. Let 𝑈 = {ℎ
1
, ℎ
2
, ℎ
3
, ℎ
4
, ℎ
5
, ℎ
6
} and 𝐴 =

{𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
}. Let (𝐹, 𝐴) be a fuzzy soft set over 𝑈, defined as

follows:

𝐹 (𝑒
1
) = {

ℎ
1

1
,
ℎ
2

1
,
ℎ
3

0.2
,
ℎ
4

0.3
,
ℎ
5

1
,
ℎ
6

0.7
} ,

𝐹 (𝑒
2
) = {

ℎ
1

1
,
ℎ
2

0.1
,
ℎ
3

0.3
,
ℎ
4

0.2
,
ℎ
5

0.1
,
ℎ
6

0.9
} ,

𝐹 (𝑒
3
) = {

ℎ
1

0.1
,
ℎ
2

0.4
,
ℎ
3

1
,
ℎ
4

1
,
ℎ
5

0
,
ℎ
6

0.1
} ,

𝐹 (𝑒
4
) = {

ℎ
1

0.1
,
ℎ
2

0.3
,
ℎ
3

1
,
ℎ
4

1
,
ℎ
5

0
,
ℎ
6

1
} .

(1)

Then (𝐹, 𝐴) is described by Table 2.

Definition 5 (see [4]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be two fuzzy soft
sets over a common universe 𝑈. (𝐹, 𝐴) is a fuzzy soft subset
of (𝐺, 𝐵) if

(i) 𝐴 ⊆ 𝐵,
(ii) 𝐹(𝑒) is a fuzzy subset of 𝐺(𝑒) for any 𝑒 ∈ 𝐴.

We write (𝐹, 𝐴) ⊂̃ (𝐺, 𝐵).
(𝐹, 𝐴) is said to be a fuzzy soft super set of (𝐺, 𝐵), if (𝐺, 𝐵)

is a fuzzy soft subset of (𝐹, 𝐴). We denote it by (𝐹, 𝐴)⊃̃(𝐺, 𝐵).

It is obvious to see that (𝐹, 𝐴) = (𝐺, 𝐵) if and only if
(𝐹, 𝐴)⊂̃(𝐺, 𝐵) and (𝐹, 𝐴)⊃̃(𝐺, 𝐵).

Definition 6 (see [4]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be two fuzzy soft
sets. Then “(𝐹, 𝐴) AND (𝐺, 𝐵)” is a fuzzy soft set denoted by
(𝐹, 𝐴) ∧ (𝐺, 𝐵) and is defined by (𝐹, 𝐴) ∧ (𝐺, 𝐵) = (𝐻,𝐴 × 𝐵),
where𝐻(𝛼, 𝛽) = 𝐹(𝛼)∩̃𝐺(𝛽) for 𝛼 ∈ 𝐴 and 𝛽 ∈ 𝐵, where ∩̃ is
the operation “fuzzy intersection” of two fuzzy sets.

Definition 7 (see [22]). The measure of performance of a
method (𝑀) which satisfies the optimality criteria to solve a
fuzzy soft set in decision making is defined as follows:

Υ
𝑀
=

1

∑
𝑚

𝑖=1
∑
𝑚

𝑗=1,𝑖 ̸= 𝑗


𝐹 (𝑒
𝑖
) (𝑂
𝑝
) − 𝐹 (𝑒

𝑗
) (𝑂
𝑝
)


+

𝑚

∑

𝑖=1

𝐹 (𝑒
𝑖
) (𝑂
𝑝
) ,

(2)

where𝑚 is the number of choice parameters and 𝐹(𝑒
𝑖
)(𝑂
𝑝
) is

the membership value of the optimal object𝑂
𝑝
for the choice

parameter 𝑒
𝑖
.

Suppose there are two methods𝑀
1
,𝑀
2
which satisfy the

optimality criteria and their measures of performances are,
respectively, Υ

𝑀
1

and Υ
𝑀
2

. If Υ
𝑀
1

> Υ
𝑀
2

, then 𝑀
1
is better

than𝑀
2
. If Υ
𝑀
1

< Υ
𝑀
2

, then𝑀
2
is better than𝑀

1
. If Υ
𝑀
1

=

Υ
𝑀
2

, then the performances of the bothmethods are the same.

2.2. Basic Concepts of D-S Theory of Evidence. D-S theory
of evidence is an important reasoning method under uncer-
tainty. It has an advantage to deal with subjective judgments
and to synthesize the uncertainty knowledge [27]. D-S theory
of evidence discusses a frame of discernment, denoted by
Θ, which is a finite nonempty set of mutually exclusive and
exhaustive hypotheses (or all possible outcomes of an event),
denoted by {𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑛
} and𝐴

𝑖
∩𝐴
𝑗
= 0. 2Θ denotes the

set of all subsets of Θ.

Definition 8 (see [29]). Let Θ be a frame of discernment.
A basic probability assignment function (for short mass
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function) on Θ is defined a mapping 𝑚 : 2
Θ
→ [0, 1], 𝑚

satisfies

𝑚(0) = 0, ∑

𝐴⊆Θ

𝑚(𝐴) = 1. (3)

For any 𝐴 ⊆ Θ, 𝑚(𝐴) represents the belief measure that
one is willing to commit exactly to 𝐴, given a certain piece of
evidence.

Definition 9 (see [29]). Let Θ be the frame of discernment
and let 𝑚 : 2

Θ
→ [0, 1] be a mass function. Then a belief

function onΘ is defined as a mapping Bel : 2Θ → [0, 1], and
Bel satisfies

Bel (0) = 0, Bel (Θ) = 1,

Bel (𝐴) = ∑

𝐵⊆𝐴

𝑚(𝐵) , ∀𝐴 ⊆ Θ.
(4)

Bel(𝐴) represents the sum of possibilities measurements
of all subsets of 𝐴, namely, the total degree of support of 𝐴.
Belief function represents the imprecision and uncertainty in
the decisionmaking process. In the case of singleton element,
Bel(𝐴) = 𝑚(𝐴).

In reality, a decision maker can often gain access to more
than one information source in order to make his/her deci-
sions. The evidence theory constructs a set of hypotheses of
known mass function values from these information sources
and then computes a new set of combined evidences. This
construction rule is called D-S rule of evidence combination
for group aggregation.

Definition 10 (see [29]). Let Θ be the frame of discern-
ment. Suppose there are two mass functions: 𝑚

1
and 𝑚

2

over Θ, induced by two independent items of evidences
𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑠
and 𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑡
, respectively. D-S rule of

evidence combination is as follows:

𝑚(𝐴) = 𝑚1 ⊕ 𝑚2 (𝐴)

=

{{

{{

{

1

1 − 𝐾
∑

𝐴
𝑖
∩𝐵
𝑗
=𝐴

𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
) , ∀𝐴 ⊆ Θ, 𝐴 ̸= 0,

0, 𝐴 = 0,

(5)

where 𝐾 = ∑
𝐴
𝑖
∩𝐵
𝑗
=0
𝑚
1
(𝐴
𝑖
)𝑚
2
(𝐵
𝑗
) < 1. 𝐾 is called the con-

flict probability and reflects the extent of the conflict between
the evidences. Coefficient 1/(1 − 𝐾) is called normalized
factor, and its role is to avoid the probability of assigning non-
0 to empty set 0 in the combination.

The synthesis of multiple evidences can be promoted
according to D-S rule of evidence combination:

𝑚
1
⊕ 𝑚
2
⋅ ⋅ ⋅ ⊕ 𝑚

𝑛 (𝐴)

=
1

1 − 𝐾
∑

⋂
𝑛

𝑖=1
𝐴
𝑖
=𝐴,𝐴

𝑖
⊆Θ

𝑚
1
(𝐴
1
)𝑚
2
(𝐴
2
) ⋅ ⋅ ⋅ 𝑚

𝑛
(𝐴
𝑛
) ,

(6)

where 𝐴 ⊆ Θ, 𝐴 ̸= 0, and 𝐾 =

∑
⋂
𝑛

𝑖=1
𝐴
𝑖
=0,𝐴
𝑖
⊆Θ
𝑚
1
(𝐴
1
)𝑚
2
(𝐴
2
) ⋅ ⋅ ⋅ 𝑚

𝑛
(𝐴
𝑛
) < 1.

D-S rule of evidence combination can increase belief
measure and reduce the uncertain degree of the whole
evidences to improve reliability.

Example 11. Let Θ = {𝐴
1
, 𝐴
2
} be the frame of discernment.

Suppose there are two mass functions 𝑚
1
and 𝑚

2
over Θ,

induced by an independent piece of evidences 𝐴
1
, 𝐴
2
, given

by

𝑚
1
(𝐴
1
) = 0.2, 𝑚

1
(𝐴
2
) = 0.5, 𝑚

1 (Θ) = 0.3,

𝑚
2
(𝐴
1
) = 0.4, 𝑚

2
(𝐴
2
) = 0.3, 𝑚

2 (Θ) = 0.3.

(7)

We apply D-S rule of evidence combination to combine
the two evidences and then have

𝑚(𝐴
1
)

= 𝑚
1
⊕ 𝑚
2
(𝐴
1
)

=
𝑚
1
(𝐴
1
)𝑚
2
(𝐴
1
) + 𝑚
1
(𝐴
1
)𝑚
2 (Θ) + 𝑚1 (Θ)𝑚2 (𝐴1)

1 − 𝐾

= 0.3514,

𝑚 (𝐴
2
)

= 𝑚
1
⊕ 𝑚
2
(𝐴
2
)

=
𝑚
1
(𝐴
2
)𝑚
2
(𝐴
2
) + 𝑚
1
(𝐴
2
)𝑚
2 (Θ) + 𝑚1 (Θ)𝑚2 (𝐴2)

1 − 𝐾

= 0.5270,

𝑚 (Θ) = 𝑚1 ⊕ 𝑚2 (Θ) =
𝑚
1 (Θ)𝑚2 (Θ)

1 − 𝐾
= 0.1216,

(8)

where𝐾 = 𝑚
1
(𝐴
1
)𝑚
2
(𝐴
2
) + 𝑚
1
(𝐴
2
)𝑚
2
(𝐴
1
) = 0.26.

3. Mean Potentiality Approach

Like most of decision making problems, fuzzy soft sets based
on decision making involve the evaluation of all decision
alternatives. Recently, applications of fuzzy soft set based on
decision making have attracted more and more attentions.
The works of Roy et al. [18–20] are fundamental and signifi-
cant. Later Kong et al. [36] applied grey relational analysis to
solve fuzzy soft sets in decisionmaking. Generally, there does
not exist any unique or uniform criterion for the evaluation of
decision alternatives under uncertain conditions. Thus, Basu
et al. [22] further studied and proposed themean potentiality
approach to fuzzy soft sets in decisionmaking, which is more
deterministic and accurate than Feng’s approach [20].

3.1. Basu’s Approach. Let 𝑈 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} be a finite

universe set and let 𝐴 = {𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} be a choice parameter

set. Given a fuzzy soft set (𝐹, 𝐴), 𝐹(𝑒
𝑗
)(𝑥
𝑖
) denotes the

membership value that object 𝑥
𝑖
holds parameter 𝑒

𝑗
. 𝜌
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Table 3: Tabular representation of the fuzzy soft set (𝐹, 𝐴).

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

𝑥
1

0.85 0.71 0.38 0.32 0.75
𝑥
2

0.56 0.82 0.76 0.64 0.43
𝑥
3

0.84 0.51 0.82 0.53 0.47

Table 4: Tabular representation of the 𝐿((𝐹, 𝐴), 0.63) with choice values.

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

Choice value
𝑥
1

1 1 0 0 1 3
𝑥
2

0 1 1 1 0 3
𝑥
3

1 0 1 0 0 2

denotes the maximum number of significant figures among
all the membership values of the objects concerned with
(𝐹, 𝐴). Next, we mainly recall the mean potentiality approach
to (𝐹, 𝐴) based on decision making problem with equally
weighted choice parameters.

Step 1. Find a normal parameter reduction 𝐵 of𝐴. If it exists,
we construct the tabular representation of (𝐹, 𝐵). Otherwise,
we construct the tabular representation of (𝐹, 𝐴) with the
choice values of each object.

Step 2. Compute the mean potentiality 𝑚
𝑝

=

∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
𝐹(𝑒
𝑗
)(𝑥
𝑖
)/(𝑚 × 𝑛) up to 𝜌 significant figures,

denoted by𝑚
𝑝
.

Step 3. Construct a 𝑚
𝑝
-level soft set of (𝐹, 𝐴), represent it in

tabular form, and then compute the choice value 𝑐
𝑖
for each

𝑥
𝑖
.

Step 4. Denote 𝑚𝑎𝑥 {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
} = 𝑐
𝑘
. If 𝑐
𝑘
is unique, then

the optimal choice object is 𝑥
𝑘
and the process will be

stopped. Otherwise, go to Step 5.

Step 5. Compute the nonnegative difference between the
largest and the smallest membership value in each column
(resp., each row) and denote it as 𝑎

𝑗
(𝑗 = 1, 2, . . . , 𝑛) (resp.,

𝛽
𝑖
(𝑖 = 1, 2, . . . , 𝑚)).

Step 6. Compute the average 𝛼 = (∑
𝑛

𝑗=1
𝑎
𝑗
)/𝑛 up to 𝜌

significant figures, denoted by 𝛼.

Step 7. Construct a 𝛼-level soft set of (𝐹, 𝐴), represent it in
tabular form, and then compute the choice value 𝑐

𝑖
for each

𝑥
𝑖
.

Step 8. Denote 𝑚𝑎𝑥 {𝑐
1
, 𝑐


2
, . . . , 𝑐



𝑚
} = 𝑐


𝑙
. If 𝑐
𝑙
is unique, then

the optimal choice object is𝑥
𝑙
and the process will be stopped.

Otherwise, go to Step 9.

Step 9. Consider the object corresponding to the minimum
value of 𝛽

𝑖
(𝑖 = 1, 2, . . . , 𝑚) as the optimal choice of decision

makers.

3.2. Example Illustration. In this subsection, we give the fol-
lowing example to illustrate the mean potentiality approach
to fuzzy soft sets in decision making.

Example 12. Let us apply the mean potentiality approach to
consider a decision making problem which is associated with
the fuzzy soft set (𝐹, 𝐴) given in Table 3.

(1) Since 𝐴 is indispensable, there does not exist any
normal parameter reduction of 𝐴.

(2) The mean potentiality of (𝐹, 𝐴) is 𝑚
𝑝

=

∑
3

𝑖=1
∑
5

𝑗=1
𝐹(𝑒
𝑗
)(𝑥
𝑖
)/(3 × 5) = 0.626; thus,𝑚

𝑝
= 0.63.

(3) 𝑚
𝑝
-level soft set of (𝐹, 𝐴) with choice values is given

by Table 4.
(4) Since 𝑥

1
and 𝑥

2
have the same maximum choice

values (3), we have to calculate the 𝛼
𝑗
and 𝛽

𝑖
values

of (𝐹, 𝐴).
(5) See Table 5.
(6) Now 𝛼 = (0.29 + 0.31 + 0.44 + 0.32 + 0.32)/5 = 0.336;

thus, 𝛼 = 0.34.
(7) So the 𝛼-level soft set of (𝐹, 𝐴) with choice values

𝑐


𝑖
(𝑖 = 1, 2, 3) is given by Table 6.

(8) Here 𝑚𝑎𝑥 {𝑐
1
, 𝑐


2
, 𝑐


3
}= {𝑐
2
, 𝑐


3
}, that is, not unique, we

have to consider the 𝛽
2
and 𝛽

3
.

(9) Since 𝑚𝑖𝑛 {𝛽
2
, 𝛽
3
} = 𝛽

3
(= 0.37), 𝑥

3
is the optimal

choice object.

4. A Method for Fuzzy Soft Sets in Decision
Making Based on Grey Relational Analysis
and D-S Theory of Evidence

The existing approaches to fuzzy soft sets in decision making
are mainly based on the level soft set to obtain useful
information such as choice values and score values. However,
it is very difficult for decision makers to select a suitable level
soft set. Inspired by the work of Wu [34] and Li and Liu
[35], we introduce a method for fuzzy soft sets in decision
making based on grey relational analysis and D-S theory
of evidence. It not only allows us to avoid the problem of
selecting the suitable level soft set but also helps reducing



6 Computational and Mathematical Methods in Medicine

Table 5: Tabular representation of (𝐹, 𝐴) with 𝛼
𝑖
and 𝛽

𝑗
values.

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

𝛽
𝑖

𝑥
1

0.85 0.71 0.38 0.32 0.75 0.53
𝑥
2

0.56 0.82 0.76 0.64 0.43 0.39
𝑥
3

0.84 0.51 0.82 0.53 0.47 0.37
𝛼
𝑖

0.29 0.31 0.44 0.32 0.32

Table 6: Tabular representation of the 𝐿((𝐹, 𝐴), 0.34) with choice values.

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

Choice value
𝑥
1

1 1 1 0 1 4
𝑥
2

1 1 1 1 1 5
𝑥
3

1 1 1 1 1 5

uncertainty caused by people’s subjective cognition so as to
raise the choice decision level.

This method may include three phases. First, grey rela-
tional analysis is applied to calculate the grey mean relational
degree between each independent alternative and the mean
of all alternatives with each parameter, and the uncertain
degree of each parameter is obtained. Second, the suitable
mass function with respect to each parameter (or evidence) is
constructed by the uncertain degree of each parameter.Third,
we apply D-S rule of evidence combination to aggregate inde-
pendent evidences into a collective evidence, by which the
candidate alternatives are ranked and the best alternative(s)
are obtained.

4.1. Method Illustration. In the following, we consider a deci-
sion making problem concerned with 𝑚 mutually exclusive
alternatives 𝑥

𝑖
and 𝑛 evaluation parameters (or indexes) 𝑒

𝑗
.

𝑑
𝑖𝑗
denotes the membership value of 𝑥

𝑖
with 𝑒

𝑗
. Put

Θ = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} , 𝐴 = {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} . (9)

Define 𝐹 : 𝐴 → 𝐼
Θ by 𝐹(𝑒

𝑗
)(𝑥
𝑖
) = 𝑑

𝑖𝑗
. Then (𝐹, 𝐴) is a

fuzzy soft set over Θ and 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

is called a fuzzy soft
decision matrix induced by (𝐹, 𝐴).

In this paper, we can consider the parameter set of the
decision making as a set of evidence.

Compared to probability theory, D-S theory of evidence
captures more information to support decision making,
by identifying the uncertain and unknown evidences. It
provides a mechanism to derive solutions from various
vague evidences (parameter) without knowing much prior
information. We must get mass functions of alternatives
with each evidence (parameter) beforehand if we apply D-
S theory of evidence to make decisions. However, how to
find uncertain degree of the evidence (parameter) is a critical
problem. Grey relational analysis is employed as a means
to reflect uncertainty between experts in multiple parameter
models through the membership value. Next, we apply grey
relational analysis to obtain uncertain degree of the evidence
(parameter).

Firstly, we present some basic notions.

Definition 13 (see [37]). Let Θ = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} and 𝐴 =

{𝑒
1
, 𝑒
2
, . . . , 𝑒

𝑛
} and let (𝐹, 𝐴) be a fuzzy soft set onΘ. Suppose

that 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

is a fuzzy soft decision matrix induced by
(𝐹, 𝐴). For any 𝑖, 𝑗, denote

𝑑
𝑖
=
1

𝑛

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
, Δ𝑑

𝑖𝑗
=

𝑑
𝑖𝑗
− 𝑑
𝑖


,

𝑟
𝑖𝑗
=

min
1⩽𝑖⩽𝑚

Δ𝑑
𝑖𝑗
+ 𝜌max

1⩽𝑖⩽𝑚
Δ𝑑
𝑖𝑗

Δ𝑑
𝑖𝑗
+ 𝜌max

1⩽𝑖⩽𝑚
Δ𝑑
𝑖𝑗

, where 𝜌 ∈ (0, 1) ,

𝐷𝑂𝐼 (𝑒
𝑗
) =

1

𝑚
(

𝑚

∑

𝑖=1

(𝑟
𝑖𝑗
)
𝑞

)

1/𝑞

(𝑗 = 1, 2, . . . , 𝑛) .

(10)

Then

(1) 𝑑
𝑖
is called the mean of all parameters with respect to

𝑥
𝑖
,

(2) Δ𝑑
𝑖𝑗
is called the difference information between 𝑑

𝑖𝑗

and 𝑑
𝑖
,

(3) 𝜌 is called the distinguishing coefficient and 𝑟
𝑖𝑗
is

called the greymean relational degree between𝑑
𝑖𝑗
and

𝑑
𝑖
,

(4) 𝐷𝑂𝐼(𝑒
𝑗
) is called 𝑞 order uncertain degree of the

parameter 𝑒
𝑗
.

The purpose of the distinguishing coefficient 𝜌 is to
expand or compress the range of the grey relational coeffi-
cient. In this paper, we pick 𝜌 = 0.5, 𝑞 = 2 to obtain strong
distinguishing effectiveness.

It is worthy to notice that thismethod to obtain the uncer-
tain degree in Definition 13 varies from different situations.
Since a parameter is specially more matching with the mean
of the parameter set than other parameters, the parameter
contains more satisfying information for decision making
and the uncertain degree of the parameter with respect to
alternatives is lower.Then, in this paper we just consider grey
mean relational degree between 𝑑

𝑖𝑗
and 𝑑

𝑖
.
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Definition 14 (see [38]). Let 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) be a finite

difference information sequence, where there exists 𝑥
𝑖
𝑘

̸= 0

for 𝑘 = 1, 2, . . . , 𝑚 and 1 ⩽ 𝑖
𝑘
⩽ 𝑚. Then the information

structure image sequence 𝑌 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑚
) is given by

𝑦
𝑖
= 𝑥
𝑖
/∑
𝑚

𝑖=1
𝑥
𝑖
.

In a fuzzy soft decision matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

concerned
with 𝑚 mutually exclusive alternatives 𝑥

𝑖
and 𝑛 evaluation

parameters 𝑒
𝑗
, where 𝑑

𝑖𝑗
is the membership value of 𝑥

𝑖
with

𝑒
𝑗
. The information structure image sequence with respect

to 𝑒
𝑗
is denoted by 𝑑

𝑗
= {𝑑
1𝑗
, 𝑑
2𝑗
, 𝑑
3𝑗
, . . . , 𝑑

𝑚𝑗
}, where 𝑑

𝑖𝑗
=

𝑑
𝑖𝑗
/∑
𝑚

𝑖=1
𝑑
𝑖𝑗
. Then we obtain an information structure image

metric by 𝑑
𝑗
(𝑗 = 1, 2, . . . , 𝑛).

D-S theory of evidence is a powerful method for com-
bining accumulative evidences of changing prior opinions
in the light of new evidences [29]. The primary procedure
about combining the known evidences or information with
other evidences is to construct suitable mass functions of
evidences. It is flexible to obtain mass function, and people’s
experience, knowledge, or thinking will affect the selection of
mass function.

Now, by the uncertain degree of each parameter, we can
obtain mass function of each alternative with respect to each
parameter.

Theorem 15. LetΘ = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
} and𝐴 = {𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
}

and let (𝐹, 𝐴) be a fuzzy soft set on Θ. Suppose that 𝐷 =

(𝑑
𝑖𝑗
)
𝑚×𝑛

is a fuzzy soft decision matrix induced by (𝐹, 𝐴),
where 𝑑

𝑖𝑗
denotes the membership value that the alternative 𝑥

𝑖

holds the parameter 𝑒
𝑗
. Denote 𝑑

𝑖𝑗
= 𝑑
𝑖𝑗
/∑
𝑚

𝑖=1
𝑑
𝑖𝑗
. We define

functions 𝑚
𝑒
𝑗

(𝑗 = 1, 2, . . . , 𝑛) with respect to the parameter
𝑒
𝑗
, and it satisfies

𝑚
𝑒
𝑗

(𝑥
𝑖
) = 𝑑
𝑖𝑗
(1 − 𝐷𝑂𝐼 (𝑒

𝑗
))

(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) ,

𝑚
𝑒
𝑗
(Θ) = 1 −

𝑚

∑

𝑖=1

𝑚
𝑗 (𝑖) (𝑗 = 1, 2, . . . , 𝑛) .

(11)

Then𝑚
𝑒
𝑗

(𝑗 = 1, 2, . . . , 𝑛) are mass functions.

In a fuzzy soft decision matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

, denote
𝑚
𝑒
𝑗

(𝑥
𝑖
), 𝑚
𝑒
𝑗

(Θ) by 𝑚
𝑗
(𝑖) and 𝑚

𝑗
(𝑚 + 1), respectively. 𝑚

𝑗
(𝑖)

implies the belief measure of the alternative 𝑥
𝑖
with the

parameter 𝑒
𝑗
. 𝑚
𝑗
(𝑚 + 1) implies the belief measure of the

whole uncertainty with respect to the parameter 𝑒
𝑗
.

Next, usingD-S rule of evidence combination to compose
𝑚
1
, 𝑚
2
, . . . , 𝑚

𝑛
with respect to each alternative 𝑥

𝑖
, we get the

belief measure of each alternative 𝑥
𝑖
. Thus we obtain decision

making results.
Based on the above analysis, given a fuzzy soft set (𝐹, 𝐸)

concerned with 𝑚 mutually exclusive alternatives 𝑥
𝑖
and

𝑛 evaluation parameters 𝑒
𝑗
, the decision procedure of the

proposed method for (𝐹, 𝐸) can be summarized as follows.

Step 1. Construct a fuzzy soft decision matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑚×𝑛

induced by (𝐹, 𝐴), where 𝑑
𝑖𝑗
is the membership value of 𝑥

𝑖

with 𝑒
𝑗
.

Step 2. Calculate the mean of all parameters with respect to
each alternative by

𝑑
𝑖
=
1

𝑛

𝑛

∑

𝑗=1

𝑑
𝑖𝑗 (𝑖 = 1, 2, . . . , 𝑚) . (12)

Step 3. Calculate the difference information between 𝑑
𝑖𝑗
and

𝑑
𝑖
and construct the difference matrix by

Δ𝑑
𝑖𝑗
=

𝑑
𝑖𝑗
− 𝑑
𝑖


, Δ𝐷 = (Δ𝑑

𝑖𝑗
)
𝑚×𝑛

(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) .

(13)

Step 4. Calculate gray mean relational degrees between 𝑑
𝑖𝑗

and 𝑑
𝑖
by

𝑟
𝑖𝑗
=

min
1⩽𝑖⩽𝑚

Δ𝑑
𝑖𝑗
+ 0.5 max

1⩽𝑖⩽𝑚
Δ𝑑
𝑖𝑗

Δ𝑑
𝑖𝑗
+ 0.5max

1⩽𝑖⩽𝑚
Δ𝑑
𝑖𝑗

(𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛) .

(14)

Step 5. Calculate the uncertain degree of each parameter 𝑒
𝑗

by

𝐷𝑂𝐼 (𝑒
𝑗
) =

1

𝑚
(

𝑚

∑

𝑖=1

(𝑟
𝑖𝑗
)
2

)

1/2

(𝑗 = 1, 2, . . . , 𝑛) . (15)

Step 6. Calculate the information structure image sequence
𝑑
𝑗
with respect to each parameter 𝑒

𝑗
and construct thematrix

by Definition 14.

Step 7. Calculate mass function values of each alternative 𝑥
𝑖

and Θ with respect to each parameter 𝑒
𝑗
byTheorem 15.

Step 8. Calculate belief measure of each alternative 𝑥
𝑖
by

Definition 10.

Step 9. Obtain decision making. The decision is 𝑥
𝑘
if 𝑐
𝑘
=

maxBel({𝑥
𝑖
}). Optimal choices have more than one object if

there are more alternatives corresponding to the maximum.

4.2. Example Illustration. In this subsection, we give the
following example to illustrate the newly proposed method
for fuzzy soft sets in decision making.

Example 16. Using the newly proposed method, we recon-
sider the fuzzy soft set (𝐹, 𝐴) given in Example 12.

Now, we suppose that the three mutually exclusive and
exhaustive alternatives construct a frame of discernment,
denoted by Θ = {𝑥

1
, 𝑥
2
, 𝑥
3
}. And we consider the set of

parameters 𝐴 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
} as a set of evidences.

(1) Construct a fuzzy soft decision matrix induced by
(𝐹, 𝐴) as follows:

𝐷 = (𝑑
𝑖𝑗
)
3×5

= (

0.85 0.71 0.38 0.32 0.75

0.56 0.82 0.76 0.64 0.43

0.84 0.51 0.82 0.53 0.47

) . (16)
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(2) Calculate the mean of all parameters of each alterna-
tive 𝑥
𝑖
as follows:

𝑥
1
= 0.6020, 𝑥

2
= 0.6420, 𝑥

3
= 0.6340. (17)

(3) Calculate the difference information between 𝑑
𝑖𝑗
and

𝑥
𝑖
, and construct the difference matrix as follows:

Δ𝐷 = (

0.2480 0.1080 0.2220 0.2820 0.1480

0.0820 0.1780 0.1180 0.0020 0.2120

0.2060 0.1240 0.1860 0.1040 0.1640

) . (18)

(4) Calculate the gray mean relational degree between 𝑑
𝑖𝑗

and 𝑥
𝑖
based on Δ𝐷 as follows:

(𝑟
𝑖𝑗
)
3×5

= (

0.5538 1.0000 0.6877 0.3381 1.0000

1.0000 0.7378 1.0000 1.0000 0.7987

0.6242 0.9249 0.7710 0.5837 0.9407

) .

(19)

(5) Calculate the uncertain degree of each parameter 𝑒
𝑗

as follows:
𝐷𝑂𝐼 (𝑒

1
) = 0.4341, 𝐷𝑂𝐼 (𝑒

2
) = 0.5164,

𝐷𝑂𝐼 (𝑒
3
) = 0.4793, 𝐷𝑂𝐼 (𝑒

4
) = 0.4021,

𝐷𝑂𝐼 (𝑒
5
) = 0.5295.

(20)

(6) Calculate the information structure image sequence
with respect to each parameter 𝑒

𝑗
and construct the

matrix as follows:

𝐷 = (𝑑
𝑖𝑗
)
3×5

= (

0.3778 0.3480 0.1939 0.2148 0.4545

0.2489 0.4020 0.3878 0.4295 0.2606

0.3733 0.2500 0.4184 0.3557 0.2848

) .

(21)

(7) For any 𝐴 ∈ 2
Θ with |𝐴| = 0 or 2, put 𝑚(𝐴) = 0. We

calculate mass function values of each alternative 𝑥
𝑖

and Θ with respect to parameter 𝑒
𝑗
byTheorem 15:

(𝑚
𝑗 (𝑖))
3×5

= (

0.2138 0.1683 0.1010 0.1284 0.2139

0.1408 0.1944 0.2019 0.2568 0.1226

0.2113 0.1209 0.2179 0.2127 0.1340

) ,

𝑚
1 (4) = 0.4341, 𝑚

2 (4) = 0.5164, 𝑚
3 (4) = 0.4793,

𝑚
4 (4) = 0.4021, 𝑚

5 (4) = 0.5295.

(22)

The mean of belief measure of the whole uncertainty
is (0.4341 + 0.5164 + 0.4793 + 0.4021 + 0.5295)/5 =
0.4723.

(8) Calculate belief measure of each alternative 𝑥
𝑖

by combining these evidences, respectively, by
Definition 7:

Bel ({𝑥
1
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

5
({𝑥
1
}) = 0.2690,

Bel ({𝑥
2
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

5
({𝑥
2
}) = 0.3309,

Bel ({𝑥
3
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

5
({𝑥
3
}) = 0.3218,

Bel (Θ) = 𝑚1 ⊕ 𝑚2 ⊕ 𝑚3 ⋅ ⋅ ⋅ ⊕ 𝑚5 (Θ) = 0.0782.
(23)

Then the final rang order is 𝑥
2
≻ 𝑥
3
≻ 𝑥
1
.

(9) According to the maximum belief measure principle,
the optimally choice decision is 𝑥

2
, which is different

from the choice decision by using themean potential-
ity approach in Example 12.

Now, by Definition 7, we can calculate the measure of
performance of our method Υ = 3.7202 and the measure of
performance of the mean potentiality approach Υ = 3.6462.

From the above results, the belief measure of the whole
uncertainty falls from the initial mean 0.4723 to 0.0782

after evidence combination. This implies that our method
that combined grey relational analysis with D-S theory of
evidence can help reducing uncertainty caused by people’s
subjective cognition so as to raise the choice decision level.
Moreover, judged by the measures Υ of performance, our
method is more accurate and effective than the mean poten-
tiality approach under uncertain information.

5. An Application to Medical Diagnosis

Amajor task of medical science is to diagnose diseases. Gen-
erally a patient suffering from a disease may have multiple
symptoms and the information available to physician about
his patient is inherently uncertain. And it is also observed that
there are certain symptoms which may be common to more
than one disease leading to diagnostic dilemma. Doctors
always detect clinical manifestations by the comparison with
predefined classes to find the most similar disease. Only one
comprehensive result can be gotten from existing methods
for medical diagnosis, which cannot provide the certainty
or uncertainty of the result. One of the toughest challenges
in medical diagnosis is handling uncertainty. Therefore, it is
necessary to find another method to deal with the unknown
factors in the process of medical diagnosis and improve level
of medical diagnosis, and then we apply the above proposed
method to solve this medical diagnosis problem.

Now we consider a medical diagnosis problem with
seven symptoms such as fever, running nose, weakness,
orofacial pain, nausea vomiting, swelling, and trismus
which have more or less contribution in four diseases
such as acute dental abscess, migraine, acute sinusitis, and
peritonsillar abscess. Now, frommedical statistics, the degree
of availability of these seven symptoms in these four diseases
is observed as follows. The belonging degrees of these
four diseases with seven symptoms “fever”, ”running nose”,
“weakness”, “orofacial pain”, “nausea vomiting”, “swelling”
and” trismus”, respectively are {0.6, 0, 0.6, 0.9, 0, 0.7, 0.8},
{0.2, 0, 0.1, 0.9, 0.8, 0, 0}, {0.3, 0.7, 0.3, 0.8, 0.3, 0.4, 0} and
{0.4, 0, 0.2, 0.7, 0.1, 0.6, 0.5}. The belonging degrees of
these four diseases with three detecting tools “history”,
“physical examination” and “laboratory investigation” are
{0.6, 0.8, 0.4}, {0.8, 0.3, 0.6}, {0.8, 0.4, 0.7} and {0.6, 0.8, 0.3},
respectively. Suppose a patient who is suffering a disease has
the symptoms: fever, running nose, and orofacial pain and
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Table 7: Tabular representation of the soft set (𝐹, 𝐴).

𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑒
5

𝑒
6

𝑒
7

𝑑
1

0.6 0 0.6 0.9 0 0.7 0.8
𝑑
2

0.2 0 0.1 0.9 0.8 0 0
𝑑
3

0.3 0.7 0.3 0.8 0.3 0.4 0
𝑑
4

0.4 0 0.2 0.7 0.1 0.6 0.5

Table 8: Tabular representation of the soft set (𝐺, 𝐵).

𝑠
1

𝑠
2

𝑠
3

𝑑
1

0.6 0.8 0.4
𝑑
2

0.8 0.3 0.6
𝑑
3

0.8 0.4 0.7
𝑑
4

0.6 0.8 0.3

is diagnosed by the three tools. Now the problem is how a
doctor detects the actual disease with effective symptoms and
diagnosed tools among these four diseases for that patient.
To solve this problem, we first detect the disease which is
most suited with the observed symptoms of the patient and
then we find the actual symptoms which are optimal for that
disease. These can be solved by using the above proposed
method. For solving these the following notations are used:

(i) {fever, running nose, weakness, orofacial pain,
nausea vomiting, swelling, trismus, history,
physical examination, and laboratory investiga-
tion}={𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
, 𝑒
7
, 𝑠
1
, 𝑠
2
, 𝑠
3
},

(ii) {acute dental abscess, migraine, acute sinusitis, and
peritonsillar abscess}={𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
}

Therefore, in the parlance of fuzzy soft set, the finite
universe, 𝑈 = {𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
} and the set of parameters

𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑒
5
, 𝑒
6
, 𝑒
7
, 𝑠
1
, 𝑠
2
, 𝑠
3
}, 𝐴 = {𝑒

1
, 𝑒
2
, 𝑒
4
}, 𝐵 =

{𝑠
1
, 𝑠
2
, 𝑠
3
}.

Now the fuzzy soft set (𝐹, 𝐴) is defined as

𝐹 (𝑒
1
) = {

𝑑
1

0.6
,
𝑑
2

0.2
,
𝑑
3

0.3
,
𝑑
4

0.4
} ,

𝐹 (𝑒
2
) = {

𝑑
1

0
,
𝑑
2

0
,
𝑑
3

0.7
,
𝑑
4

0
} ,

𝐹 (𝑒
4
) = {

𝑑
1

0.9
,
𝑑
2

0.9
,
𝑑
3

0.8
,
𝑑
4

0.7
} .

(24)

And the fuzzy soft set (𝐹, 𝐵)is defined as

𝐹 (𝑠
1
) = {

𝑑
1

0.6
,
𝑑
2

0.8
,
𝑑
3

0.8
,
𝑑
4

0.6
} ,

𝐹 (𝑠
2
) = {

𝑑
1

0.8
,
𝑑
2

0.3
,
𝑑
3

0.4
,
𝑑
4

0.8
} ,

𝐹 (𝑠
3
) = {

𝑑
1

0.4
,
𝑑
2

0.6
,
𝑑
3

0.7
,
𝑑
4

0.3
} .

(25)

The two fuzzy soft sets (𝐹, 𝐴) and (𝐺, 𝐵) are describing
“symptoms of the diseases” and “decision making tools of

the diseases,” respectively.The tabular representation of (𝐹, 𝐴)
and (𝐺, 𝐵) is given in Tables 7 and 8, respectively.

The key problem is how a doctor reaches to the most
suitable diagnosis according to these symptoms, history,
physical examination, and laboratory investigation of the
patient. To solve this problem, we consider “(𝐹, 𝐴) AND
(𝐺, 𝐵),” given by Table 9.There are four diseases 𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
,

and nine pairs of parameters 𝑎
1
= (𝑒
1
, 𝑠
1
), 𝑎
2
= (𝑒
1
, 𝑠
2
), 𝑎
3
=

(𝑒
1
, 𝑠
3
), 𝑎
4
= (𝑒
2
, 𝑠
1
), 𝑎
5
= (𝑒
2
, 𝑠
2
), 𝑎
6
= (𝑒
2
, 𝑠
3
), 𝑎
7
=

(𝑒
4
, 𝑠
1
), 𝑎
8
= (𝑒
4
, 𝑠
2
), 𝑎
9
= (𝑒
4
, 𝑠
3
), which is a pair of one

symptom and one decision making tool, respectively.
Next we will apply our method to detect which disease is

most suited with the symptoms and these investigative pro-
cedures. Then, in the decision making, we consider that the
four diseases construct a frame of discernment, denoted by
Θ = {𝑑

1
, 𝑑
2
, 𝑑
3
, 𝑑
4
}. We consider the nine pairs of parameters

as a set of evidences, which contains a diagnosis parameter
system, denoted by 𝑃 = {𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
, 𝑎
7
, 𝑎
8
, 𝑎
9
}.

Step 1. We construct a fuzzy soft decision matrix induced by
“(𝐹, 𝐴) AND (𝐺, 𝐵),” which completely presents the degree
that a patient is suffering from a disease 𝑑

𝑖
with one symptom

and one decision making tool 𝑎
𝑗
:

𝐷 = (𝑑
𝑖𝑗
)
4×9

= (

0.6 0.6 0.4 0 0 0 0.6 0.8 0.4

0.2 0.2 0.2 0 0 0 0.8 0.3 0.6

0.3 0.3 0.3 0.7 0.4 0.7 0.8 0.4 0.7

0.4 0.4 0.3 0 0 0 0.6 0.7 0.3

) .

(26)

Step 2. Since 𝑎
𝑗
is specially more matching the mean of

the parameter set than other parameters, 𝑎
𝑗
contains the

satisfying information for decisionmaking and the uncertain
degree of 𝑎

𝑗
is low. Now, we consider the mean 𝑑

𝑖
of

the parameter set with respect to 𝑑
𝑖
, calculated by 𝑑

𝑖
=

(1/9)∑
9

𝑗=1
𝑑
𝑖𝑗
as follows:

𝑑
1
= 0.3778, 𝑑

2
= 0.2556,

𝑑
3
= 0.5111, 𝑑

4
= 0.3000.

(27)

Step 3. To obtain gray mean relational degrees, we need to
calculate the difference information between 𝑑

𝑖𝑗
and 𝑑

𝑖
and

construct a difference matrix as follows:
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Table 9: Tabular representation of the soft set (𝐹, 𝐴) ∧ (𝐺, 𝐵).

(𝑒
1
, 𝑠
1
) (𝑒

1
, 𝑠
2
) (𝑒

1
, 𝑠
3
) (𝑒

2
, 𝑠
1
) (𝑒

2
, 𝑠
2
) (𝑒

2
, 𝑠
3
) (𝑒

4
, 𝑠
1
) (𝑒

4
, 𝑠
2
) (𝑒

4
, 𝑠
3
)

𝑑
1

0.6 0.6 0.4 0 0 0 0.6 0.8 0.4
𝑑
2

0.2 0.2 0.2 0 0 0 0.8 0.3 0.6
𝑑
3

0.3 0.3 0.3 0.7 0.4 0.7 0.8 0.4 0.7
𝑑
4

0.4 0.4 0.3 0 0 0 0.6 0.7 0.3

Δ𝐷 = (

0.2222 0.2222 0.0222 0.3778 0.3778 0.3778 0.2222 0.4222 0.0222

0.0556 0.0556 0.0556 0.2556 0.2556 0.2556 0.5444 0.0444 0.3444

0.2111 0.2111 0.2111 0.1889 0.1111 0.1889 0.2889 0.1111 0.1889

0.1000 0.1000 0.0000 0.3000 0.3000 0.3000 0.3000 0.4000 0.0000

) . (28)

Step 4. Based on Δ𝐷, the gray mean relational degree
between 𝑑

𝑖𝑗
and 𝑑

𝑖
is calculated as follows:

(𝑟
𝑖𝑗
)
4×9

= (

0.5000 0.5000 0.8261 0.6667 0.5294 0.6667 1.0000 0.4035 0.8857

1.0000 1.0000 0.6552 0.8500 0.6750 0.8500 0.6054 1.0000 0.3333

0.5172 0.5172 0.3333 1.0000 1.0000 1.0000 0.8812 0.7931 0.4769

0.7895 0.7895 1.0000 0.7727 0.6136 0.7727 0.8641 0.4182 1.0000

) . (29)

Step 5. In order to obtain mass functions of 𝑑
𝑖
and Θ with

respect to 𝑎
𝑗
, now we need to calculate the uncertain degree

of 𝑎
𝑗
as follows:

𝐷𝑂𝐼 (𝑎
1
) = 0.3658, 𝐷𝑂𝐼 (𝑎

2
) = 0.3658,

𝐷𝑂𝐼 (𝑎
3
) = 0.3727, 𝐷𝑂𝐼 (𝑎

4
) = 0.4156,

𝐷𝑂𝐼 (𝑎
5
) = 0.3634, 𝐷𝑂𝐼 (𝑎

6
) = 0.4156,

𝐷𝑂𝐼 (𝑎
7
) = 0.4250, 𝐷𝑂𝐼 (𝑎

8
) = 0.3506,

𝐷𝑂𝐼 (𝑎
9
) = 0.3643.

(30)

Step 6. We calculate information structure image sequences
with respect to each 𝑎

𝑗
and construct a matrix as follows:

𝐷 = (𝑑
𝑖𝑗
)
4×9

= (

0.4000 0.4000 0.3333 0 0 0 0.2143 0.3636 0.2000

0.1333 0.1333 0.1667 0 0 0 0.2857 0.1364 0.3000

0.2000 0.2000 0.2500 1.0000 1.0000 1.0000 0.2857 0.1818 0.3500

0.2667 0.2667 0.2500 0 0 0 0.2143 0.3182 0.1500

) . (31)

Step 7. For any 𝐴 ∈ 2
Θ with |𝐴| = 0, 2, 3, put 𝑚(𝐴) = 0. We

calculate mass function values of 𝑑
𝑖
and Θ with respect to 𝑎

𝑗

byTheorem 15 as follows:

(𝑚
𝑗 (𝑖))
4×9

= (

0.2537 0.2537 0.2091 0 0 0 0.1232 0.2361 0.1271

0.0846 0.0846 0.1045 0 0 0 0.1643 0.0886 0.1907

0.1268 0.1268 0.1568 0.5844 0.6366 0.5844 0.1643 0.1181 0.2225

0.1691 0.1691 0.1568 0 0 0 0.1232 0.2066 0.0954

) ,

𝑚
1 (5) = 0.3658, 𝑚

2 (5) = 0.3658, 𝑚
3 (5) = 0.3727,

𝑚
4 (5) = 0.4156, 𝑚

5 (5) = 0.3634, 𝑚
6 (5) = 0.4156,

𝑚
7 (5) = 0.4250, 𝑚

8 (5) = 0.3506, 𝑚
9 (5) = 0.3643.

(32)
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The mean of belief measure of the whole uncertainty is
(1/9)∑

9

𝑗=1
𝑚
𝑗
(5) = 0.3821.

Step 8. The combination of parameters (or evidences) is used
to provide the strongest evidence for this medical diagnosis.
By Definition 10, we can get the following results:

Bel ({𝑑
1
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

9
({𝑑
1
}) = 0.0827,

Bel ({𝑑
2
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

9
({𝑑
2
}) = 0.0284,

Bel ({𝑑
3
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

9
({𝑑
3
}) = 0.8349,

Bel ({𝑑
4
}) = 𝑚

1
⊕ 𝑚
2
⊕ 𝑚
3
⋅ ⋅ ⋅ ⊕ 𝑚

9
({𝑑
4
}) = 0.0471,

Bel (Θ) = 𝑚1 ⊕ 𝑚2 ⊕ 𝑚3 ⋅ ⋅ ⋅ ⊕ 𝑚9 (Θ) = 0.0069.

(33)

Then the final rang order is 𝑑
3
≻ 𝑑
1
≻ 𝑑
4
≻ 𝑑
2
.

Step 9. According to the maximum belief measure principle,
the patient is suffering from acute sinusitis 𝑑

3
, which is

the same choice decision based on the mean potentiality
approach of Example 6.2 in [22].

By Definition 7, the measure of performance of our
method is the same Υ = 4.1726 as the mean potentiality
approach’s.

From above results, the belief measure of the whole
uncertainty falls the originally mean value 0.3821 to 0.0751
after evidence combination. It implies that this method
that combined grey relational analysis with D-S theory of
evidence declines the uncertainty to a great extent and
improves effectively the accuracy and reliability of medical
diagnosis.

6. Conclusions

In this paper, we have introduced a method for fuzzy
soft set in decision making by combining grey relational
analysis with D-S theory of evidence and given a practical
application to medical diagnosis. This method allows us
to avoid the problem of selecting suitable level soft sets,
reduce uncertainty caused by people’s subjective cognition,
and raise the decision level. Then it is more feasible and
practical for dealing with applications under uncertainty.
Our future work will concentrate on applications of interval-
valued intuitionistic fuzzy soft sets in decision making.
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