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Vortex flow imaging is a relatively new medical imaging method for the dynamic visualization of intracardiac blood flow, a
potentially useful index of cardiac dysfunction. A reconstruction method is proposed here to quantify the distribution of blood
flow velocity fields inside the left ventricle from color flow images compiled from ultrasound measurements. In this paper, a 2D
incompressible Navier-Stokes equation with a mass source term is proposed to utilize the measurable color flow ultrasound data
in a plane along with the moving boundary condition.The proposed model reflects out-of-plane blood flows on the imaging plane
through the mass source term. The boundary conditions to solve the system of equations are derived from the dimensions of
the ventricle extracted from 2D echocardiography data. The performance of the proposed method is evaluated numerically using
synthetic flow data acquired from simulating left ventricle flows. The numerical simulations show the feasibility and potential
usefulness of the proposed method of reconstructing the intracardiac flow fields. Of particular note is the finding that the mass
source term in the proposed model improves the reconstruction performance.

1. Introduction

Vortex flow imaging has recently attracted much attention
in the field of clinical cardiac assessment owing to reports
of its feasibility for analyzing intraventricular vortex flows
[1–3]. The vorticity of intraventricular blood flow describes
a rotational flow pattern that offers possible clinical indices
of cardiac functions such as sphericity, vortex depth, vortex
length, and vortex pulsation correlation.

There are several methods to compute and visualize the
velocity fields of blood flow inside the left ventricle (LV), with
echo particle image velocimetry (E-PIV) being representative
of the commonly used noninvasive methods [4]. It tracks
the speckle patterns of blood flow to estimate blood motion
within the imaging plane. Although it is generally unable to
measure out-of-plane particle motion from 2D echocardiog-
raphy data (called B-mode images), a recent study extending
E-PIV to 3D volume data demonstrated the possibility of out-
of-plane assessment [5]. However, E-PIV is not completely

noninvasive because it requires the intravenous injection of
a contrast agent to obtain images suitable for the speckle-
tracking algorithm.

To develop less invasive techniques, methods to recon-
struct blood flows from color flow images (also called C-
mode images, color Doppler images, color Doppler data,
or Doppler echocardiography) have been proposed. The
color flow images reflect the projected velocity components
in the direction of ultrasound beam propagation [6]. To
compute the flow velocity from color flow images, Garcia
et al. [7] assumed a 2D divergence-free condition on the
velocity fields; they decomposed each 2D velocity vector into
a radial component obtained from the color flow data and
an unknown angular component, which was computed using
their assumption of the 2D flow. Ohtsuki and Tanaka [8] also
assumed 2D flows and recovered the 2D velocity fields from
the color Doppler data using the concepts of stream function
and streamline in 2D fluid flow. However, the assumption of
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Figure 1: A sector scanning probe and apical long-axis views. The vector a in (a) means ultrasound beam propagation directions in sector-
type scanning for cardiac application. (b) shows three (4-chamber, 3-chamber, and 2-chamber) apical imaging views for the cardiac scanning.
They have the relationship of rotation by approximately 60 degrees toward each other. The imaging plane of the apical long-axis 3-chamber
view passes through both of mitral and aortic valves.

a 2D divergence-free condition is an oversimplification that
ignores out-of-plane flows.

Arigovindan et al. [9] proposed a velocity reconstruction
methodusing colorDoppler data acquired frombeams in two
different directions. To cope with the nonuniformly sampled
data of multiple imaging planes, they used 2D B-spline on
each of the velocity components to be estimated, and the
unknown coefficients of the 2DB-splinewere calculated from
the measured color Doppler data using least squares. Similar
to the 2D reconstruction, Gomez et al. [10] recovered 3D
velocity fields from multiple registered color Doppler images
using 3D B-spline and least squares. The registration of
multiple imaging planes for the above two methods remains
very challenging in a practical environment.

Recently, a new imagingmodality (Doppler vortography)
based on 2D color Doppler data was introduced byMehregan
et al. [11], who assumed that a vortex flow pattern has
axisymmetric features in the neighborhood of its center.
Their method employs a simple kernel filter designed to
find the positions of axisymmetry in the 2D color Doppler
images.The vortex flowwas recovered using a color Doppler-
variable vorticity function that directly computes vorticities
from color Doppler values. However, the assumption of
axisymmetry does not reflect detailed flow patterns, and it
may lead to inaccurate vortex positions and vorticity values in
patients with severe dysfunction where axisymmetry cannot
be assumed at all.

In this paper, we propose a 2D Navier-Stokes model to
reconstruct intraventricular flows using color flow images
and LV boundaries extracted from echocardiography data.
Although the use of the full 2D Navier-Stokes equations
in this setting has already been proposed and evaluated
for 2D flow field regularization [12], the originality of this
work is the inclusion of a source-term to deal with the
out-of-plane flow component. The proposed model con-
siders both in-plane and out-of-plane blood flows for an
imaging plane in apical long-axis three-chamber (A3CH)
view. Particular attention is given to the appearance and
disappearance of the out-of-plane components in the imaging

plane, which is modeled as a mass source term of a source-
sink distribution. Blood flows in the imaging domain are
reconstructed through solving a system of equations, which
include a 2D incompressible Navier-Stokes equation for the
mass source term and the color flow data measurement
equation describing the projected velocity component for the
color flow data. The boundary conditions required to solve
the system of equations are given by the LV borders extracted
from echocardiography data.

The performance of the proposed method is evaluated
numerically using synthetic flow data with LV motion. The
proposed method is shown to be feasible and potentially
valuable for reconstructing intracardiac flow fields.

2. Materials and Methods

Commonly used ultrasound systems can provide not only 2D
echo images but also color flow images, which represent the
scanline directional components of the velocity fields using
the phase-shift estimated by a standard autocorrelation algo-
rithm [13]. Our flow reconstruction method is to reconstruct
the intraventricular flows using color flow images and the LV
boundaries extracted from the echo images. In this section,
we describe the overall outline of our flow reconstruction
method using those ultrasound measurements based on two
assumptions as follows:

(i) the time difference between sequential color flow
imaging frames is very small;

(ii) the echo and color flow images are acquired simulta-
neously and separately for the entire heart cycle.

2.1. Mathematical Model on 2D Imaging Plane. We focus on
the dominant vortex flow appearing in the A3CH view, which
passes through the apex and the mitral and aortic valves
as shown in Figure 1(b), and mathematical model for blood
flows inside the LV on the imaging plane of the A3CH view.

Let𝐷 be a 2D imaging domain andΩ(𝑡) the cross-section
of the LV region in the A3CH view so that they satisfy
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Figure 2: Description on the LV regionΩ(𝑡) in the A3CH view.They show the diastolic and systolic motion of Ω(𝑡), respectively. Here, Γ𝐼(𝑡)
and Γ𝑂(𝑡) refer to the mitral and aortic valves (as inlet and outlet valves), respectively.

Ω(𝑡) ⊆ 𝐷 ⊆ R2. Color flow data are practically measured
in the imaging plane 𝐷. Figure 1(a) describes the scanline
directional vectors a := (𝑎1, 𝑎2) for the 2D imaging plane 𝐷
as an example of sector scanning. As shown in Figure 2, Γ𝐼(𝑡)
and Γ𝑂(𝑡) denote the mitral and aortic valves, respectively.
The parameter 𝑡 denotes the LV region and valves as time-
varying boundaries. The superscripts 𝐼 and 𝑂 of Γ𝐼(𝑡) and
Γ
𝑂
(𝑡) stand for inlet and outlet valves, respectively. The 3D

coordinate system takes the 𝑥𝑦-plane to contain Ω(𝑡) and
the 𝑧-axis to be normal to this plane. Figure 2 describes a
basic LV structure and the diastolic/systolic motion of its wall
observed in the A3CH view.

Let 𝑐(x, 𝑡) be the measured color flow data and
(𝑢(x, 𝑡), V(x, 𝑡)) the velocity fields of flow at the position
x ∈ 𝐷 and time 𝑡, respectively.Then the color flow data 𝑐(x, 𝑡)
can be expressed as the inner product of the scanline vector
and the velocity vector:

𝑐 (x, 𝑡) = (𝑎1 (x) , 𝑎2 (x)) ⋅ (𝑢 (x, 𝑡) , V (x, 𝑡)) . (1)

To recover (𝑢, V) from knowledge of 𝑐 on the imaging plane
𝐷, we propose the following 2D Navier-Stokes model:
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(2)

where 𝜌 = 1050 kg/m3 and 𝜇 = 0.00316 Pa⋅s are the density
and viscosity of the blood flow, respectively [14]. This model
(2) is equivalent to a 2D incompressible flow having a source-
sink distribution 𝑠(x, 𝑡) [15]. In fact, the 3Dbloodflows appear
or disappear in the imaging plane. Therefore, we reconstruct
the 2D velocity fields in the imaging plane by solving (1) and

(2) with LV boundary conditions. We impose the following
boundary conditions:

𝑢 = 𝑢wall on 𝜕Ω (𝑡) ,

V = Vwall on 𝜕Ω (𝑡) ,

𝜕𝑝

𝜕n
= 0 on 𝜕Ω (𝑡) ,

𝑠 = 0 on 𝜕Ω (𝑡) ,

(3)

where 𝑢wall and Vwall are velocity components computed by
the motion of 𝜕Ω(𝑡) and n is the unit outward normal vector
to 𝜕Ω(𝑡). Here, 𝜕Ω(𝑡) is the boundary of Ω(𝑡), and its motion
can be extracted from echocardiography data as described in
the above subsection. Further mathematical explanation of
(1) and (2) is given in the Appendix A.

2.2. Reconstruction Algorithm. For numerical implementa-
tion, we write the system of (1) and (2) as the following linear
second-order system:
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We discretize the 2D imaging region Ω into the mesh grid
elements with 𝑀 × 𝑁 nodes and apply the standard finite
differencemethod for the linear equation (4).Then we obtain
the discretized linear system of the following form:
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where 𝐷
𝑥
, 𝐷
𝑦
, and 𝐿 are the 𝑥-derivative, 𝑦-derivative,

and Laplace operators of finite difference, respectively; the
superscript (𝑛) denotes the 𝑛th time-step. Note that the
measured data 𝑐 on the right-hand side are the values at the
(𝑛 + 1)th step, not the (𝑛)th step.

Let I and O be the 𝑁 × 𝑁 identity and zero matrices,
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and let A1, A2, D𝑥, D𝑦, and L be the (𝑀 × 𝑁) × (𝑀 × 𝑁)

matrices defined by
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The above discretized linear system (5) can then be written in
the form of KU = F, where
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For notational simplicity, we drop the superscripts (𝑛) and
(𝑛 + 1). Then, in the right-hand side, u, k, p, s, c, k1, and k2
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However, the coefficient matrix in (8) is nonsymmetric,
sparse, and large scale. Moreover, it has a bad condition
number and is almost singular. Hence, we use the least-
squares approach with Tikhonov regularization to solve the
minimization problemwith a regularization termof the form:

Û = argminu ‖KU − F‖2 + ‖ΓU‖2 . (10)

By setting Γ = 𝜆I
(4×𝑁×𝑀)×(4×𝑁×𝑀), the minimization problem

is written as

Û = argminu ‖KU − F‖2 + 𝜆2 ‖U‖2 , (11)

and its solution is given by

Û = (K𝑇K + 𝜆2I)
−1
K
𝑇F. (12)

We perform the reconstruction algorithm using the heuristi-
cally selected Tikhonov regularization parameter 𝜆 shown in
the reconstruction algorithm (11).

2.3. Numerical Simulations with Moving LV Boundaries. We
obtain synthetic flow data inside a virtual moving simplified
LV wall. To obtain the synthetic intraventricular flows, we
construct a 3D moving LV region of the stroke volume of
about 20mL. As shown in Figure 3(a), the time-dependent
LV volume ranges from 123mL to 143mL during the entire
cycle of 0.5 s. Figure 3(b) shows a LV shape model corre-
sponding to the volume of 133mL at the preset pressure
state.We then perform a numerical simulation of the forward
problem of the Navier-Stokes equation inside the 3D moving
LV for the beat cycle. For the forward simulations, the “fluid-
structure interaction model” of the COMSOL software is
used, and 3D intraventricular velocity fields are computed
as a solution of the forward problem. A no-slip boundary
condition is used for computing the velocity fields. We
assume that the blood flow during the filling of the LV is
ejected in the normal direction to the inlet valve surface Γ𝐼(𝑡),
that the flow velocity is uniform on the entire inlet boundary,
and that the LV volume change is equal to the total amount
of its net inflow:

𝜕𝑉 (Ω (𝑡))

𝜕𝑡
= ∫
Γ
𝐼
(𝑡)

n ⋅ u𝑑𝑆, (13)

where n is the normal vector to the mitral valve (inlet valve)
boundary denoted by Γ𝐼(𝑡).The boundary portion containing
the mitral and aortic valves was fixed not to be moved.
Neumann boundary conditions of velocity fields were given
by setting the zero normal derivatives at the outlet Γ𝑂 and

inlet Γ𝐼 valves for the LV diastole and systole, respectively.
For simplicity, pressure is assumed to be a constant at the
inlet, while the Neumann condition for the pressure is used
at the outlet. (The work of [16, 17] will also help readers create
synthetic flow data.)

We project the 3D synthetic velocity fields on the imaging
plane of A3CH view, which is set to be located in the
constructed 3D LV model (see Figure 3(c)). The projected
2D velocity fields are used as reference data to evaluate
the proposed 2D velocity reconstruction algorithm. Rep-
resentative cases of these synthetic 2D flows are depicted
in Figure 4, which show the time-varying dominant vortex
patterns inside the virtual moving LV wall. While the LV
model is relaxing, flows enter into the LV through the inlet
valve. The main stream impinges against the LV wall, and a
large vortex is simultaneously formed near the center. The
large vortex moves upward during the contraction process
and weakens at the end of the systole cycle.

Figure 5 shows the vorticity fields obtained by taking the
curl operator to the synthetic flow fields. At the early stage
of relaxation, small vortices are formed on the both sides of
the main incoming stream.The higher vorticity near the wall
is related to the fact that the high momentum incoming flow
results in increasing the wall shear stress when the incoming
flow impinges to the wall; we think. While the vorticity
gradually grows during the expanding process, it eventually
shrinks and weakens during the process of contraction.

The inner product of the synthetic 2D velocity fields and
the scanline directional unit vectors gives the scanline direc-
tional velocity components, which can be regarded as the
color flow data of the intraventricular flow on the A3CH view
measured by a real ultrasound system. The one-directional
velocity component data are used as the input data for our
proposedmethod. Figure 6 illustrates the scanline directional
velocity components. The figures in the second column
corresponding to the end-diastole and end-systole reflect the
overall similar flow patterns that are comparable to real color
patterns (see Figures 12(c) and 12(d) in Appendix B).

2.4. Choice of the Parameter 𝜆. In this study, all the experi-
ments were performed by setting the parameter 𝜆 = √0.1.
To optimize the value of this parameter, we investigated the
errors of the reconstructed velocity fields with respect to the
change of 𝜆2. We adjusted the value of 𝜆2 to each power of
10 from 10−3 to 101. Figure 7 shows that the 𝐿

∞
-norm errors

between the reconstructed velocity fields and the reference
data have formed a convex plotwith theminimized𝐿

∞
-norm

error attained at 𝜆2 = 0.1.
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Figure 3: LV model for numerical experiments. (a) LV volume curve according to diastolic and systolic motions, (b) 3D LV shape model at
the end systole, and (c) 2D imaging plane of A3CH view positioned in the constructed 3D LVmodel. The dashed arrows means the scanning
lines transmitted from a linear array transducer for 2D imaging.
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Figure 4: Synthetic intraventricular velocity fields projected on the imaging plane. (a) and (b) show the velocity fields for the diastole and
systole process of LV, respectively.
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Figure 5: Vorticities corresponding to the synthetic 2D intraventricular velocity fields. (a) and (b) show the vorticity changes according to
the diastole and systole process of LV, respectively.
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Figure 6: One-directional velocity component data. (a) and (b) show the scanline directional components of the generated velocity fields
during the diastole and systole process of LV, respectively.

3. Results

We demonstrated the feasibility of the proposed method
by showing the 𝐿2-norm errors between the synthetic flow
and the reconstructed flow fields. We reconstructed the
velocity fields from the synthetic scanline directional velocity
components by repeatedly solving the minimization problem
(11) five times for the entire beat cycle. Figure 8 shows the
reconstruction results of velocity fields obtained from the
input data of the one-directional velocity components. As
in the forward numerical simulations, the incoming stream
impinged to the lower right wall. Overall, the reconstructed
flows showed very similar patterns to the reference flows
shown in Figure 4. However, the main vortex near the center
was shifted upward relative to the reference vector field. This
shifting phenomenon was also continued in the remaining
steps.

Figure 9 illustrates the performance of the proposed
model. Part (a) compares the pointwise error magnitude
images of the reconstructed velocity fields with the reference
data. While the reconstructed 𝑢-component errors were
distributed in the range of −0.39∼0.25m/s, the errors of the
V-components showed larger differences of −0.24∼0.27m/s
for the entire cycle. Figure 9(b) shows the distribution of
the mass source term 𝑠 and reflects the out-of-plane com-
ponents of the flows. The ratio 𝑠/𝜌 ranged from −151.1 s−1
to 82.5 s−1. From these contributions of 𝑠, the averaged
pointwise errors for 𝑢- and V-components were 0.06m/s

and 0.02m/s, respectively. The averaged pointwise error-
magnitude was 0.065m/s. We also compared the reconstruc-
tion results between the 2D Navier-Stokes models with and
without the mass source term 𝑠. When 𝑠 was used, the
largest pointwise errors for the 𝑢- and V-components were
0.39m/s and 0.27m/s, respectively; reconstruction results
not considering 𝑠 showed larger pointwise errors of 0.71m/s
and 0.78m/s for these components, respectively, for the
entire cycle. These results support that the proposed model
improves reconstruction performance.

For further quantitative comparison, we computed 𝐿2-
norm errors of each velocity field on the given whole region
at each 1/10 time step of the whole cycle. Table 1 shows
the relatively large velocity error (≈47%) for the end of the
contraction process compared with the expanding process.
While the pointwise errors of velocity may be larger than
its 𝐿2-norm errors at some local regions, those pointwise
errors at the local regions did not affect the major features
of the vortex flows. This implies that the proposed model is
reasonably accurate for estimating the unsteady features of
the blood flows when the reconstruction algorithm of flow
is performed repeatedly over several cycles of diastole and
systole processes.

Although the proposed reconstructionmethod produced
nonsmooth distributions of vorticity inside the LV region
(as shown in Figure 10), the evolutions of the large vortical
structure inside the LV region were clearly observed, and
the vorticities overall showed very similar patterns to the
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Figure 7: Error change depending on the parameter 𝜆. (a) 𝐿
∞
-norm errors between 𝑢recon and 𝑢exact, (b) between Vrecon and Vexact, and (c)

between (𝑢recon, Vrecon) and (𝑢exact, Vexact)with respect to 𝜆2. Here, (𝑢recon, Vrecon) and (𝑢exact, Vexact) stand for the reconstructed and the reference
velocity fields, respectively.

Table 1: Comparison of 𝐿2-norm errors for the velocity fields
recovered from the synthetic and real data. The third and fourth
columns represent normalized 𝐿2-norm errors for pointwise and
global energy estimates of velocity. Here, ‖k‖

2
= √𝑢2 + V2, Δk =

krecon − kexact, and Δ𝑘/𝑘exact = |‖kexact‖
2
− ‖krecon‖

2
|/‖kexact‖

2
.

𝑡/𝑇
k

exact2 ‖krecon‖2 ‖Δv‖2 /
k

exact2 Δ𝑘/𝑘
exact

0.1 0.012 0.011 28.2% 11.1%
0.2 0.026 0.023 17.6% 8.9%
0.3 0.033 0.029 21.2% 9.9%
0.4 0.028 0.024 28.2% 12.0%
0.5 0.018 0.015 39.6% 17.4%
0.6 0.015 0.013 39.8% 16.8%
0.7 0.015 0.013 36.6% 13.4%
0.8 0.014 0.012 36.3% 12.0%
0.9 0.011 0.010 39.3% 13.0%
1.0 0.010 0.007 47.5% 18.6%

reference results described in Figure 5. The pointwise and
global errors for the vortex fields are listed in Table 2. These
nonsmooth vorticity distributions may be induced by uncer-
tainties of the boundary geometry and the regularization
term in the minimization problem (11).

4. Discussion and Conclusions

We propose here a new 2D Navier-Stokes model that recon-
structs intraventricular flows using color flow data and
LV boundaries extracted from echocardiography data. The
proposed model considers both in-plane and out-of-plane
blood flows on the imaging plane of an apical long-axis three-
chamber view. The out-of-plane components moving out of
the imaging plane were modeled as the mass source term of
a source-sink distribution. We reconstructed blood flows in
the imaging domain by solving a system of equations, which
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Figure 8: Reconstruction results. The reference vector field (a) and the reconstructed 2D vector fields by the proposed method (b).
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Figure 9: Errors of the reconstruction results. (a) 2D plots for error-magnitude of reconstructed (𝑢, V) relative to the reference velocity fields
and (b) the mass source term 𝑠.

includes the 2D incompressible Navier-Stokes equation of the
mass source term and a color flow measurement equation
describing the one-directional velocity component of the
color flow data. The boundary conditions that are required
to solve the system of equations are given by the LV borders
extracted from echocardiography data. To evaluate the pro-
posed method, numerical experiments were performed on
synthetic flow data following a virtual LVmotion.The results

showed that the proposed method is feasible and potentially
valuable for reconstructing intracardiac flow fields.

The numerical experiments used an imaging domain of
size 64 × 64 pixels, because the computational costs of the
proposed reconstruction method were large. We divided the
whole cycle into 1000 time-steps for stable numerical imple-
mentation and repeatedly performed the proposed algorithm
five times for the entire heartbeat cycle. We observed that
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Figure 10: Reconstruction results of vorticities. These were obtained by taking the 2D curl operator to the reconstructed velocity fields.

Table 2: Comparison of 𝐿2-norm errors for the corresponding
vortex fields. The third and fourth columns represent normalized
𝐿2-norm errors for pointwise and global energy estimates of
vorticity. Here, Δ𝜔 = 𝜔recon

− 𝜔
exact and Δ𝑘

𝜔
/𝑘

exact
𝜔

= |‖𝜔
exact
‖
2
−

‖𝜔
recon
‖
2
|/‖𝜔

exact
‖
2
.

𝑡/𝑇
𝜔

exact2 ‖𝜔
recon
‖2 ‖Δ𝜔‖2 /

𝜔
exact2 Δ𝑘

𝜔
/𝑘

exact
𝜔

0.1 1.09 1.19 36.8% 8.7%
0.2 2.35 2.48 24.7% 5.3%
0.3 2.82 2.90 21.7% 2.8%
0.4 2.31 2.34 21.2% 1.4%
0.5 1.67 1.67 32.1% 0.4%
0.6 1.38 1.40 40.6% 1.7%
0.7 1.33 1.40 46.7% 5.2%
0.8 1.20 1.30 51.4% 7.8%
0.9 0.95 1.02 52.0% 6.7%
1.0 0.79 0.82 47.8% 4.2%

the solutions obtained after two repeats were very similar
to each other. A detailed mathematical description of the
convergence of the solution will be given in our next work.

All the experiments were conducted using MATLAB
7.10.0, and the computational time for each stepwas about 12 s
using an Intel i7-4702MQQuadcore CPU running at 2.0GHz
with 8GB of RAM.The speed of the proposed method needs
to be improved for its practical application, and a study to
reduce the processing time is under way.

To reconstruct 2D flow patterns using the color flow
images requires an experimental ultrasound system that
can acquire echo and color data independently; however,
we had only a commercial ultrasound system that cannot
support data acquisition for the experiments. The frame-rate

limitation of the color flow data acquired by the ultrasound
imaging system should also be overcome. The color flow
images from the ultrasound imaging system are obtained by
applying the autocorrelation algorithm [13] after repeatedly
transmitting and receiving the ultrasound beam along the
same scanline; this then causes the low frame-rate of color
flow data acquisition.The proposedmethod assumed that the
time difference between the sequential color flow images is
very small and that each color value reflects the exact velocity
components in the direction of ultrasound beam propaga-
tion. For the proposed method to be practically applicable,
the frame-rate needs to be improved. The development of an
ultrafast imaging system is ongoing. Such a system is expected
to have a frame-rate higher than 1000 fps using plane wave
beam-forming; it would acquire echo and color flow image
data separately and support the performance of the proposed
method in real application. Some recent works by other
researchers have examined ultrafast flow imaging [18–20].
A review of these references will help us to perform our
future work on an ultrafast imaging system. In Appendix B,
we describe an in vitro phantom experimental setup for
empirical data (color flow ultrasound and LV boundary data)
to demonstrate the feasibility of our reconstruction method.

To advance the proposed algorithm, we are studying
on mitral valve tracking. Based on reports [21, 22] that
the motion of the mitral valve affects the vorticities of the
intraventricular flows, studies on the boundary conditions
containing the valve motion are under way.

This work is the first that describes overall our proposed
method. More detailed mathematical analysis and further
validation tests may be required to verify its scientific validity
and practical applicability. We will perform several follow-up
works to achieve this.
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Appendices

A. Mathematical Formulation

Based on the 3Dmodeling of intraventricular blood flows, we
derive a 2D mathematical model describing the relationship
between blood flows and color flow data measured on the
imaging plane.

A.1. Mathematical Model and Inverse Problem. Let𝐷 be a 3D
imaging domain, Ω(𝑡) a time-varying LV region satisfying
Ω(𝑡) ⊆ 𝐷 ⊆ R3, and 𝑇 a beat cycle. For the beat cycle 𝑇,
we consider a spatial-temporal domain Ω

𝑇
defined by Ω

𝑇
:=

⋃0<𝑡<𝑇Ω(𝑡) × {𝑡} ⊆ 𝐷 × (0, 𝑇). Let k(r, 𝑡) be a velocity field
of the blood flow within the spatial-temporal domain Ω

𝑇
,

a(r) = (𝑎1(r), 𝑎2(r), 𝑎3(r)) scanline directional unit vectors at
the position r ∈ 𝐷 and 𝑐(r, 𝑡) color flow data in Ω

𝑇
. Given

𝑐(r, 𝑡), we then consider an inverse problem to find a 3D
vector field k = (𝑢, V, 𝑤) satisfying the following condition:

a (r) ⋅ k (r, 𝑡) = 𝑐 (r, 𝑡) , (A.1)

where ⋅ is the inner product operator.
To solve this inverse problem, we should deal with the 3D

Navier-Stokes equations governing the blood flow k:

𝜌(
𝜕k
𝜕𝑡
+ k ⋅ ∇k) = −∇𝑝 + 𝜇∇2k in Ω

𝑇
,

∇ ⋅ k = 0 in Ω
𝑇
.

(A.2)

However, given that our aim is to reconstruct the blood
flow using 2D measurements, we reduce (A.1) and (A.2) to
a 2D inverse problem and the corresponding 2D Navier-
Stokes equation. We compute the velocity fields of blood
flows by using the scanline directional projected velocity
components represented as 2D color flowdata in a commonly
used ultrasound 2D imaging scanner and then solving the
system of equations related to them.

A.2. Mathematical Model on a 2D Imaging Plane. From now
on, Ω(𝑡) denotes the cross-section of the LV region in the
A3CH view. (For simplicity, the same notation Ω(𝑡) in 3D
will be used to represent its cross-section.) The notations of
Γ
𝐼
(𝑡) and Γ𝑂(𝑡) are same as shown in Figure 2. Let𝐷 be a 2D

imaging domain satisfying Ω(𝑡) ⊆ 𝐷 ⊆ R2 so that it is equal
to the cross-sectioned region of the 3D imaging domain by
the A3CH view. As described earlier, we try to model flows in
the 2D imaging plane𝐷, where color flow data are practically
measured. In this case, the scanline direction a(r) is given to
be tangent to the plane 𝐷, 𝑎3 = 0 on the plane. Let 𝑐(x, 𝑡) be
the measured color flow data at the position x ∈ 𝐷 at time 𝑡.
The color flow data 𝑐(x, 𝑡) can then be expressed as the inner
product of the scanline vector and the velocity vector:

𝑐 (x, 𝑡) = (𝑎1 (x) , 𝑎2 (x)) ⋅ (𝑢 (x, 𝑡) , V (x, 𝑡)) . (A.3)

Hence, the corresponding inverse problem is to recover (𝑢, V)
from knowledge of 𝑐 on the imaging plane𝐷. Also, (A.2) can
be rewritten as

𝜕𝑢
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+ 𝑢
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+ V
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1
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+
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(A.4)

Note that color flow data may not contain measurable
information on the 2D plane 𝐷 for 𝑓1 = (𝜇/𝜌)(𝜕

2
𝑢/𝜕𝑧

2
) −

𝑤(𝜕𝑢/𝜕𝑧), 𝑓2 = (𝜇/𝜌)(𝜕
2V/𝜕𝑧2) − 𝑤(𝜕V/𝜕𝑧), and 𝜕𝑤/𝜕𝑧. We

want to keep the incompressible condition of the 3Dproblem.
However, the third term 𝜕𝑤/𝜕𝑧 of the divergence of 3D flow is
neither of the measurable or computable quantities in the 2D
plane. Here, we model it as a mass source-sink term 𝑠, which
represents the linear deformation of the fluid in the out-of-
plane direction. This new unknown term will be determined
by solving themodifiedNavier-Stokes equationwith the color
flow measurement data. Introducing a new variable 𝑠, we
obtain the following reduced 2D Navier-Stokes model:
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(A.5)

This model is equivalent to a 2D incompressible flow with
a source-sink distribution 𝑠(x, 𝑡) [15]. In fact, if we do not
consider the external force, equation (3.3.13) in [15] implies
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(A.6)
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Figure 11: LVphantomoperating system.TheLVphantom ismade of polyurethane.We control the fluidmotion by the synchronous operation
of two pumps.

B. In Vitro Phantom Experiments

B.1. Experimental Setup. The experimental setup for oper-
ating the LV phantom is depicted in Figure 11. The setup
was composed of main two parts: one for making the LV
phantom beat periodically and the circulatory part (resp., the
lower and upper parts in Figure 11(a)). The fluidic motion
was controlled by the synchronous operation of two pumps,
two solenoid valves (SVs), and the check valves employed to
model the aortic and mitral valves. The phantom, which was
constructed of polyurethane, was immersed in a water tank.
The phantom was 3D printed as a half-ellipsoid [23, 24]. The
experimental circulatory system including the LV phantom
was completely filled with water. Figures 11(b) and 11(c)
show the manufactured LV phantom with its design drawing
and the experimental setting for scanning the LV phantom,
respectively. For LV systolic motion, the left solenoid valve
(SV1) is set to open, while the right solenoid valve (SV2) is
closed. The pressure inside the tank then increases, which
subsequently exerts pressure onto the LV phantom. When
the pressure inside the LV phantom is greater than the preset
pressure of the check valve, the fluid in the LV phantom
surges into the circulatory system. The check valves restrain

backward flow, making the fluid in the LV phantom pass
through the aortic valve to circulate the system. Dilation of
the LV phantom then follows by closing SV1 and opening
SV2, allowing similar complementary processes to occur. A
simple timer switch controls the opening and closing of the
solenoid valves to mimic LV beating. The volume of the
LV phantom under the preset pressure was measured to be
133mL, while the stroke volume was about 20mL during LV
beating with 0.5 s period. The polyurethane is flexible and
inelastic; the LV phantom therefore may retain a constant
“endocardial” surface area, while the contained volume may
vary owing to changes in its cross-sectional shape. Despite
those limitations, vortex flow pattern inside the phantom is
generated during the “diastole process.” The B-mode and C-
mode images were scanned using an Accuvix V10 ultrasound
system (Samsung Medison, Seoul, South Korea) and a probe
P2-4BA with the frequency band of 2∼4MHz. The probe
was positioned just below the water surface, at a depth
of approximately 10 cm, to enable the LV phantom to be
positioned in the center of the ultrasound image.

Representative ultrasound echo and color flow images
acquired by scanning the LV phantom are shown in the first
and second rows of Figure 12, respectively. By applying an LV
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(a) (b)

(c) (d)
Figure 12: Real data acquisition using LV phantom and border extraction. (a) and (b) are echo images in ventricular shape at end-diastole
and end-systole phases, respectively. (c) and (d) are color flow images corresponding to (a) and (b), respectively.

(a) (b)

(c)
Figure 13: Velocities of wall motion using LV border tracking method. Initialized LV contour at end-diastole frame (a), velocity fields of
contracting and expanding LVwall (b-c). Blue solid line, red dots, and green arrows are the LV contoursC(𝑡), contour points {x1(𝑡), . . . , x𝑛(𝑡)},
and some of velocity vectors {k1(𝑡), . . . , k𝑛(𝑡)}, respectively.
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tracking algorithm to the acquired ultrasound echo images,
we obtained LV boundaries for the whole cycle. (The LV
tracking method is explained in the next subsection.) The
red dotted and blue lines in Figures 12(a) and 12(b) present
the LV boundaries extracted in the end-diastole and end-
systole images.TheLVboundaries are extracted at each frame
(50 fps) during the cardiac cycle in order to impose moving
boundary conditions for the numerical simulations of the
next section. Figures 12(c) and 12(d) show that the color flow
patterns may indicate two different vortex flows. Here, the
red and blue colors represent the velocity components of
the flows coming toward and receding from the ultrasound
probe, respectively. The color flow pattern in the diastolic
phase is clearly stronger than that in the systolic phase, as has
been reported for human LV [1].

B.2. LV Wall Segmentation from B-Mode Image. We acquire
ultrasound echo images for the entire cardiac cycle and
from them extract the LV borders, typically by myocardial
motion tracking. The myocardial motion tracking method is
combined with the Lucas-Kanade method and a constraint
formulated by the global deformation of nonrigid heart
motion proposed in [25]. As illustrated in Figure 13, we
denote the endocardial border traced at initially selected end-
diastole frame by a parametric contour C∗ = {x∗(𝑠) =
(𝑥
∗
(𝑠), 𝑦
∗
(𝑠)) | 0 ≤ 𝑠 ≤ 1} that can be identified as

its 𝑛 tracking points x∗1 = r∗(𝑠1), . . . , x∗𝑛 = x∗(𝑠
𝑛
). Here,

0 = 𝑠1 < 𝑠2 < ⋅ ⋅ ⋅ < 𝑠
𝑛
= 1. Let C(𝑡) = {x(𝑠, 𝑡) =

(𝑥(𝑠, 𝑡), 𝑦(𝑠, 𝑡)) | 0 ≤ 𝑠 ≤ 1} be the contour deformed from
C(0) = C∗ at time 𝑡. The velocity field V(𝑡) of motion of
the contour C(𝑡) is determined by a time change of tracking
points {x1(𝑡), . . . , x𝑛(𝑡)}:

V (𝑡) :=
[
[
[
[

[

k1 (𝑡)
.
.
.

k
𝑛 (𝑡)

]
]
]
]

]

=
𝑑

𝑑𝑡

[
[
[
[

[

x1 (𝑡)
.
.
.

x
𝑛 (𝑡)

]
]
]
]

]

with
[
[
[
[

[

x1 (0)
.
.
.

x
𝑛 (0)

]
]
]
]

]

=

[
[
[
[

[

x∗1
.
.
.

x∗
𝑛

]
]
]
]

]

.

(B.1)

Here, we identify the contour C(𝑡) with tracking points
{x1(𝑡), . . . , x𝑛(𝑡)}.
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