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A correct patient-specific identification of the abdominal aortic aneurysm is useful for both diagnosis and treatment stages, as it
locates the disease and represents its geometry. The actual thickness and shape of the arterial wall and the intraluminal thrombus
are of great importance when predicting the rupture of the abdominal aortic aneurysms. The authors describe a novel method
for delineating both the internal and external contours of the aortic wall, which allows distinguishing between vessel wall and
intraluminal thrombus. The method is based on active shape model and texture statistical information. The method was validated
with eight MR patient studies. There was high correspondence between automatic and manual measurements for the vessel wall
area. Resulting segmented images presented a mean Dice coefficient with respect to manual segmentations of 0.88 and a mean
modified Hausdorff distance of 1.14mm for the internal face and 0.86 and 1.33mm for the external face of the arterial wall.
Preliminary results of the segmentation show high correspondence between automatic and manual measurements for the vessel
wall and thrombus areas. However, since the dataset is small the conclusions cannot be generalized.

1. Introduction

An abdominal aortic aneurysm (AAA) is a pathological
dilation in a segment of the abdominal aorta, where the
aortic diameter is greater than 3 cm or 50% greater than
the uninvolved proximal vessel [1]. One of the biggest risks
associated with this disease is the weakening of the aortic
wall, which can lead to dissection or rupture of the artery.
Blood stagnation is also possible in the dilation, inducing
formation of an intraluminal thrombus (ILT) [2].

Recent progress in medical imaging supports clinicians
in diagnosis and subsequent treatment of AAA in different
stages. New technologies andmethods inmagnetic resonance
imaging (MRI) as well as computed tomography angiography

(CTA) have enhanced soft tissue contrast and enabled clin-
icians to distinguish between the soft tissue structures of
interest [1]. Different acquisition protocols, especially inMRI,
open the possibility of differentiating between the AAA wall
and the intraluminal thrombus within the context of AAA
imaging.

Amongst other important physical and physiological
variables, outer wall boundary delineation eases vascular
treatment planning. Moreover, to measure actual vessel wall
thickness may result in more accurate mathematical models
for rupture risk prediction [3].

There are a significant number of studies in the state
of the art regarding the segmentation of vascular struc-
tures. Specifically, for segmentation of AAA from medical
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images, commonly CTA and magnetic resonance angiogra-
phy (MRA) are employed. Many different techniques may be
applied in order to perform the segmentation of AAAs that
can be classified according to the kind of information that
guides the segmentation process. Thus, there are methods
based on the raw intensity information of the image, such
as clustering [4], multiscale [5], or histogram information
[3, 6]. There are methods based on the information provided
by the intensity gradient that is used to control a deformable
model. Such well-known techniques are active contours [7–
9], level sets [10–13], and graph search [14]. Finally, there
are techniques based on statistical models guided by a priori
information. This information is extracted from a controlled
and manually processed set of images known as training set.
The most common statistical models for medical imaging
processing are the active shape models (ASM) [15] and the
active appearance models (AAM) [16], which may be used to
segment AAAs [17–19].

Most of the studies in the literature regarding AAA
segmentation only consider the outer face of the aortic wall.
Being so, it is not possible to distinguish between the wall
and the ILT, which are differentiated conforming structures.
To the authors’ knowledge, only Zohios et al. [13] addressed
the segmentation of both the inner and the outer face of
the aortic wall. However, this work is limited to patient
studies that present calcifications in 3D CTA scans and their
evaluation stage was very limited in the case of the thrombus
segmentation.

We present a modular method, based on a statistical
shapemodel and texture information, for segmenting human
AAA geometries in MR multispectral studies. The proposed
method allows quantitative measurements of morphological
aspects useful for treatment planning and may lead to more
accurate methods for the evaluation of their biomechanical
environment.

Although each patient’s aneurysm is unique, charac-
terized by its location and shape, and must be accurately
represented for subsequent analyses to be meaningful, about
90% of AAAs are located below the renal arteries [1]. Thus,
our investigation focuses on modelling the lower part of the
aorta between the renal arteries and the aortic bifurcation
into the iliac arteries.

2. Materials and Methods

2.1. Patient Images. DifferentMRI acquisition protocols open
up the possibility of discriminating between different soft
tissue structures. We developed an MRI protocol focused
on providing high contrast for the AAA wall and the ILT
against the surrounding soft tissue. If no contraindications
existed, we performed MRI studies using 1.5 T Aera scanner
(Siemens, Erlangen, Germany) on patients with AAAs of
diameter larger than 5 cm. We registered the MRI study at
the clinical trial centre of the University Hospital of Leuven
(study number S52774) and obtained ethical approval from
the ethical committee at UZ Leuven.

Regarding theMRIdata, we used a sagittal and transversal
balanced steady-state free precession (bSSFP) sequence as a
localizer, with 20 sagittal slices of 5mm slice thickness and

30 transversal slices of 6mm slice thickness, both with no
intersection gap, a field of view (FOV) of 380mm, a matrix
size of 320 × 260, a time to repetition/time to echo (TR/TE)
of 4.41ms/2.21ms, a flip angle of 62∘, and a one signal average.
Thereafter, we completed a pulse triggered, three-slice T1
Turbo Spin Echo (TSE) sequence with 6mm slice thickness,
TR/TE of 800ms/62ms, FOV of 160mm, and a matrix of
256 × 256 and a flip angle of 180∘. Next, we performed
a coronal breath-hold fast low-angle shot (FLASH) 3D
sequence after intravenous administration of a standardized
dose of 0.1mmol/kg Gd-DOTA (Dotarem, Guerbet, France).
We executed this in the arterial phase with a slab thickness
of 96 slices of 1.25mm, 384 × 336 matrix size, TR/TE of
3.04ms/1.09ms, and a FOV of 400mm and a flip angle of 25∘.

After acquisition, we evaluated image quality and tissue
contrast for the AAA wall and the ILT in order to select
images which best met our objectives. After analysis, we
selected the transversal bSSFP sequence for segmentation
of ILT and aortic wall (Figure 1(a)), and coronal FLASH
contrasted sequence for lumen segmentation (Figure 1(b)).

The main drawback of this kind of images is that they
are not currently in clinical use. This makes it difficult to
obtain an ample image dataset, and thus only 8 patients were
included in the experiment dataset. Due to this limitation,
and since a higher number of cases are needed to charac-
terize the shape variations, 75 CTA images of AAA patients
were used to characterize the possible shape configurations
of the infrarenal abdominal aorta in a more robust way
(Figure 1(c)). The studied section of the aorta is the lower
12 cm, just above the bifurcation of the aorta into the iliac
arteries, and always below the renal arteries.The CTA images
were cropped and resampled to images of 512 × 512 × 19
voxels, with dimensions of 1 × 1 × 0.66mm.

2.2. Proposed Segmentation Algorithm. The basic steps of the
segmentation algorithm proposed in this work are shown in
Figure 2. In a first training stage, the system extracts texture
and shape information to guide the segmentation process.
Outer wall boundary is manually delineated on the CTA
images and an active shapemodel (ASM) is constructed using
the segmented images. The texture information character-
izes the intensity properties of the target pixels and their
respective neighbourhoods in the MR images. In this case,
the target pixels are the ones belonging, respectively, to the
thrombus and the outer wall boundaries manually selected
on theMR image dataset.Theoverall outcomes of the training
stage comprise a statistical shape model and two appearance
models defining the inner and outer faces of the aortic wall:
a texture model of the thrombus boundary and an intensity
model of the outerwall boundary.Thevariables of eachmodel
will be explained in the following sections.

The segmentation stage includes all the processes applied
when a new patient MRI-MRA dataset arrives (Figure 2).
It starts with a semiautomatic segmentation of the vessel’s
lumen in theMR imagewith radiological contrast.The lumen
contour initializes the thrombus boundary search, while
the thrombus boundary initializes the outer wall boundary
search. Boundary searches are performed in a slice-by-slice
2D manner, while the lumen segmentation is performed in
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Figure 1: (a) MR transversal bSSFP for thrombus and outer wall segmentation; (b) MR coronal FLASH for lumen segmentation; (c) CTA
image for shape modelling.
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Figure 2: Diagram of the proposed segmentation algorithm. The initial training stage guides the segmentation process from the inner
structures (lumen), through the thrombus, to the outer wall boundary.
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3D. Following sections explain more in detail the proposed
methods.

2.2.1. Shape Model. The shape model for AAAwas computed
using experts’ delineations performed using 75 CTA studies.
Once the statistical shape model is constructed, CTA images
are no longer required for the segmentation process, and only
the statistical parameters of the model are used to constrain
the evolution of the deformable model.

Shapes are described by a set of landmark points which
ideally denote the same geometrical points in different
objects. Cootes et al. [20] defined the concept of point
distribution model (PDM) for the use of landmarks as basis
for a statistical shape model. PDM is composed of four
processes: landmark selection, landmark alignment, land-
mark correspondence, and dimensionality reduction using
principal component analysis (PCA).

Following the scheme defined by [21], a fixed number of
slices (19) were interpolated between renal arteries and the
iliac arteries. A fixed number of landmarks (20) were placed
in each slice, equiangularly distributed along the contours
that were drawn manually by an expert, for a total of 380
landmarks for each 3D shape. The starting point of each
contour was themost anterior point (in the coronal axis) with
the same sagittal coordinate as the contour’s centre of mass.

Axis variations were omitted and only cross sections’
variability was modelled. To this end, every shape was
straightened by translating each contour such that its centre
of mass was in the origin of coordinates. Axis variability was
not computed in the shape model because the segmentation
process was always initialized using the lumen extracted from
MRA images. In this way, variations were limited to dilations
and contractions.

PCA [22] was applied to reduce the dimensionality of
the problem of axis variability and to select only the most
significant variation modes for the shape description. PCA
starts computing the mean shape of the set, identified as 𝑥,
and the covariance matrix described by

𝑆 =

1
𝑛 − 1

𝑛

∑

𝑖=1
(𝑥
𝑖
−𝑥) (𝑥

𝑖
−𝑥)
𝑇

. (1)

Themodes of variation of the set are given by the eigenvalues
𝜆
𝑖
and the eigenvectors Φ

𝑖
of the covariance matrix 𝑆.

Following this formulation, there are 3 ∗ 380 = 1140

modes of variation in a set of 380 three-dimensional points.
However, some of these modes of variation are considerably
more significant. We selected only the modes of variation
that represent between 90% and 98% of the total variability,
and considered that the rest of the modes induced negligible
variations. Any allowed shape can be expressed by a linear
combination of the mean shape and the principal modes of
shape variation, as described in (2), where𝑥 is the represented
shape, 𝑥 is the mean shape, Φ

𝑖
are the eigenvectors of the

covariance matrix, 𝑐 is the number of principal modes, and
𝑏 is a vector containing the shape parameters that define
plausible variations:
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distance (𝐷
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selected using the 𝜒2 distribution depending on the number
of significant variation modes 𝑐 (as degrees of freedom) and
the desired statistical significance (𝑡), to include a suitably
large proportion of possible realizations.
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𝑖
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in (3), they are limited using a proportionality constant 𝛼
which reduces the values of all the components 𝑏
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Thus, the combination of 𝛼, 𝑏
𝑖
, andΦ

𝑖
describes the principal

modes of variation of the AAA cross sections and the shape
restrictions applied to the deformable model.

2.2.2. Appearance Model. Fitting the shape model to a new
image requires a notion of object boundary appearance. To
derive the boundary appearance from the training set, grey
value profiles are sampled around each landmark. Due to the
limited number of MR images, robust appearance charac-
terization using traditional approaches is not possible. Thus,
we followed the scheme proposed by [23], which postulated
that it is possible to specify the boundary appearance, in an
explicit manner, defining a set of parameters.

Themain objective of this stage was to be able to discrim-
inate between pixels belonging to the thrombus and pixels
belonging to the aortic wall or adjacent external structures.
Thus, a rectangular search region of 11 × 3mm, centred in
each landmark location and perpendicular to the manual
delineation of the thrombus boundary, was used (Figure 3).
Each pixel of the search region was categorized as interior
(belonging to the thrombus, if the studied pixel is inside the
manual delineation) or exterior (belonging to the vessel wall
or surrounding structures, if the studied pixel is outside the
manual delineation) and the differences between both groups
were studied.

An exploration of the images allowed us to extract a set
of patterns and, consequently, to define five variables trying
to characterize the texture information of the thrombus
boundary for every landmark surrounding:

(i) The region inside the vessel wall presents a higher
mean intensity value than the regions comprising the
vessel wall itself and the surrounding structures:
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Figure 3: Example of the texture characterization. For every land-
mark on the manual delineation, a 11 × 3mm region perpendicular
to the contour and centred in the landmark is defined. The pixels of
the region are labelled as “interior” or “exterior” depending on their
relative position with the landmark location.

(1) Difference betweenmean intensities of the inner
and outer regions: Δ𝐼 = 𝐼in − 𝐼out.

(ii) The pixels belonging to the vessel wall, included in
the exterior region, generally show significantly lower
values than the adjacent pixels:

(1) Difference between minimum intensities of the
inner and outer regions: Δ𝑚 = min(𝐼in) −
min(𝐼out).

(iii) Manual landmarks, located in the inner face of the
vessel, present a higher intensity than the pixels
belonging to the vessel wall, included in the external
region:

(1) Difference between landmark intensity and
minimum intensity of the outer region: 𝐿𝑚𝑂 =

𝐼landmark −min(𝐼out).

(iv) Pixels comprising the external region belong to the
arterial wall or the adjacent structures. Those are
structures with heterogeneous intensity values, so the
standard deviation of the intensity values could be
relevant:

(1) Standard deviation of the intensity in the outer
region: stdout = 𝜎out.

(2) Difference between the standard deviation of
the intensities in the outer and inner regions:
Δstd = 𝜎out − 𝜎in.

These statistics should be normalized so that they can be
combined in a single metric, defined such that the maxi-
mization of the sum of the normalized variables indicates
the best possible position for the landmark. All the possible
combinations using the proposed variables were tested in
order to select the most suitable metric.

The outer wall boundary was estimated by searching a
positive gradient from the thrombus boundary landmarks
and in the outer direction. Moreover, a thickness limitation
of 3mm from the thrombus boundary was applied [24],
restricting the misallocations in the regions where surround-
ing structures masked the vessel wall.

2.2.3. Segmentation Stage. The segmentation process for a
new patient only needs an MRI-MRA image study. The
process starts with the aortic lumen segmentation on the
MRA study of the patient using a 3D level set-based method
[25]. The aortic lumen is differentiable due to the use of
radiological contrast, so the user interaction is limited to the
selection of a seed in the region of interest. The rest of the
processes are completely automated.

Although MRI and MRA studies from the same patient
had different image and voxel sizes, the physical coordinates
were the same in both cases. Therefore, a simple rigid
registration is performed using the DICOM information of
each study. As a result, the centroid of the segmented lumen
(usingMRA) is included in the lumen structure in every slice
of the MRI.

A circle centred in the cited centroid is used to initialize
the search of the thrombus boundary using a 2D level set
method.This initialization allows a texture-based refinement
instead of a raw search, reducing the associated computing
time. Once the initialization is performed, 20 landmarks are
selected following the same strategy commented above in the
shape model section.

A section of 11 × 3mm, of which its longer sides were par-
allel to the line linking the landmark and the lumen centroid,
was created around each landmark. The pixel of the region
with the highest value for the sum of normalized intensity
variables was selected. Once the intensity-based proposals for
the landmarks’ locations have been computed, the resulting
shape is straightened according to the shapemodel proposed.
After the shape restriction, in case the restriction is necessary,
the straightening is undone.The intensity-based proposal and
the shape-based restriction are iteratively performed until
there are no modifications between iterations.

The thrombus boundary is used to initialize the outer wall
boundary. This time the search is computed only outwards,
limiting the search to a 3 × 3mm area.The pixel with a larger
positive gradient for every region associated with a landmark
is selected. As in the case of the boundary selection, intensity-
based estimation and shape restriction are both iteratively
applied until no modifications between iterations appear.

2.3. Experiments. A set leave-one-out cross-validation exper-
iment was designed and implemented due to the limitation
of the image dataset’s small size of 8 patients. OneMRI-MRA
patient study was excluded from the training dataset in each
experiment and used as target image for the segmentation
stage. So, while the training of the shape model was per-
formed just once, the training of the appearance model was
performed 8 times, using 7 MR studies each time. Thus, the
independence between the training data and the test data is
guaranteed.
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Figure 4: Significant variation modes of the transversal sections of the aorta, showing a variation of the average shape of 𝑏 = ±2√𝜆
𝑚

.

The segmentation method is validated comparing the
obtained delineation with manual delineations made by an
expert, considered as ground truth. Two common metrics
were used: Dice coefficient [26], defined following (5), and
modified Hausdorff distance (MHD) [27] described by (6).
Consider

DC = 2 ⋅
Volumemanual ∩ Volumeautomatic
Volumemanual + Volumeautomatic

, (5)

𝑑 (𝐴, 𝐵) =

1
𝑁
𝑎

∑

𝑎∈𝐴

𝑑 (𝑎, 𝐵) ,

MHD (𝐴, 𝐵) = max (𝑑 (𝐴, 𝐵) , 𝑑 (𝐵, 𝐴)) .
(6)

MHD computes the distance between two 3D objects and
improves the classical Hausdorff distance in two aspects: its
value incrementsmonotonically as the difference between the
two objects increments, and it is robust against outliers.

3. Results and Discussion

3.1. ShapeModel Tests. TheASMof the straightened transver-
sal sections gather the variations of dilation along the abdom-
inal aorta,mainly formed by the presence of the ILT.These are
the relevant variation for our purpose since the segmentation

is initialized by the lumen segmentation in each slice. Thus,
the shape model is constructed to be independent of the
evolutions of the centreline of the aorta and limiting the
variability between different AAA shapes.

After PCA, the results showed that 15 significant variation
modes gathered 95% of the possible variations. Figure 4
shows the three more significant variation modes, represent-
ing the variation defined by a value of 𝑏 = ±2√𝜆

𝑚
from the

average shape.
Given 𝑐 = 15 variation modes, different values in the

range of 𝑡 = [75%, 99%] were tested for the computation of
the 𝑀

𝑡
threshold. Finally, we selected 𝑡 = 90%, obtaining

then 𝑀
𝑡
= 22.3. We observed that, allowing larger values

of variability, the shape model resulted to be too flexible
and obtained undesired delineations, especially in the regions
where the initial location of the landmarks was displaced by
the presence of adjacent structures. On the contrary, stronger
restrictions of the variability resulted in a too rigid shape
model, tending towards cylindrical shapes.

It is important to highlight that a large enough dataset
could lead to very small changes in the shape model
parameters when the patient dataset is extended. Meanwhile,
different datasets will result in different values of 𝑐, 𝑡,𝑀

𝑡
, 𝑏
𝑖
,

andΦ
𝑖
variables, but the selection process will always remain

constant and repeatable.
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Table 1: Dice coefficient (%) between the manual and the automatic segmentations of the thrombus boundary of the 8 patient datasets for
the different combination of texture statistics.

DC (%) P1 P2 P3 P4 P5 P6 P7 P8 Mean
Δ𝐼 + Δ𝑚 + LmO + stdout + Δstd 89.7 81.5 91.0 89.8 86.2 82.0 88.5 88.8 87.2
Δ𝐼 + Δ𝑚 + LmO + stdout 90.6 82.0 91.1 89.4 87.4 82.2 88.8 89.2 87.6
Δ𝐼 + Δ𝑚 + LmO + Δstd 90.3 82.3 91.3 89.3 86.2 82.0 88.2 89.2 87.3
Δ𝐼 + Δ𝑚 + stdout + Δstd 89.6 81.6 90.7 89.3 86.2 81.2 87.9 88.6 86.9
Δ𝐼 + LmO + stdout + Δstd 89.8 81.4 90.8 89.2 86.1 81.3 88.0 88.7 86.9
Δ𝑚 + LmO + stdout + Δstd 89.5 81.1 90.5 88.9 85.9 81.3 87.8 88.5 86.7
Δ𝐼 + Δ𝑚 + LmO 90.8 82.4 91.3 89.9 87.6 82.8 89.3 89.9 88.0

Table 2: Dice coefficient (DC) and modified Hausdorff distance (MHD), between the automatic delineations and the manual delineations
performed by an expert, for the eight cases of the dataset and the two structures of interest.

P1 P2 P3 P4 P5 P6 P7 P8 Av. St. dev.
Thrombus boundary

DC 0.91 0.82 0.91 0.90 0.88 0.83 0.89 0.90 0.88 0.03
MHD (mm) 0.88 1.91 0.76 1.24 0.94 1.29 1.28 0.86 1.14 0.37

Outer wall boundary
DC 0.89 0.81 0.90 0.89 0.87 0.83 0.86 0.87 0.86 0.03
MHD (mm) 0.90 2.28 0.79 1.33 0.77 2.35 1.37 0.92 1.31 0.62

3.2. Appearance Model Tests. Results summarized in Table 1
show that the best combination of texture statistics is the one
excluding the values of standard deviations, variables which
reduce the quality of the result. It appears that the difference
between mean intensities is the most influent parameter. The
rest of combinations of three or two statistics, as well as the
individual use of each texture statistics, present worse results
than the ones presented in Table 1.

Thus, for every search region, the optimal landmark
position is the one that maximizes the value of 𝑚 = Δ𝐼 +

Δ𝑚 + 𝐿𝑚𝑂.

3.3. Qualitative Evaluation. In general, texture-based pro-
posals are a good estimation in most cases. Nevertheless,
some misestimations, due to changes of intensity in regions
considered homogeneous or to adjacent structures that mask
the target positions, can be found in some slices. The shape
model modifies the landmark positions, adjusting them to an
allowed point distribution. Isolated landmarks misestimated
by the texture-based process (Figures 5(a)–5(c)) are corrected
by the shape restrictions (Figures 5(d)–5(f)). Nevertheless, if
the AAA shape is very specific and has not been included in
the generation process of the shape model, the results can be
overrestrictive.

Figure 6 illustrates different situations in the delineation
of the outer wall boundary: adjacent structures with hypo-
(left) or hyperintensities (middle) and blurred boundaries
(right). In Figure 6(a) some landmarks are misallocated due
to the presence of an adjacent structure with an intensity
similar to the vessel wall one. Figure 6(d) shows that the
thickness limit and the shape restrictions improve qualita-
tively the results. Figures 6(b) and 6(c) display the incorrect
landmarks positions due to adjacent structures with hyperin-
tensity that, because of the partial volume effect, blurred the

boundary. The thickness and shape restrictions limited the
displacements and decrease the error but also restrict slightly
some correct positions (Figures 6(e) and 6(f)).

3.4. Quantitative Evaluation. The performance of the seg-
mentation method is quantitatively evaluated using manual
delineations made by an expert, considered as ground truth.
Table 2 shows the values of volume overlap andMHD for the
thrombus and outer wall boundaries, for the eight cases in
the database. Mean values around 90% of volume overlap for
both structures suggest a good agreement with an expert’s
manual delineations. Mean values for MHD slightly above
1mm, compared with diameters around 25–30mm of a
healthy aorta [1], support this statement. It is important to
emphasize that the shape model has been adjusted to be
restrictive, so it displaces some correctly located landmarks,
as shown in Figures 5 and 6.

Compared with the results reported by [13], we obtain
very similar values of the modified Hausdorff distance for
the outer wall boundary: 1.31 ± 0.62mm versus 1.32 ±

0.32, reported in the commented article as Mean Distance.
However, our results of the Dice coefficient are slightly lower,
although close to 90% inmost cases.Though Zohios et al. did
not report a similar validation for the thrombus boundary
since the process that they followed for the manual delin-
eation discarded the more problematic regions. Moreover,
manual delineation of the thrombus and vessel wall boundary
using CT images is challenging due to the lack of contrast
resolution, and the evaluation of the semiautomatic segmen-
tation method is therefore affected by an uncertainty range.

It is important to highlight that mean values have been
influenced and decreased by two specific cases with lower
values of agreement: patient 2 and patient 6. Patient 2 has a
specific geometry (Figure 7, top) not included in the shape
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(a) (b) (c)

(d) (e) (f)

Figure 5: Thrombus boundary for different patients and slices: ((a)–(c)) wrong texture-based proposals; ((d)–(f)) shape-driven corrections.

(a) (b) (c)

(d) (e) (f)

Figure 6: Outer wall boundary for different patients and slices: ((a)–(c)) wrong texture-based proposals; ((d)–(f)) shape-driven corrections.
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(a) (b)

(c) (d)

Figure 7: Patient 2 (top). Patient 6 (bottom). 3D reconstruction of aortic wall and ILT (left). MR slice with the manual (straight line) and
automatic (dotted line) delineations (right).

model. Moreover, the abrupt dilation hinders the manual
delineation, resulting in a large difference between the man-
ual and the automatic delineations (Figure 7, top). Although
shape model has been developed using 75 CT images, it has
been demonstrated that it is necessary to use a larger number
of cases in order to try to include as many different shapes as
possible.

Patient 6 image shows a nonhomogenous ILT with 2
structures clearly differentiated (Figure 7, bottom).The auto-
matic initialization performed using 2D level sets stops in

the incorrect boundary and the texture proposal does not
correct the contour. The incorrect initialization is performed
in several slices, so the similarity values decrease notably.
A better initialization step and/or a stop criterion for the
thrombus boundary delineation, more robust against throm-
bus inhomogeneities, should lead to better results in this kind
of cases.

The modular design of the proposed algorithm allows
improvements modifying or adapting delimited sections of
the method. Thus, the active shape model construction,
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the appearance model based on three statistical variables,
the registration method using a rigid transform, or the
initialization of the segmentation process based on a 2D
level set method can be easily improved or adapted to other
kinds of vascular imaging studies. Otherwise, the general
scheme, using shape and texture information from contrasted
and noncontrasted MR images to sequentially search lumen,
thrombus, and outer wall boundaries, remains unmodified.

Manual delineation is a time-consuming task, so the
evaluation has been performed using only one manual delin-
eation as ground truth, following the same process as other
previous works in the state of the art. Nevertheless, we know
that manual delineations always entail a certain uncertainty
[18], so future works are aimed at evaluating the proposed
method’s performance using several experts’ delineations,
taking into account the interspecialist variability.

4. Conclusions

A new method for segmenting human AAA thrombus and
outer wall boundaries in MR multispectral studies has been
presented. The modular design of the method combines
shape and texture information, obtained from CTA andMRI
image datasets, to guide a deformable model initialized by a
level set-based segmentation.

The results showhigh correspondence between automatic
and manual measurements for the vessel wall and thrombus
areas. Resulting segmented images present a mean volume
overlap with respect to manual segmentations of 88% and
a mean modified Hausdorff distance of 1.14mm for the
thrombus boundary and 86% and 1.33mm for the outer
wall boundary. The use of the selected MR images allows
better results for the thrombus boundary, maintaining good
(although slightly lower than previously reported) values for
the outer wall boundary.

While the dataset is small and further refinement is
needed to make the method more robust against thrombus
inhomogeneities, preliminary results of the segmentation of
outer face of the vessel wall are similar to those in the
literature, while improving substantially the results of the
thrombus boundary.
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